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Stretching Rays at Critically Prefixed Real Cubic Polynomials
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1583 liyama, Atsugi, Kanagawa 243-0297, Japan

In this note, the dynamics of real cubic polynomials is considered. Especially, in the parameter
space, landing of stretching rays at critically prefixed polynomials is investigated. It turns out that
an interval worth of stretching rays land at such points.

1 Introduction

In this note, we shall investigate the dynamics of a family of real cubic polynomials :

P(z) = Pap(z) = 2° — 342+ VB, A,B > 0.

Since the stretching ray passing through a point in this family stays in this family, we call such
stretching rays real. Our main concern is on the landing of real stretching rays for this family, especially
on Preper(i);, the locus where one critical value becomes a fixed point. In the first quadrant, the
boundary of the connectedness locus is very simple. It consists of two real algebraic curves. And
stretching rays must accumulate on these curves. See Figure 1. This really simplifies things. Our
main result is that an interval worth of real stretching rays land at a certain class of critically prefixed
maps.

There are few works on the landing of stretching rays. Kiwi [Ki] has considered critical portraits
for polynomials in the visible shift locus of arbitrary degree and has investigated the relation between
their combinatorics and those of their impressions. Especially, if the critical portrait consists of
strictly preperiodic angles, its impression consists of a single polynomial, whose critical points are
strictly preperiodic. Consequently, stretching rays through polynomials with such critical portrait
land at a critically preperiodic polynomial. Willumsen [W] considered the accumulation of stretching
rays on Per(1), the locus where P has a parabolic fixed point with multiplier 1, in the family of
complex cubic polynomials.

Here we consider stretching rays only in the family of real cubic polynomials. Although Kiwi [Ki]
has obtained a deep result in more general settings, our result is not contained in his. In fact, our
rcal stretching rays are not contained in the visible shift locus, where he considered. Besides, we give
a more elementary proof.

2 Stretching rays

Let Py be the family of monic centered polynomials of degree d > 2. For P € Py, let K(P) be its
filled-in Jula set, that is, the set of points z € C whose orbit { P"(z);n > 0} is bounded and let J(P)
be its Jula set, the boundary of K(P). The connectedness locus C4 or the escape locus E; of Py is the
set of P € P, whose Julia set J(P) is connected or disconnected respectively. Let ¢ p be its Béttcher
coordinate defined in a neighborhood of co. It satisfies pp(P(2)) = @p(2)? and tangent to identity
at co. Let hp(z) = log, |pp(2z)| be the Green function for P, which is continued continuously to
the whole plane by the functional equation hp(P(z)) = dlog, |pp(z)| and is harmonic in C — K(P).
Put G(P) = max{hp(w);w is a critical point of P}. Then ¢p can be continued analytically to Up =
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Figure 1: The connectedness locus Cf

{z;hp(2) > G(P)}. For a complex number u € Hy = {u = s+ it € C,s > 0}, put fu(2) = z|z|*"!
and we define a P-invariant almost complex structure oy, by

o = (fu o (pp)*O'() on Up,
“ oo on K(P).

Then, by the Measurable Riemann Mapping Theorem, o, is integrated by an appropriately normalized
qc-map F, so that P, = F,,0o Po F, ! € P;. Since the same theorem says F,, depends holomorphically
on u, so does P,. Thus we define a holomorphic map Wp : Hy — Pg by Wp(u) = P,. The Bottcher
coordinate pp, of P, is equal to f, o pp o F,; 1. This operation is called wringing. Since P, is hybrid
equivalent to P, it holds P, = P for P € Cy4. For P € &4, we define the stretching ray through P by

R(P)=Wp(Ry) = {Ps;s € Ry }.

For example, in case d = 2, stretching rays coincide with the external rays for the Mandelbrot set. As
for stretching rays, see Branner [Br] or Branner-Hubbard [BH2]. The following is a direct consequence
from the definition.

h
Lemma 2.1 Let w;, for j = 1,2 be two escaping critical points of P € £;. Then 7(Ps) = ——Eﬁ(aj—l)— s

hp,(w2)
invariant on the streching ray R(P) through P.

proof. Since |pp,(2)| = |fs 0 pp o F; 1(2)] = |pp o F;1(2)|*, we have hp,(2) = s - hp(F1(z)) and

hp,(Fs(w1))  hp(w1) .
b, (Fa(w2) ~ hplwg) )

