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On H-T Conjectures for Algebraic Cycles

Kazuhisa MAEHARA*

In this article we shall investigate the H-T conjectures for algebraic cycles on projective smooth varieties
and give an observation, proofs and its application to some conjectures for the motivic theory.

1 Introduction

We shall investigate two H-T conjectures for algebraic cycles explained later on projective smooth varieties
([Hod], [Ta]). A counter example for the H-conjecture is well known to Kéhler varieties([Zuk]). First we extend
the concepts of the Ishida complex for a toric variety to that for a log smooth variety. By using Hodge theory we
apply the Ishida complex to investigate the H conjecture. On the other hand we approach the H-T conjecture
with the tools such as Lefschetz pencil and the relative hard Lefschetz theorem. In both case it is inevitably
necessary to take into account the action of Galois group.

2 Ishida Ox-complex

In this section we study the generalization of two compex defined by Ishida([Ish] over a toric variety to those over
a log smooth variety and their applications to the H conjecture([Hod]). It seems that something resembles the
filtration by the type of codimension(p.164, p.170 [Dix])(cf.a Cousin complex ([Har])) . We recall the notation
and definitions for later use ([Bour]).

Definition 2.1. Let A’ be a ring and G a group operating on A’'. For a prime ideal P’ of A" the subgroup of
the elements o € G such that o P’ = P’ is said to be the decomposition group of P'. One denotes it by G#(P').
The invariant ring of A’ by GZ(P') is said to be the decomposition ring of P'.

Proposition 2.1. Let Py C P, C --- C P, be a chain of prime ideals of A'. Then one obtains a chain of
decomposition groups GZ(Py) D G#(Py) D -+ D G#(P.) of the group G.

Proposition 2.2 (Prop.6 Ch.5[Bour]). let A be an integrally closed ring, K its fractional field, K’ a quasi-
Galois extension (normal extension) of K, A’ the integral closure of A in K'. Then

1. For each prime ideal P of A the group of K -automorphism of K’ acts transitively upon the set of prime
ideals of A’ over P.

2. For each prime ideal P’ of A’ the fractional field K’ of AJAN P’ and the canonical homomorphism o — &
of GZ(P') into the group T of k' gives a bijection of G*(P")/GT(P') onto T through a passage of quotient.

We refer the concepts for toric varieties (resp. toroidal embeddings, resp. log smooth varieties) to [Ish] (resp.
[KKMS], resp. [Kat]).

Definition 2.2. Let X = Tyemb(A).

0 3 <0 orp<y,

- . (2.1)
Boea() o) (D)) 0<j<p

K’ (X;p) = {

2, (D(0)) = Oy gy ®2 AV (MO TH)

The coboundary map § : Kj(X;'p) — K7 (X;p) is defined todisplaystyle be 0§ = SR, : B0y (4 @2z
API(MNot) — GOy (1) ®z AP~ (M N 1) Here M is the group of characters of a torus.

Definition 2.3. 1. (a) An etale covering of a toric variety is said to be an etale toric variety.
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2. (b) A toroidal embedding is said to be a variety which is locally etale toric, in other word, a log smooth
variety.
Lemma 2.1. Lel j : U C X be a toroidal embedding with a polyhedral complex . One can extend the local
Ishida complex to the global Ishida Ox -complex for j.Q% |y K*(X;p) over X.
Proof. One can patch local Ishida Oy, -complexes for 7,Q% |, K7*(X;;p) for locally etale toric open neighbor-
hoods X; with UX,; = X. O

Theorem 2.1. Let X be a projective smoolh variely over the complex number field. The canonical homomor-
phism CHY(X)® C — HP(X, Q) is surjective.

We shall give the sketch of the proof by dividing several steps.
Lemma 2.2. Let ¢ 0 X — P be « projective morphism between projective smooth varieties. Assume
P is a toric variety.
(a) D s a normal crossing divisor on P such that the restriction of the morphism ¢ lo the inverse image
outside D is elale.

