Statistical Mechanics of Quantum Mixtures III

——Surface Tension of the liquid *He-*He system——

Hiroshi ICHIMURA

We develope a theory of the surface tension for the liquid *He-*He system basing on the

cluster expansion scheme modified for the quantum system which the present author has

proposed previously with K. Shimojima.

We derive a general formula of the surface tension

for the quantum mixtures and apply it to the dilute solution of *He in liquid *He.

1. Introduction

The theoretical calculation of the surface
tension at the liquid surface from the first
principles is quite a subtle problem. Although
the general formulation has been given many
years ago by several authors, specific appli-
cations are very few, especially for the quan-
tum liquids.

In the present paper, we propose a method
of calculation of the surface tension based on
the cluster expansion scheme for the quantum
system which has been given in the previous
papers® V¥,

In our formalism, the effect of the existence
of the surface 1s taken into consideration
through the calculation of the modified cluster
In the

next section, a general formula for the surface

integral which appear in the theory.

tension of the liquid *He-*He system is given.
In the section 3, the detailed calculation for
the dilute solution of *He in the liquid *He is
described. In the appendix, the details of the
statistical mechanical derivation of the Helm-
holtz free energy of the quantum mixture

system are given together with the errata for

the previous paper?.
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2. Surface tension

The surface tension 7 of the liquid *He-*
mixture system may be given by the following
formula based on the thermodynamic theory.

rA=Fyn, (T, V, A)—F'y (T, V)
2.1)
Here Fy,v,(T,V) is the Helmholtz free energy
of the liquid system composed of N, *He atoms
and N,

temperature

*He atoms in the volume V at the
T and has free surface of the
area A. Hereafter we denote by the supersc-
ript o the quantities concerning the system for
which the effects of the existence of the sur-
face are taken into consideration. Flyy (T, V)
is the Helmholtz free energy of the same liquid
system when the effect of the surface is negl-
ected. The superscript [ is used to denote this
Instance.

Now we adopt the cluster expansion scheme

modified for the quantum system”® and obtain

Fywv,=Fy,+Fy,+Fyy, (2.2)
Fyy=Fu'=kTN; 3 === Bio® s
Fu,= Pl = KTV, %~ o Podt

2.3)
Fyyw,=— kT N 2, qZ_IkJrl ¢ P 0s"0s?



2 LT

kT 1

—~7Nkz:1gz=>oq+16

,03}”,04
(2.4)
where ps=N;/V, ps=N,/V.
Fy; (Fys) 1s the Helmholtz free energy of the
pure *He (*He) system and Fy,° is that of the
corresponding ideal system. The derivation of
these formulae and the definitions of the clu-
ster integrals which appear in them are given
in the appendix. Originally the scheme of the
cluster expansion is constructed for the low
density gas, but we can utilize it as the start-
ing expansion for the various techniques for
the case of the liquid.

Substituting these formulae for Iy,y, in (2.

1), we have

rA=rsA+r, A+ dr A (2.5)
r3d= FN OU—F M—/fT Zlm‘dﬁk,o(a)psk
(2.6)
7aA=Fy " —Fy °l—/cTz 1 484,40,
2.7
lzTN3
drAd— -
rA E 21 k+1 Aﬁk ¥ 03" 0,7
kTN, 1 @ kg
9 & ZO g+1 Aﬂk,q P3 P4
2.8
where abbreviations
ABk o( S —,8
4B, ® :Bk,q(S)a—ﬁk,q , etc. (2.9)
are used.

In our formalism, the effects of the exist-
ence of the surface are taken into conside-
ration through the evaluation of the integrals
Bk,qta}v or B, .

lations will be given in the next section. Here

The details of such calcu-

73 and 74 are the surface tension of the pure
liquid *He and *He respectively and 4r gives
the effect of mixing. The calculation of these
73 or 7, is itsself very interesting and difficult
problem. In this paper, however, we do not go

into those problem. We want to show how the
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effect of mixing can be described by our

formulation. Basing on the general formula
(2.5), we can consider various cases of *He-
*He liquid mixtures. As an example we take
up the dilute solution of *He in the liquid
*He. We have chosen this case because we
can expect that the process of calculation 1is
fairly simple. The case of the dilute solution
of *He in the superfluid *He will be more in-
eresting and will require more complicated
reasoning as may be guessed from the experi-
mental facts. The consideration of this case

will be given in the next paper.