ﬁ(Ps) =

This completes the proof. O

Generally speaking, in this lemma, we cannot replace hp(w,) = log|pp(w,;)| by logpp(w,) in the
definition of 7j(P). But, in case of real cubic polynomials in the first quadrant, we can do so since both
critical points +v/A are real and their orbits lie on the positive real axis in the Bottcher coordinate.
loglog pp(z)

log 3

define, for P € £3 (the real shift locus, i.e. the locus where both critical points escape), the Bottcher
vector n(P) by

Here is an advantage of considering the real cubic polynomials. We set (p(2) =

n(P) = loghp(x/}i)l;glgghp(—\/z)

= (p(VA) - (p(—VA).
Note that, since pp(£v/A) > 1, (p(+VA) is well defined. Then Lemma 2.1 implies the following.
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Lemma 2.2 On the stretching ray R(P) through P € 3, n(Ps) 1s invarant.

This lemma will play an important role in the following sections.

3 The parameter space of real cubic polynomials

We restrict our attention to the first quadrant of the parameter space of real cubic polynomials. Then
both critical points +£v/A4 of P are real.

Lemma 3.1 (Munor [M1]) The real connectedness locus Cit 1s bounded by two real algebraic curves :

Peri(1) = {B=4(A+1/3)%*0<A<1/9},
Preperqy = {B=4A(A- 1%1/9< A< 1},

In the region B < 4(A+1/3)3, P has three distinct real fixed points. On Per (1), two of them collapse
into a parabolic fixed point of multiplier 1. And in the region B > 4(A + 1/3)3, P has only one real
fixed point. Now let 8p and % be the real fixed points of /> at which the external rays with angles
0 and 1/2 land respectively. And we denote the other one by f. In the region B > 4(A + 1/3)3,
only 3} exists. In the region B < 4(A4+1/3)3, Bp and ) are the maximum and minimum real fixed
points respectively. Peri(1) is the set of parameters such that Sp = 8} = /A + 1/3 is the parabolic
fixed point with multiplier 1. Preper(j); is the set of parameters satistying P(—VA) = Bp.

Figure 1 is the parameter space of our family. The black region is the connectedness locus. lts
complement is gradated in order to emphasize stretching rays. That is, &% is gradated by the Bottcher
vector. The locus £1 where only one critical point escapes is gradated by the period of the attracting
cycle.

4 Landing of stretching rays on critically prefixed polynomials

In this section, we consider the landing of stretching rays in the real shift locus £2. More precisely, we
consider the region {(A, B) € £3; B < 4(A+ 1/3)3}. Note that this region is disjoint from the visible
shift locus. Roughly speaking, a map in the shift locus is vsible if each critical point is the terminating
point of an external radius and its external angle is well defined. As for a precise definition, see Kiwi
[Ki]. Figure 2 is the Julia set of a map in the real shift locus. It gives a ternary decomposition of the
complement of the filled-in Julia set. And we can see some external rays and critical points. At the
critical point —V/A, external rays of angles 1/3 and 2/3 terminate. So, it is visible. But the other
critical point v/A is not visible. Since both critical points are real in the first quadrant, we consider
the dynamics only on the real axis.

Lemma 4.1 In the requon 4A(A — 1)? < B < 4(A + 1/3)?, the orbit of a pownt x > Bp escapes to
oo if and only if there exsts k > 0 such that P*(z) > Bp. Especially, +f P(—VA) < Bp, it follows
[8p, Br] = K(P)NR.

proof. Since 4A(A — 1)? < B implies P(VA) > B, we have P(z) > fp for z > (p. Hence the
first statement follows. Furthermore, if P(—v/A) < Bp, it follows P([8p, Bp]) C [Bp, Bp] and the last
conclusion holds. O

Corollary 4.1 In the region 4A(A — 1)2<B<4A+ 1/3)3, VA escapes if and only of there exists
k > 0 such that PF(V/A) > Bp. In this case P*(v/A) — +oco. In the reqron B < 4A(A — 12, A>1,
P(VA) < B and P"(V/A) — —oco. In the region B > 4(A+ 1/3)%, P*(VA) — +oo0.
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Figure 2: The Julia set of a map in the real shift locus

Lemma 4.2 In the first quadrant, G(P) = hp(—+/A). That 1s, the critical point —/A escapes faster
than the other critical point VA.