(b) jo: X = X',m: X' = P are Stein factorization of ¢. © is finile and w|p_p is etale. p is birational. X
and X' are toroidal embeddings withoul self-intersection with respect Lo the inverse image of D.
(¢) $7HD) is a divisor on X with the support in a normal crossing divisor.
(¢c) R(X) is a Gulois extension of R(P).
Then CH"(X)® C — H"(X, Q) is surjective.
Proof. By Quillen’s theorem there exist the canonical homomorphisms CH?(X) = coker(] [, cxp—1 Ki(k(x)) —
[iexr Ko(k(x))) ® C — HP(X, Q) and CH?(P) = coker([ [ epu—1 Ki(k(x)) = [Lcpn Ko(k(x))) @ C -
HP(P,))). On has Ishida resolution sheaves Qp — Kj(resp.Qyx — Ki,respSx: — Kj%,). Hence one
obtains the spectral sequence 'ESY = HY(H"(P, K})) (vesp.  'Ef" = H(H"(X,K%)), resp. 'Egb =
H(H"(X*, K%.))). Note that the supports of resolution sheaves of ' E§" are greater than of codimension 1 if a #
0. One denotes by F the filtration of the spectral sequence above. Since &GrpH? (P, ,) = @4 1p—p B (vesp.
SCrpH (X, ) = @ati=y hﬁé’ resp. @GrpHP (X', Q) = 69(1,+1,:,)Egé’), by induction argument it suffices to
prove the surjectivity of coker(] [ ¢ x\s-11yye-1 Ki(k(x)) = Hexyp-1 00 Ko(k(x))) @ C — E%. One knows the
map coker([ e pyp-1pyo-1 Ki(k(x)) = [igpyp-1pye Ko(k(x))) — E2(P) is surjective and both terms are zero
1
it p > (0. One denotes by tr the trace map induced by Galois action G = Gal(R(X)/R(P)); trz = @ Z 7.
ocld

Note that Q% (¢~ D) = ¢*Q% (D). Hence there exists a trace map E*(X) — E®(P). The latter one is a direct
summand of the former one. It happens the same thing the canonical map (:oker(ﬂxe(x\d)ﬂD)l,ﬂ Ky (k(x)) —
Heerxvo-tmye ‘K”(k(x))) @ € — coker([[ ¢ (pypy—1 Ki(k(x)) — er(P\D)}, Ko(k(x)}). These actions are equiv-
ariant. Therefore the desired map is surjective. This completes the proof. O

Under the assumption of the lemma above one proceeds to prove taking the following lemma in mind.
Lemma 2.3. One has the following commutative squares;
CH"(X) —— HP(X,Q")

| | o

CHP(P) —— HP(P,QP),

Gr*CHP(X) —— Gr"HP(X,0%)

! | o

Gr*CH?(P) —— Gr*H(P, Q)
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Definition 2.4. One can define the filtration associated to the polyhedral complex A.
Gr°CH?(P) =
coker( [ Ki(k(x) - [T Kokx)
xE(P\D)P~1 x€(P\D)P

modulo coker( H Ki(k(x)) = H Ko(k(x))) =0

Gr'CHP(X) =
coker( H Ki(k(x)) = H Ko(k(x)))

x€(X\¢p—iD)p-1! x€(X\¢~LD)P

modulo coker( H Ki{k(x)) — H Ko(k(x))) =

xE(p~1D)P! x€(p—1D)P

coker( 11 Ki(k(x) = [  Kolk(x))) Nker(Gr°CHP(X) — Gr’CH”(P))
x€(X\p~1D)P~! x€(X\p~1D)P