3. Surface tension of the dilute so-
lution of *He in the liquid *He.

In this case, we can assume that the number
of *He atoms is very small compared to that
of *He, i.e. N,<
Then we obtain

kTN

b= (5 L g Y,

_k TN4

N3 or ps< ;5.

2 ABk 0 ﬂsk

kTN, <

9 > Aﬁk 2 )/042

k0k+l

ETN,

- ——(E Aﬂk 1 Pak)104+0<,043)

3.1)

The first row terms in (3.1) comes from the
interaction on one *He atom with its surroun-
ding *He atom, and the second row terms gives
the effects of the interaction of one pair of
*He atoms with their surrounding *He atoms,
and so forth. Here we restrict our conside-

ration to the first order in p,. Hence we have

IsTNa

ATA: P4 Z k+1 (S)Psk

kTN3

2 ABk 0 psk (3.2)

The straightforward calculation of the sum-

mation in (3.2) will be almost impossible be-
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cause of the liquid density of *He. Here, as
a tentative step, we try a very crude approxi-
mation. We retain only the first terms in the
summation, but, instead, we introduce an effec-
tive interaction between *He atom and *He
atom in the evaluation of the cluster integrals.
Now we have
drA= ~kTV,OaKJAtABo,l(3)
(B1,0(4):Bo,1(3) is used) (33)

From the definitions given in the appendix
and in the paper [2],

60,1(3):51,1_—‘61,0(4)

:‘;—jdrm dr® 5(,(3)_,.(3))

Ydr W dr® 5(r® —p®)

(r('*)rw \ [7‘!1 Erer) (3 4)
01,1:701,1'01(3)/,0‘;‘01(4)/,04 (3.5)
101,1:U1.1: IVl,l’_l,

Wia=exp (—B(H," +H® +¢(r®,r?))

(3.6)

o, (r,r") :L’%fk R g,() 0,7 (&)

(3.7)
where ¢ is the effective interaction potential
between *He atom at r® and *He atom at r'*,
and f is the distribution function of the qu-
antum statistics. All the quatum effects are
taken into account in our formulation in pri-
nciple. Here, however, we make ciassical ap-

roximation, and use the form
P

Vb, :jd,.m dr® (¢~A¢ ), K 1)
(3.8)
Further we assume the hare-sphere interaction
combined with square-well potential, that is,
+oo r<as;ta,
p(r) =9y —¢ asta,<r<l,
0 I<r

3.9

r=1r®—p®|
as (a,) is the hard-sphere radius of *He (*He)
atom. [ is the width of the square-well and ¢
1s its depth.

Here we introduce the surface region of the
thickness ¢ at the solvent (liquid *He) surface
and in this region the depth parameter is as-
sumed to have difterent value ¢*.

With these approximations, we obtain

V<l;l,l”451,ll)

o P (@) (e =)

(3.10)
and then, we have
Ay = 0kTpap0s (€77 —e®%*) v¥,
4
v*=%(13—(a3+a4)3) (3.11)
Hence we obtain
r=rstratdr,
No No*
Ay =T == B __ B
r=kT T (e ef?) e,
(N:N3+N4, C4:N4/N) (3.12)

Here ¢, is the concentration of *He. At low
concentrations 7, can be neglected. So we have
finally,

r=r3+ 1 cy

Nb ]_VU*

n:kT(eW—eM*)-I—; 7 (3.13)

This may be compared with the experimental

0 — 1

Fig. 1
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results, e. g. Esel’son et al¥. But we think, our
approximations are too crude to atempt such
numerical comparison. Fig.1l shows schematic
7-c4 curve (solid line) and our I'y is the gra-
dient of this curve at c¢,=0. As mentioned
above, our approximations are very crude, but
we can show that our I'; gives correct order
of magnitude and sign under reasonable as-
sumptions for 4, ¢, ¢*, and . We are planning
to refine our treatment in the near future.
Appendix. Derivation of the formula for
Fy,v, (T,V)
We start with the following Hamiltonian as
in the paper [2].
ﬂN3N¢=<-4[N3+ﬂN4+®N3N49
Ky =+ Ononys
‘_4[ 0 __ h2 NXA 2
YT 9m, 21 xi?