proof. Since P(—VA) > P(VA) > VA in B > 4(A +1/3)3, we have P¥(—v/A) > P¥(\/A) for any k
and the conclusion follows. In the region 44(A — 1)2 < B < 4(A + 1/3)3, the conclusion follows from
Lemma 4.1. In the region B < 4A(A — 1)2, A > 1, |P*(—vA)| > |P*¥(v/A)| holds for any k. This
completes the proof. O

Then, from Corollary 4.1 and Lemma 4.2, it follows

& = {(A, B) € R2 — ' P*(vV/A) < Bp for any k > 0},

and, for any connected component U of £2 N {4A(A—1)? < B < 4(A+1/3)3}, there exists k > 1 such
that
P(VA) < Bp, 0< j <k, P*"(VA) > Bp,

in U. Hence its boundary QU is contained in the real algebraic set P**1(v/A) = gp.

Lemma 4.3 Each connected component Riy1 of {(A, B) € £3; P*1(\/A) = Bp} forms a stretching
ray. It lands at a point (A, B) € Preper (), satisfying Pk(VA) = —VA.

proof. It is easy to see Ry forms a stretching ray. Since both Preper(1y; and Ryy are real alge-
braic curves, either they coincide or their intersection set is locally finite. Since they do not coincide,
Ri41 must land at a point (Ao, Bo) € Preper(;); and we have P(;“H(\/A_O) = Bp, = Po(—+vAo).
Hence P§(v/Ag) equals to —/Ag or fBp,. Suppose P¥(\/Ag) = fBp,. Then there exists a j < k
such that P(i (VAo) = —v/Ag. Take such minimum j. Then the following Lemma 4.4 implies
(8/83){PﬂTB(\/Z) — Bp} > 0 at (Ao, Bp). By the implicit function theorem, there is a real ana-
lytic curve R4 : Pfﬁ;(ﬂ) = fp through (Ao, By). Since P(—v/A) > Bp on this curve, this curve
yields two stretching rays. By Lemma 4.4 and the fact that P*¥~7 is monotone increasing at (p,

PI*1(\/A) > Bp if and only if P¥t1(v/A) > Bp. Hence Ry coincides with R,;;. This contradicts
the definition of Ry ;. Thus Po’“(\/AO) = —y/Ap. This completes the proof. O

Lemma 4.4 Suppose Py = Pa, g, € Preper, satisfies Pé“(\/AQ) = —/4,.
Then (6/83)(Pk+1(\/2) — Bp) > 0 at (Ao, By)-

proof. Put P = Py, pyye. It easily follows that, for fixed A, Bp is a monotone decreasing function
of B. Hence we have only to show P*¥+1(y/Ag) is a monotone increasing function of ¢ > 0. From the
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Figure 3: Stretching rays tangent to Preper(y

assumption, it follows

(0/0e)PEFH(VAo) = (8/0e)PPE(V Av))

_ ﬁ;ﬁ + PL(PE(V/A0))(8/9e) PE(V/Ao)
_ 1 .5 0
= 2\/,73—0+ (€) > 0.

This completes the proof. O
The same estimate holds also for (A, B) € Preper(;); close to (Ao, Bo). This proof says that Ry is
continued, as a real analytic curve, to a neighborhood of A = Ay, which we also denote by Ry,.

Lemma 4.5 Ry 1s tangent to Preper(y; at (Ao, Bo)-

proof. Put h(A) = P¥*2(\/A) — P*¥+1(\/A). Then we have

h = PYP*(VA)) - PA—VA) — {P(P*(VA)) — P(—VA)} + P*(-VA) — P(—VA)
= (P2 P)"(—VA)(P*(VA) + VA)?/2 + O((P*(VA) + VA)®) + P(~VA) - P(—VA).

Since h = 0 on Ry41 and
(P? — P)'(=VA) = {P'(P(—VA)) — 1}P"(—VA) = 6VA(1 — 94) <0,
it follows
PY(—VA) — P(—VA) = —(P* — P)"(—VA)(P*(VA) + VA2 /2 + O((P¥(VA) + VA)*) > 0.

Thus the component of the set P¥¥1(1/A) = Bp sits on one side of Preper(;y; and it is real analytic
even at (Ag, Bp). Hence it must be tangent to Preper(;); at (Ao, Bo). This completes the proof. O
Figure 3 is an enlargement of Figure 1. This supports the above lemma.