One can see the following proposition easily.
Proposition 2.3. Let H be a hyperplanc of X which associates to a ray of a polyhedral complex A.
1. The canonical map Gr'CHP~'(H) — Gr'CH"(X) is a surjection.
2. The canonical map GriCHP~'(H) = Gr't'CHP(X) for i > 1 is an isomorphism.
Lemma 2.4. Let H be o hyperplane of X which associates to a ray of a polyhedral complex A.
By Gr HP (X, ) = @iy E(X)
Datbmp 1 GroHP ™ (H, ") = @ayomp-1 B (H)
1. E9"~Y(H) — EYP~Y(X) is a surjection.
2. E“Y(H) = EtLY(X) fora+b=p—1 and a > 1 is an isomorphism.
Proof. Hodge decomposition implies the lemimna. O

Note that the inverse cycles of arbitrary two rationally equivalent cycles on P by 7 : X — P are Drinfeld
equivalent, hence homologically equivalent and that any cycle of codimension p is a multiple of one fixed cycle
of codimension p.

Hence the decomposition group of a non exceptional cycle of codimension j is isomorphic. One denotes by
G(7) the isomorphism class of the decomposition group.

On the other hand one has

Remark 2.1.

.G(p) LG G(p)

tTG(O) = tIG(O) o trG(U)

Lemma 2.5.

S
GrCHY(X)® C — E%(X)
J(tv*é?(((’)’)) l“-gg;; (2.4)

Gr'CHY(P)®C —— E%(P)

Proof. The commutativity is obtained by the remark above. O
Hence one has

Lemma 2.6. There exists a cycle of GrPC HP(X) the canonical image of which is not zero in GrOHP (X, Q%) =
E%(X).
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Proof. There exists an cycle cyc(z) such that z € XP and G%(z) € G(p). Let ¢ = cyc(x) — cyc(z®) for
1 # 0 € G(0)/G(1).

G
Lo trgle) #0

G(p) —
2. trg) (6) =0

]

We recall the following definition. It is the canonical homomorphism GZ(P’) — Aut(A’/P’), whose image
is denoted by I'y. For o € GZ(P’) the endomorphism = — oz of A’ induces z — oz of A'JP.

Definition 2.5. The subgroup of G#(P') which is the kernel of the canonical homomorphism is said to be the
inertia group of P' and one denotes it by GT(P'). The invariant ring of A' by GT(P') is said to be the inertia
group of P'.

Note that (4’/P')'° = A% /(P' n A%).
We remind ourselves the following proposition and theorem.
Proposition 2.4. Let k be a field , S = Speck and §2 an algebraically closed extension of k. Let a € S be

a geometric point Spec Q@ — S. Let k be the algebraic closure of k in Q. Then there ewists the canonical
isomorphism 71(S, a) & Gal(k/k) as topological groups.

Theorem 2.2. Let X be a smooth variety over a field of characteristic 0 and C a non singular irreducible
hyperplane of an ample divisor.

1.
HY(X,Q%(CY) =0 fora+b>dimX
2.
HY(X,Q%(C)(~=C)) =0 fora+b<dimX
Note that

Remark 2.2. 2p > dim X There ezists no primitive element in H?(X,0%). Hence E3?(X) = 0.
One has
Theorem 2.3. (o) 2p > dim X

EX(X)=0
(b) 2p < dim X
E®(X)=0

Proof. 1. 2p > dim X Since there exists no primitive element, EF%(X) = 0.
HP(C, 1) — HP(X,0%) = HP(X,QXP(C))
The former map is defined by Lefschetz map L.
2. 2p < dim X See the canonical exact sequence
HP(X,Qx(C)(—-0)) - H(X, Q%) — HP(C,QF)

Hence the latter map is injective, which is Lefschetz theorem. By inductive argument, the following
canonical map is surjective;

CHP(C)®C — H?(C,QP)

Therefore EX(X) = Gri,HP(X, Q%) = 0.
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It remains to be proved when 2p = dim X.
Lemma 2.7. 2p = dim X The following canonical map s surjective;
Gr'CH?(X) — E»(X)
Proof. Given a form w € E%(X), there exists a representative w € H? (X, Q%). By the long exact sequence

H? (X, QC)Y(=C)) — HP(X, Q%) — H?(C,QF)

one has a representative w € HP(X,Q(C)(=C)). Let G%(w) = {¢G|o*w = w}. Take a trace trw = —Z—]-’C;—w.