‘§<:'¢XY(i’j)’ (X’ Y=374) (A-l)

QNXN}’:

We use similar definitions and notations as in
the paper [2], but replacements such as Ny~
N,, Ng—>N,, etc. are made in them. Decompo-
sition of the partition function of our system
completely similar to that given in [2]. Howe-
ver, there are some errors in the description
in [2]. Hence we give here necessary correc-
Instead of [2]- (2.5) (This means the
eq. (2.5) in the paper [2].), we should give

Wﬂan,, :(m?’;)sgs‘;llllpl Ul,p ...... Ul,p

N st

tions.

my,p factors

(ZI:E lml,p:NEh ;Z _pml.p:Nd-)
p 3

Wo.o=1=Uo,o

W1,0=Wo,x=1=U1,o=Uo,1 (A.Z)

Here 3, means to sum over all possible values
{m 5}
of mi,, under the conditions given in the bra-

cket.
[2]_(2 6) should be given as
Wnn= z S%S“II”UIP ...... Ul,p

my,p} e
my,, factors

(;; Zmlap:ma ;; Pml,p=n)

I+p=2, m+n=2
(A.3)

Wo,0=1, wi,0= wo,1=0

Then, [2]-(2.14) should be giveu as
Wiyn = L S?,S4HHU1p ------ Ui,

{my p) NI —
my,, factors

(;’Z Imy,p=m, Z;,;me:n’
l+p=2, m+nz2)
and [2]-(2.15) as
Wyn,= 2 S3S4]Z17 Ty peee U,

my, P N
my,, factors

(22 lml,pst, 22 pml.p:N4>
b br (A.5)

Hence the decomposition goes as follows.

— 0
Ly, —ZNsN,,,( . YN3N4

(A.4)

1 N3 Ny
YNaN‘:—WJ\(III)j‘({I) Wh,n,
AN A (Vby,p)™p
Yt ity my,p!

(X lmy,p=Nay 22 pma,p=Ny)
L r L r (A.6)

viplbi= [0 [dD ¢, AD)

This is our modified cluster integral. Using

the standard technique, we have

Yiy,n,
N I N,!
I;Naﬂt.; o )2§ 4; GXP(EZ Vby, px'yP) dxdy
N;! N,! .
= I;N;*—:], exp( VZZ ; bz,pxolyop— N; log x,
— N, log yo) (A.8)
where xo, yo are determined from
2;;, lgl,pxﬂl?/op:Nz/V:,Oa
2T phpxe'yt=No/V=ps  (A.9)

and then
YN;N,,ZCXP (V‘l;? El.p xolyop_Ns log %o/ 03
—Nilogyo/0s—No) * (A.10)
=Nlog N—N. x, and

yo correspond to the chemical potentials as
may be seen from [2]-(4.1) and [2]-(4.2).

Here we have used log V!
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Inversion of these formula with the cefinition
of Brg®, Bre™ goes completely same way as
in the paper [2]

The term

S(xo,?/o) 2;2 I;l.pxol?/of (A.11)

can be transformed into the series in p; and
o0s with the use of the relations x,0S/9x,=p;
and yoaS/ayg = 04,

Using the standard technique we have

S=,03 Z/ Bko ,03 .

K= 1k+1

q (4) +1
+ 04— q
O4 qgl q+1 Bo,q P4

-2 Bk,q‘”ps"”m"
k=0 g=1

> E_g+1
kEqu“ﬁ_l qu P3 Pa
= V4
+ V4

- k; zoﬁk,q @ 1031‘.04‘1+ !

—EZ (3),03]“‘104? (A- 12)

k+1

The equivalence of the above two expressions
1s guaranteed by the relations between ,Bk,q“)
and B;,,* which can be obtained successively.
Hence we can use the symmetrized expression

for S in p; and p,;. Substituting these forms

into (A.10) we obtain finally

ZN;N; :ZN3N4 © szazv4
YN,N,,:CXP (IN3N4) (A. 13)
(3) k
Toaw=Ns 2 521 k+1 ps
N Y By,
4q=1 q+1 0,q 4
S ) 1 Br.g® 05" 047
2 o g1 k+1 7 2
1 1
+—Ny 7Bk,q(4):03 D4

Then the Helmholtz free energy Fy,n, 1s given
by
Fyyn,=—kT log Zy,y,=Fy,*+ Fy °— kTIy,y,
—kT log Zyw, =Fy,"+ Fy,°
(A.14)
Here Fy,°, Fy,° are of the pure systems. Thus

we have reached (2.2).
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