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Abstract

This note gives numerical experiments and an intuitive explanation of the non-pathwise

connectivity of the tricorn, the connectedness locus of the family of antiquadratic

polynomials.

1. Introduction

In this note, we will give a numerical explana-
tion of the non-pathwise connectivity of the
tricorn, the connectedness locus of the family of
antiholomorphic polynomials of degree two of
the form: f.(z) =Zz*+c¢,c €C.

Though f. itself is not holomorphic, its sec-
ond iterate f:2(z)=(z2"+¢)*+c¢ is holomor-
phic. So, we can define its filled Julia set K.=
K (#.) and Julia set J.=] (fc) analogously as in
the polynomial case:

K.={z €C:its forward orbit {/:"(2) } -
is bounded},
]c:aKc.

The connectedness locus of this family :
My*={c C: J. is connected}.
is called in Milnor [Mil] the #icorn and in
Rippon et. al. [Rip] the Mandelbar set. It is
characterized also by
My*={c eC;0 K.}
Note the 0 is the unique critical point of this
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family.

It can be regarded as an analogy with the
Mandelbrot set M, for the polynomial family :
P.(z) =z*+¢, ¢ €C. In fact, they share same
properties to a certain extent. For example,
Nakane [Nakl] showed that the tricorn M* is
connected.

The purpose of this note is not to give the
proof of non-pathwise connectivity but rather
to give numerical experiments suggesting it. Its
proof will appear in Hubbard, Nakane and
Schleicher [HNS]. See also Nakane and Schlei-
cher[NS]. Note that the Mandelbrot set is
conjectured to be locally connected. This
difference is caused by lack of complex
analyticity on the parameter of our family.

Our concern is where in the tricorn pathwise
connectivity breaks. Actually we can show it on
the boundary of every maximally tuned hyper-
bolic component of odd period off the arcs of
symmetry. For details, see Theorem 2.8.

Though we can show non-pathwise con-
nectivity only for a certain type of hyperbolic
components, numerical experiments suggest

that it is true for any hyperbolic component of
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odd period off the real axis. On the real axis, it
is evidently pathwise connected. Suppose it is
true. Then it follows that baby tricorns are not
homeomorphic to the entire tricorn. This corre-
sponds to the fact that the straightening map
for the polynomial-like maps of degree 3 is not
continuous, stated in Douady-Hubbard [DH2].
Our study is intimately related to the study of
the dynamics of cubic polynomials. Milnor
[Mil] classifies the dynamics of cubics into four
types by the behaviours of two critical -orbits.
Our antipolynomial family gives a model for
one of them, the bitransitive case, i.e. two
critical points belong to a same cycle of attrac-
tive basins. The appearance of tricorn-like
figures in its real slice suggests a strong evi-
dence for this . In fact, our argument will show
non-pathwise connectivity of its real slice.
This note is based on the joint work with
Prof. D. Schleicher, which got started when I
stayed at IHES. Prof. J. Milnor pointed us to
this problem and Prof. J. H. Hubbard explained
us a strategy towards non-local connectivity
through the theory of Ecalle cylinder. We also
thank Prof. M. Shishikura for helpful sugges-

tions.
2. Numerical Experiments

The study of non-pathwise connectivity origi-
nates from the work of Milnor [Mil]. Actually
he gives a numerical experiment of the real
slice of the cubic connectedness locus there. See
also Branner [Bra]. There appear a tricorn
-like figure and a structure like the graph of the
function: sin(1/x), a prototype of non-path-
wise connected sets. In the summer of 1993, he
gave the author the question of whether the
tricorn is pathwise connected. That is the start-
ing point of this study.

The proof of non-pathwise connectivity of

the tricorn is based on the way Lavaurs [Lav]

has proved the non-local connectivity of the
cubic connectedness locus by using the Ecalle
cylinders. That is, we translate the topology in
the dynamical plane into parameter space by
the transit map between cylinders in order to
get a desired result. In this process, the follow-
ing plays an important role.