There exists a cycle corresponding to ¢trw in P. Take a smooth hyperplane B which contains this cycle and an
irreducible component A of the reciprocal image of B. By the canonical map H?(X,0P) — HP(A,wY), the w
does not vanish. By inductive argument, the canonical map

CHP(A) @ C — HP(A,QF)

is surjective. The inclusion A C X induces the toroidal embedding structure on A. Thus one can assume the
following map is surjective

GrPCHP(A) — E(A)

The latter cohomology group has a non zero element w. Hence one has a cycle z in CHP(X) such that
Cp(z) € E(X) maps to Cp(z) = w € EWX(A). Hence Cp(z) € EX(X) is not zero. Therefore there exists
o € G such that

Cpla)” = w € EX(X)

3 H-T Conjectures

Let k be a field, k its algebraic closure, G, = Gal(k/k), X a smooth projective variety, X = X %t k and
CH"(X) the Chow groups of algebraic cycles of codimension 7 on X modulo linear equivalence.
There exists the natural cycle map for ¢ # chark

cly : CH"(X) = Hy (X, Qu(r)) = H{"(X)(r)

This image lies in the fixed part .
Lo(H7 (X)(r)) := HF' (X, Q(r)¢*

under Gy. The T conjecture is the following statement([Ta], [Mot], [Jan]).
Conjecture 3.1. The image of cl, generates To(H7"(X)(r)), of k is finitely generated as a field.
Let k be the field of the complex numbers. Let X be a smooth projective variety.@Then one obtains a cycle
map
e CH"(X) — H*(X,Q),
whose image consists of (r,r)-classes, or in the explicit form
HZT(X, Q) m 1{(1',7‘)()(7 Q)
The H conjecture is the following statement([Hod], [Jan], [Mot], [Sh]).

Conjecture 3.2. The image of cl” ® Q is the whole of H*" (X, Q) m H" (X, Q).



52 ACADEMIC REPORTS Fac. Eng. Tokyo Inst. Polytech. Vol. 23 No.1 (2000)
4 Local Lefschetz teory

In the following sections we recall the Lefschetz theory investigated by Grothendieck, Katz and Deligne ([Katz],
[SGA], [Dix]). Let S be the spectre of a henselian discrete valuation A with an algebraically closed residue
field, 7 its generic point and s its closed point. Let f: X — S be a proper morphism from a smooth variety
of dimension n. Suppose that f is smooth except for a ordinary quadratic singular point z in the special fibre
X,. One has a specialization morphism

sp: H' (X, Q) 2 H (X, Qp) » H'(Xz, Qo).
The Galois group Gal(k(k)/k(n)) = I acts on H*(Xz, Q) by structure transportation:
Gal(k(k)/k(n)) = I — GL(H (X, Qr)).

The sheaf R f,Q, over S is completely determined by the two conditions above. One can explain them by a
vanishing cycle § € H"~! (X5, Q¢)(m), which is well defined up to sign. Here n — 1 = 2m,n —1 = 2m + 1. One
has

H’I:(Xsa@ﬂ> = Hz(Xﬂ7 QZ)
for ¢ #n — 1,n. For i = n — 1,n, one obtains an exact sequence

x—Tr(zUd)
—

0— H (X, Qo) = H (X7, Q) Q(m—n+1) > H(X;,Q) = H (X5, Q) — 0

The action of the local monodromy I is trivial if ¢ ## n — 1. For ¢ = n — 1 it is described in the following
1. n—1 odd The action of 0 € I is z — x +ty(0)(x,0)d, where ty : I — Z;(1) is a canonical homomorphism.