Lemma 4.6 Any pownt (Ao, By) € Preper(yy; satisfying PE(VAo) = —V/Ag is the landing point of
just two stretchang rays, which are of the form Ry .

proof. From Lemma 4.4, it follows P¥1(\/A) > Bp for (A, B) = (Ao, Bo + ¢). On the other hand,
PktL(/A) < Bp holds on Preper(y;. Now, by the intermediate value theorem, there exists a curve
Pkt (\/A) = Bp between Preper(yy; and (Ag, Bo+¢) for any e > 0. This curve must land at (Ao, Bo).
Since (P**t1(v/A) — Bp)|a=4, is a monotone increasing function of B at By, there are only two rays
landing at (Ag, Bo). O
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Corollary 4.2 For the point (Ao, Bo) as above, (Ao, By + €) € &2 for small ¢ > 0. Especially,
stretching rays of the form Ry are contained in the boundary of a connected component of Sg.

Stretching rays through points in the connected component of £2 bounded by two such rays must land
also at (Ao, Bo).

Theorem 4.1 For any P € £2 N {4A(A - 1)? < B < 4(A + 1/3)3}, there exists k > 0 such that
PktY(\/A) > Bp. Take such minimum k. Then the stretching ray R(P) through P lands at a point
(Ao, Bo) € Preper(yy; satisfying PE(V/Ap) = —/Ag. The stretching ray R(P) through P € £2N{B <
4A(A ~1)?%} lands at (1,0). Conversely, such a point (Ag, By) € Preper 1), is the landing point of an
interval worth of stretching rays of the above property.

proof. We have only to show that there exist an interval worth of stretching rays landing at (Ao, Bo).
Let U = Uy, be the connected component of £5 N {4A(A —1)? < B < (A +1/3)3} containing P. For
any P € Uy, there exists m > k + 2 such that P™(v/A) > P(—vA). Take such minimum m. If P
approaches OUy, m becomes arbitrarily large. Thus there are at least two stretching rays in Uy, of the
form Ryi1m : P™(VA) = P(—VA) for any m > k + 2. They must land at (Ao, By). The Bottcher
vector map 7(P) takes any values in (—m,1 — m) in the region between two stretching rays Rii1m
and Ry m41- On the other hand, Lemma 2.2 says it is invariant on a stretching ray. Thus there are
as many stretching rays as the Bottcher vectors landing at (Ao, By). This completes the proof. O

Lemma 4.7 Ry m is real analytic and tangent to Preper(y; at (Ao, Bo).

proof. In order to show the real analyticity at (Ao, Bo), we have only to show
(0/0B)(P™(VA) — P(—VA)) = P'(P™}(VA))(8/8B)P™ ' (V4) > 0,

at (Ao, Bo). Since P'(P™ 1(v/A)) > 0 on Rgy1m, it is sufficient to prove (8/0B)P™ '(v/A) > 0. The
case m = k + 2 follows from Lemma 4.4. For m > k + 2, we have

(8/0B)P™1(VA) = %+P’(Pm"2(\/Z))(8/BB)Pm‘2(\/Z)
> P'(P™%(VA))(8/8B)P™ 2(VA)

> m[_f P'(PY(VA)) - (8/0B)P*1(vVA) > 0.
1=k+1

Thus we have shown the real analyticity of Ry, at (Ao, Bp). Next, since

0 = P™(VA)-P(-VA) = P(P"(VA)) - P(P(-VA)) + P(-V4) - P(-VA)
= P(P(-VA)(P"(VA) - P(-VA)) + O((P™ ' (VA) - P(—V4))*)
+PY(-VA) - P(-VA),
and P™~1(VA) < P(—~VA) on Ry1m, we have
PY—VA) - P(-VA) = —P(P(—VA)(P™"(VA) - P(—VA))
+O((P™Y(VA) = P(-VA))*) > 0

for (A, B) € Ryy1,m close to (Ag, Bo). Hence the real analytic curve P™(v/A) = P(—V/A) is tangent
to Preper(;); at (Ao, Bo). This completes the proof. O
Numerical experiments suggest the following.

Conjecture 4.1 All the stretching rays but one in the reqion Uy as above land at (Ao, By) tangentially
to Preper(1y1. The exceptional one is the ray expressed by Pk(\/Z) = —V/A, which lands transversally
to Preper(1y1. The Béttcher vector map 1 takes values ezactly on (—oo, —k| in Uy.
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