Theorem 2.1 ([NS]1) Let W be a hyperbolic
component of odd period of Mo*. Then the
Ecalle height of the critical value parametrizes
each parabolic arc (i. e. commected component
of oW —{cusp points}) real analytically, along
which f. ave quasiconformally conjugate to each
other.

Since we consider antipolynomials, there
exists an invariant line (an equator) in the
cylinder and it follows that the transit map
between cylinders does not change the Ecalle
height, the vertical coordinate on the cylinder.
This makes the situation much simpler. Intui-
tively speaking, the theorem above then implies
that we see, in a neighborhood of each para-
bolic arc, a “universal cover” of cylinders in the
dynamical plane. Since, in the repelling cylin-
der, there is a projection of the Julia set, some
of its topological properties directy reflect in
the parameter space. Hence, to show non-path-
wise connectivity, we have only to find appro-
priate topological properties of the Julia sets in
the dynamical plane.

Now, we explain the numerical experiments.
Fig. 1 is the entire tricorn. Theorem 2.1 means
that hyperbolic components of odd periods
correspond to baby tricorns. As for even period
components, we can say that they correspond to
the baby Mandelbrot sets. Fig. 2 is one of them.
This suggests that even iterates { s} on some
regions form a Mandelbrot-like family of
polynomial-like mappings. Fig. 3 is a period 5
component. There appears a “zig-zag” struc-

ture in Fig. 4, an enlargement of Fig. 3. This is
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a numerical evidence of the non-pathwise con-

nectivity of the tricorn. Fig. 5 is the Julia set of

the center of the corresponding principal para-

bolic arc. Fig. 6 and 7 are its enlargements near
a parabolic periodic point whose immediate
basin contains the critical value. We can easily
see a similar structure between Fig. 4 and 7.

Note that the “zig-zag” structure in the
dynamical plane essentially comes from the
Hubbard tree. That is, the “zig-zag’ structure
of the Hubbard tree in the dynamical plane
reflects the similar structure in the parameter
plane. Hence what we have to show is such
property of the parabolic Hubbard tree on the
principal arc of a hyperbolic component of odd
period. Actually, we have only to show that it
does not contain a real analytic arc.

We also note that this does not always hap-
pen. In fact, consider those components on the
real axis. It is easy to see that they are path-
wise connected to the main component by a real
line segment. Fig.8 and 9 are the period 3
component on the real axis and its enlarge-
ment.

It follows that every component of period
greater that two lies on a limb Ly (W) of a
component W, of period two. Here p/g corre-
sponds to the parabolic parameter on ¢W. with
multiplier ¢?*/?. In this case, the repelling 2
-cycle plays an important role. Fig. 10 and 11
show W: and the limb L. (W,) respectively.

Usually the Hubbard tree is defined oniy for
critically finite polynomials as a tree obtained
by connecting the critical orbit by regular arcs.
For parabolic polynomials, we define it as a
homotopy class of such regular arcs in each
Fatou component. The following lemma shows
that, at repelling 2-periodic points, real analytic
arc on such Hubbard tree can be determined
uniquely if it exists.

Lemma 2.2 Let ¢ be on a parabolic arc of a

hyperbolic component of odd peviod k=3 and
H. be its Hubbard tree. Then H. containes a
repelling 2-periodic point z. of fe and points on
JN He accumulate on z..

Definition 2.3 (Maximal tunedness) A /yper-
bolic component of odd period of the tricorn is
called maximally tuned, if it is never expressed
by a tuned image of a component of period
greater than one. In other words, it is just once
renorvmalizable.

The following lemma assures that the local

property of . near z. is actually projected on
the Ecalle cylinder.
Lemma 2.4 Let ¢ be on a principal avc of a
maximally tuned component. Then the inverse
orbit of zc on H. accumulates on the parabolic
periodic points.

As for the numerical experiments, see Fig. 5,
6 and 7. They are the Julia set for ¢, a parabolic
parameter of period 5 in Lis(W2) and its
enlargements. We can see H. in Fig. 7. There is
a sequence of branch points, which are the
inverse orbit of z., accumulate on a cusp point,
i. e. a parabolic periodic point. This is also an
example of the following lemma.