2. n —1 even Excluding p # 2, there exists a unique character of order 2 ¢ : I — {+}. Then one has
cx=zife(o) =1
ox =2+ (z,0)d if e(o) = —1.

(n=1)(n=2
2

Here the sign =+ is defined to be —(—1) = —(—1)™. The (4,6) is 2if n—1 mod 4 = 0 (resp. 0if n —1
mod 4 =1, resp. -2 if n —1 mod 4 = 2, resp. 0 if n—1 mod 4 = 3.) Hence one obtains the property for R’ f, Q.

(a) 6 #£0
1. For i # n — 1, the sheaf R*f,Qy is constant.
2. Let j :p <> S. One has R* ' f,Qp = 7.5*Q.

1. For i # n, the sheaf R*f,Q, is constant.

2. One has an exact sequence

0— @Zs — Rnf*@f - j*j*R"f*Q[g -0

, where 7,.7*R" f,Qy.

5 Global Lefschetz theory

Let PP be a projective space of dimension more than 1 over an algebraically closed field k of characteristic p and
X a projective smooth subvarlety of P of dimension n. For a linear subspace A of P of cod1mens1on 2, one can

define a pencil (H,);ep and X by blow-up with center A N X, which one denotes by p : X = D. Here D is a

line.

Definition 5.1. A pencil (H¢)iep is said to be a Lefschetz pencil of hyperplane sections if the following condi-
tions are satisfied

A) The ax A intersects transversally with X. The X 1s smooth.

B) There exists a finite set D of such points of D that for every s € S there is a point x, € X, such that p| X,
is smooth outside x.
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C) xs is a quadratic singular point of X,.
Let r be an integer > 1, N the dimension of P and ¢, the embedding of P into the projective space of
. . N+r
dimension - -1

If p > 0 it happens that no pencil of hyperplane sections of X is Lefschetz pencil. A very general pencil
however becomes Lefschetz pencil if one replaces the embedding X < P by the composition of the embedding
1, above for » > 2.i.e., a very general pencil of hypersurface sections of degree > 2 is always Lefschetz pencil.

6 Lefschetz pencil-1

We consider a Lefschetz pencil except p = 2,n—1 even. Put U = D\S. Let ©v € U and £ # p. By local Lefschetz
theory, R" 1p,Qy is tamely ramified at every s € S. The tame fundamental group of U is the quotient of the
pro-finite completion of the fundamental group as a transcendental analogue. The transcendental situation can
translate in the algebraic situation.

(a) If there exists no vanishing cycle, one has R*p,Q is constant.
1. For i # n, the sheaf R?p,Qy is constant.
2. One has an exact sequence

0— @uesQ(m—n)y = R"p.Q - F =0,

where F' is constant.

3. E=0.
Note that this case is exceptional and that n — 1 is odd.

If the vanishing cycles are all non zero,

1. For i # n — 1 the sheaf R'p,.Qy is constant.

2. Let j: U — D. One has
R '0.Qr = " R puQu

3. Let E Cc H"1(X,,Q) denote the vector subspace generated by the vanishing cycles.

7 Lefschetz pencil-2

We work over an algebraically closed field k of characteristic p. Let £ a prime number different from p. Deligne
proved the hard Lefschetz theorem([Del]).

Theorem 7.1. Let X be a smooth projective variety of dimension n over k, L an ample invertible sheaf over
X andn=ci (L) € H*(X,Q,). Then for every integer j

7t H' (X, Qe(5)) — H™ (X, Qeli + 5))
18 an isomorphism for any i > 0.
One has its relative version ([BBD]).
Theorem 7.2. (relative hard Lefschetz Theorem) If Fy is a pure perverse sheaf over Xo, the homomorphism
¢ PH™ f Fy — PH' f.Fy()
is an isomorphism for any i > 0.

