Generating Functions for Ferrers-like Diagrams

Weight enumarating functions are calculated for some variants of Ferrers diagrams.

diagrams are generalizations of Propp’s hexagonal and rhombic diagrams.

Yoshiaki UENO

These
Propp has con-

ceived these variants from geometrical view point, but his method of enumeration is feasible of

calculating some series of variations which contain his own.

It turns out that these graphs are

again closely related with Ferrers tableaux which satisfy some constraints.

1. Introduction

There are some ways of making variants of
Ferrers diagrams (e.g.hexagonal, rhombic, tilt-
ed, punctured diagrams) and James Propp has
calculated some generating functions for those
diagrams. In this note we would like to gener-
alize a little further Propp’s hexagonal and
rhombic diagrams and study their generating
functions.

A Ferrers diagram and their variants may be
regarded as lower ideals of partially ordered
sets [2] .
number of diagrams on S of weight #, i.e. the

For a poset S, let p(S;#n) signify the

number of lower ideals of S with exactly #

elements. Then the weight enumerator

f(S;q)=§0p(S;n)q"

is called the genarating function of the dia-
grams on S. Thus f(S;qg) is a formal power
series in the variable gq.
1. Hexagonal diagrams
Let Hex be the poset defined by Fig.1.
Theorem 1 (Propp [2, Theorem 2 (a)])
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Fig. 1 The poset Hex.

oo 2n-1
f(Hex;q)=J=Illl—tqq—zr

The poset Hex may be regarded as a special
case (of d=2) of a wider class of posets Hex®.
For example, the poset Hex?® is illustrated in
Fig.2.

Theorem 2

Then we have the following result.

f(Hex%q)=
ﬁ 1+qdn—d+l+qdn—-d+2+ e e +qdn~1
n=1 l—qd"

To prove this, we have only to mention that

diagrams on Hex® are in one-to-one correspon-
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Fig. 2 The poset Hex?.

dence to partitions in which no parts are
repeated except multiples of ¢ and no two parts
fall within the same segment between one
multiple of 4 and the next. This correspon-
dence is obtained by dividing Hex? into chains
of d elements and transforming the diagram on
Hex? into the ‘occupancy tableau’ [2] .

2. Rhombic diagrams

Let Rhomb be the poset defined by Fig.3.
Theorem 3 (Propp [2, Theorem 3]) .

) 3n-1 3n 3n+1
J‘(Rhomb;q)=(1+q)nf:Il 11g ltgsnﬂ]

Again the poset Rhomb may be regarded as
a special case (of d=3) of a wider class of
posets Rhomb? For example, the poset
Rhomb* is illustrated in Fig.2. Then we have
the following result.
Theorem 4
f(Rhomb';q)

ﬁ {1+¢*A(q)+4*/q)}
=(1+¢)""—=
1 (1—¢")

where £ (¢) =¢*+q¢*+q*+2 ¢°+¢° and f,(q) =

q*+q"+2 q®+4q°.
Proof. Rhomb* may be divided into quadru-

Fig. 3 The poset Rhomb.

N

Fig. 4 The poset Rhomb*.

ples. A diagram can be represented by an
occupancy tableau, which indicates how many
of the vertical 4 dots in each quadruple are
occupied by the diagram. Rotating 45° clock-
wise, the occupancy tableau is a Ferrers tab-
leau with the constraint that every 3 must be
supported by 4’s, every 2 must be supported by
3’s and 4’s and every 1 must be supported by
2’s, 3’'s and 4’s.

Then we can define “inflation” and “deflation”
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operations as in [2] , so that every tableau
corresponds to a pair of tableaux, one of them
“reduced”, which cannot be deflated any more,
and the other composed of 4’'s. Tableaux com-

posed of 4’s are enumerated by
}‘:Il(l _ q4n)—l

It remains only to enumerate the reduced tab-
leaux.

In a reduced tableau, a row consisting of just
imply
deflatability. Hence the non-empty rows that

4’s cannot occur, since that would

may occur are

1,

2,

2 1,

3 1,

3 2,

3 2 1,

4 1,

4 2,

4 2 1,

4 3 1,

4 3 2,

4 3 2 1,

4 4 1,

4 4 2,

4 4 2 1,
and so on. Legality implies that no row may

appear twice and that the order in which they
are stacked respects the order in which they are
listed.

Now, legality implies moreover that some
juxtapositions of rows cannot occur in a
reduced tableau, and this constraint is illus-
trated conveniently in Fig.5, which divides these
potentially occurring rows into groups of 6
rows. It is seen that (a) there is no forbidden
juxtaposition between rows of different groups ;
and (b) juxtaposition constraint is of the same

pattern in each single group. In Fig. 5, braces
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Fig. 5 Allowed juxtapositions in reduced tableaux.

between two rows indicate that only those jux-
tapositions are allowed. These partitions are
enumerated by
(1+9)
A+¢*+*+q*+2 ¢°+2 ¢°*+q"+2 ¢®*+2 ¢°)
(1+q%+q"+q*+2 q°+q*°+q** +q'5+2 ¢'°+
'q”)
and we are done. =

3. Remarks

We can enumerate diagrams on Rhomb?®, and
so on, by the same technique, but the numerator
will gradually become complicated.

The poset Rhomb has bilateral symmetry, as




Generating Functions for Ferrers-like Diagrams 7

Hex has, which is implicit in the pictorial
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