Lemma 2.5 Let ¢ be on a principal arc of a
maximally tumed component sitting in a limb

Loo(Wa) with odd q. Then H. does mnot
contain a rveal analytic arc near Zc.

The proof is done by a combinatorial argu-
ment around z.. The figures above suggest that
H. is neither real analytic nor differentiable
also at points in the inverse orbit of z.. In case
q is even, we have to assume one more assump-
tion at this moment. We believe it is unneces-
sary.

Definition 2.6 (Arcs of symmetry) Consider a
limb Lpq(Wa). It has q branches at a Misiur-
ewicz point ¢ which satisfies f*77*(c) =1 (c).
That is, ¢ is the endpoint of the baby Mandel-
brot set of the Mandelbrot-like family {f*}
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corrvesponding to —2. For even q, we call the
(q/2—1)-th branch from the one contained in
the baby Mandelbrot set, i. e. the centval one, the
branch of symmetry of the limb Lyq(Wa). If q
s odd, theve is no such branch. On that branch,
there exists an avc which always runs the branch
of symmetry at any ome of its branch points.
We call such an avc the arc of symmetry.

The part of tricorn on the real axis or its

rotaion is an example of the arc of symmetry.
In Fig. 11, we can see the Misiurewicz point
where four branches meet. We can also see
baby tricorns on a branch of non-symmetry
(the upper branch in Fig. 11).
Lemma 2.7 Let ¢ be on a principal arc of a
maximally tuned component which sits on a
limb Lpq(Ws) with even q but not on its arc of
symmetry. Then H.: does not contain a real
analytic arc near inverse ovbits of zc.

Fig. 12 is an enlargement of the Julia set of a
parameter ¢ € Ly4(W,) not on the arc of sym-
metry. At its center, there is an immediate
parabolic basin containing the critical value c.
Its Hubbard tree seems neither real analytic
nor differentiable at some points.

In case of arcs of symmetry, such a com-
binatorial argument does not work. See Fig. 13.
This is an example of a Julia set for ¢ on the
arc of symmetry of Ly (W,). We cannot see
any evidence that the Hubbard tree is not real
analytic. But, if ¢+2, numerical experiments
suggest that, on such arcs, there is no compo-
nent of odd period.

The most difficult case is ¢ =2, i. e. the tuned
images of the components on the real axis. At
this moment, we have no effective idea to
attack this case. In this case, the inverse orbit
of a repelling 2-cycle on the Hubbard tree
never acbumulates on the parabolic periodic
points. Of course, since the inverse orbit of a

repelling cycle is dense in the Julia set, it accu-

mulates on the parabolic periodic points. But,
its restriction on the Hubbard tree does not.
Hence the above argument does not work.
Nevertheless, numerical experiments suggest
that, even at such components, there exists a
sin(1/x)-like structure. See Fig.14 and 15,
which are near a component of period 15, a
tuned image of the period 3 component on the
real axis.

Now we sum up our argument.

Theorem 2.8 ([HNS]) The tricorn is not path-
wise comnected mear the principal arc of any
maximally tuned hyperbolic component of odd
period which never sits on an arc of symmelry.

As for the non-maximally tuned components,

some of them can be treated analogously as
above if we consider repelling cycles in the
baby Hubbard tree of appropriate periods
instead of two. The period depends on the
renormalization property. We omit the details.
Our conjecture is:
Conjecture 2.9 The tricorn is not pathwise
connected near the principal arc of any hyper-
bolic component of odd period off the veal axis
and its rotations.

A strategy for this conjecture, especially in
the tuned image case, is to show that the
multiplier of a repelling cycle on the baby
Hubbard tree is non-real. We do not know how
to do it. However, once this is verified, it fol-
lows that the baby Hubbard tree is not real
analytic near it.

We can show non-pathwise connectivity of
the real slice of the cubic connectedness locus
analogously.

Finally, Fig. 16 shows a comb-like structure
in the tricorn. This is a numerical evidence of
the non-local connectivity of the tricorn, which

can be shown in the same way.
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Fig. 8
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