Let D = {H,cp} a pencil of hyperplanes whose ax A cuts X transversally in A. We describe by (X, ) the
homogeneous coordinates of P!. The ax of the pencil is defined by F = G = 0 where F,G are two linear forms.
The pencil is determined by AF = uG. Let X = {(z, (), 1)) € X x P'|AF — 4G = 0}. This is the closure of the

graph of the map
X\A— P

where z — (G(z), F(x)). One denotes by X; = p~* = X - H,. Note that X is a smooth projective over k since
A is so.
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\
Definition 7.1. The Lefschetz pencil D satisfies the condition (A) if the group of inertia on any point of D m X
acts non trivially on H" (X7, Qy).
Note that If n — 1 is even, the condition (A) holds.

Lemma 7.1. ([Katz]) When n — 1 is odd (b # 2), one can find an integer dy such that for d > dy every
Lefschetz pencil of hypersurfaces of degree d satisfies the condition (A).

Proof. If the condition (A) is not satisfied, R"~1p.Qy is constant and of rank dim A" *(X, Q). On the other
hand, one has dim H"~'(H(d),Q¢) tends to the infinity as the degree d of a smooth hypersurface section H(d)
of X grows larger. |

Deligne has proved the following statement in ([Dell).
Lemma 7.2. Forp =2, n—1 even, suppose the Lefschetz pencil (X¢ep) 4s very general.
n—-1

(a) n — 1 even The reflections z — z — (—1) 2z (x6)d are conjugates among them.

(b) n—1 odd The homomorphisms of Z(1) into the monodromy group given by the Picard-Lefschetz formula
z— z + Az, 8)d, for a vanishing cycle § are conjugates among them.

Hence one obtains the following lemma.
Lemma 7.3. The vanishing cycles modulo sign are conjugates one another in H" (X7, Q).

Note that if one neglects the torsion, the vanishing cycle 4 is determined up to sign by the corresponding
Picard-Lefschetz transformation.

Applying the following theorem to the very general Lefschetz pencil, one has the degeneration of Leray
spectral sequence which proved Deligne([Katz],[Del]).

One denotes by = the Galois group of k(7)/k(n).

Lemma 7.4. For g #n — 1, one obtains the following canonical isomorphisms.
1. E% = H°(P', R, Q) = HY (X7, Q)
2. By = H*(P', R%p, Q) = HY(X7,Qu(-1))
3. EY?=HP(P',R9p.Qu) =0 for p#0,2.

For q=n—1, one has
1. B9 = HOPY R 0. Q) = H" (X7, Q)"
2. E3"TN = HA(PL, R Q) = H' (X, Qo)™ 2 H'H(X, Qu(—1))
Proof. One refers to [Katz]. O

There remains only the following part. One denotes by E™ 2(A,Qy (7)) the orthogonal part of the image of
H™"2(X,Qe(5)) in H""2(A, Q¢ (), which is said to be the vanishing part of the cohomology of A.

Lemma 7.5. ([Katz]) One obtains a direct sum decomposition
E21»TL~'1 —_ Hl(Pl’ R"_lp*Qg) o~ Prim”(X,Qe) o EH_Q(A7Q[{(_1)).
There exists an isomorphism (p.261[Katz])
HY(X,Q¢) = HY(X,Qp) & HI (A, Qe(—1)).

It suffices to obtain the proofs of H-T conjectures that one considers the primitive part of cohomologies by
taking Lefschetz decomposition.
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8 Griffiths map

Let f : T — S be a morphism. The Leray spectral sequence EP¢ = HP(S, RYf. Qe (7)) = HPT(T,Q.(J))
defines the edge maps E%¢ < E39. One defines by Prim®(T/S,Q,(j)) F*H"(T,Q¢(j)). Then Prim"(T/S <
Q) = Ker(H*(T, Q¢ (j)) — H(S, R"f,Q,(j)). One also has EL™ < E,™. Hence

Prim“(T/S,Qg(j))aEég“l _)E;,n—17

ie., Prim”(T/S,Q.(j)) — H'(S,R*~'£,Q¢(j)). Apply this to a Lefschetz pencil. Let p : X — P! be a projection
of Lefschetz pencil. Choose & non void open set v : U — P' such that the restriction p|U is projective

and smooth. By the proper base change theorem, one has Prim“(;(\U/U,Qg(j)) — Ker(H“()N(IU,Qg(j)) —
H"(X5,Qe(j)). Note that if dim X = n,

2 € Prim" (X, Qu(j)) <= x € Prim"(X|U/U. Q(j))
and that when the condition (A) is valid, it is equivalent to = € Prim“()N(/IP‘l,Qg (3))- One has the following
definitions ([Grif], [Katz]).

Definition 8.1. The composite map

Prim® (X, Q¢ (j)) = Prim"(X|U/U, Q(j)) — H' (U, " R"™ ' p, Qe (j))
1s said to be Griffiths map.

Definition 8.2. One denotes by E" ' p,Qu(j) = v. (the orthogonal of the constant subbundle H" (X, Q¢ (j))u
in V"R p,Qu(§))ice., V'R 1p.Qe(§) = B 1p.Qe(j) ® H (X, Qe(s))u This is called the vanishing coho-
mology sheaf over P!,

Lemma 8.1. The canonical map
Prim® (X, Q¢ (j)) — HY(U, v"E" 1 p. Qs (j))
18 an injection.

Proof. Since
Byt = H'(P',R""' p.Qp) = Prim"(X, Q) & E"*(A, Qu(-1)),

one has Prim" (X, Q¢ (j)) — H'(P',R""'p.Q(j)). Note that E"1p,Q(j)) & viv*E" 1 pastQe(j)). Hence one
completes the proof.
O

9 Observation

In this section we give an observation.

Deligne generalizes Lefschetz theory described above to the case of any base field for Q,-cohomology((4.3)II
[Del]). In local Lefschetz theory one has an epimorphism Gal(7/n) - Gal(5/s).

We recall the T conjecture. The image of the natural cycle map for ¢ # chark

cy : CH™(X) — HZ (X, Qu(r)) = HY (X)(r)

generates

Co(H{(X)(r)) == Hy (X, Q(r))°™

if k is finitely generated as a field.

Here G}, = Gal(k/k) = Gal(5/s).

It suffices to prove it in the case of 2r = n = dim X. We shall investigate this case elsewere. One refers to
the following lemma.

Lemma 9.1. The canonical map
grif : Prim" (X, Q) — H (U, v*E* 1, Q)

18 an injection.
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Secondly, we recall the H conjecture. Let k be the field of the complex numbers. Let X be a smooth
projective variety. The image of the canonical cycle map

" CH™(X) — H*(X,Q)
generates H(X,Q)[ )| H"" (X, Q).

One fixes an isomorphism ¢ : Qy = C. By Lefschetz principle one can translate the results into the analytic
case each other.

Lemma 9.2. Prim"(X, Q) m H"(X,Q) ﬂ H"*(X) s invariant under Gal(7j/n).
Proof. Gal(7/n) acts trivially on the image of the intersection with H"(X,Q) by grif. O

One therefore obtains the following observation.

10 Application
Assuming the H conjecture, one has the canonical cycle map
Yxxx tCH" HX x X) — H" (X x X,Qu(n — 1)).

The homogeneous linear map of degree —2 A is an element of H?" 2(X x X,Qy(n — 1)), which is invariant
under the action of Gal(7/n). Hence it is algebraic.
For i < 4, the Q-valued pairing on A*(X) N Prim* (X, Q) one has

(z,y) = (=1)'Tr(" ?zy)

is positive definite. By induction if n is odd, it is by hypothesis. If n is even, one cannot find no primitive

algebraic element corresponding for ¢ = 7.
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