Statistical Mechanics of Quantum Mixtures II

——Cluster Expansion for the chemical Potential——

Hiroshi ICHIMURA

Cluster expansion formula for the chemical potential of each component of the binary

quantum mixture is derived. The canonical ensemble formalism is adopted in contrast to
the grand canonical ensemble formalism used in the previous paper. This formalism enables

us to simplify the process of the calculation.

1. Introduction

In the previous paper' *, K.Shimojima and
the present auther have proposed a cluster
expansion formalism for the statistical mecha-
nics of the two component systems in which
both dynamical and statistical quantum effects
play important roles (quantum mixtures). In
their formalism the chemical potential of the
actual component system appears in the Bose
or Fermi distribution function through which
the effect of the quantum statistics is taken
into account. Hence the determination of the
chemical potentials in terms of the density
and the temperature requires somewhat tedious
processes. In the present paper, the method
based on the canonical ensemble is adopted in
ensemble

contrast to the grand canonical

One of the

characteristic features of present method is

method used in the paper [I].

that the chemical potential of the correspond-
ing ideal system appears in the quantum distr-
ibution function instead of the chemical poten-

tial of the actual system. Consequently, the

* This will be refered as the paper [I] hereafter.
(Received Sep. 30, 1985)

cluster expansion formula for the chemical
potential can be derived fairly easily. The
flow line of the method developed in the
present paper is an straightforward extention of
the procedure developed for the single compo-
nent system®”. So, only the crucial points will
be described in the following sections. The
results of the present paper have been applied
to the theory of the surface tension of *He-*He

liquid mixtures. It will be given in another

paper.

2. Cluster decomposition of the partition

function.

As has been said in the introduction, the
main purpose of the present paper is to derive
the cluster expansion formulae for the che-

mical potentials. In the course of their deri-

vation, however, the cluster decomposition
formula for the partition function will be
required.

Now we consider a two component system
of N particles of mass ma and Np particles
of mass mg in the volume V. The Hamiltonian
Hysny of the system is given by

Hyavg=Hn +IHyy+Ox vy,
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, where ¢xy(i,j) is the interaction potential
between the i -th particle of X. and j -th
particle of Y.

The partition function Zy,y, of the system

will be given by
Na Np
Zoawn= | (ID [ (D Q' o+, N304, -,
NB,]:ONANB”A7'“7 NA;ZB"'7 va)
_ﬁ-.q[NANB’ B:l/kT

Here (- ‘p“h\ ...... ) meahs the

(2.2)

matrix

ONan—¢€

element of the density matrix operator px,n,
on the basis of the properly symmetrized wave
function, ia=(ra;, £a;) 1s the abreviation of

the particle coordinate ra; together with the

Na
spin &a;, and | (II) means to take trace with
la
respect to the coordinates [, - , Na.
We define the operator Wy,y, by the rela-

.
~BICNAN —~BILONAN
e B ANB ll’/ e B ANB

A awy = 0+ HO,

and start from the expression

(2.3)

Na

AR (H) (H) (=,

INB! WN&anNANB(O) |
—TEHM (9. 4)

where further abbreviations such as [a’, --N'a

N N (0)
XA, y1 B) ONaNg

— Xa" are used. Following the Ursell-Mayer
define

from the operators Wy,y, the U,,, operators by

cluster decomposition technique, we
the relations
Wywe=2 2 SaSgILIIU,, - Uy,

{m}{np} L p

(Tlmy=Na, Tpn,=Ng) mn, factars
(2.5)
Woo=1=U,,
Wio=Wo1=1=U,,=U,,

Here Y Y means to sum over all possible
{mi}mp)

values of m; and n, under the conditions given
in the bracket, and Sa(Sg) means to symmet-
rize the product of U, with respect to the
coordinates of A (B) particles. The beginning
several relations are shown in the appendix
Al

From these U;, operators we define w,,,
operators by

=3 Z SABSH HU,,7 Uy,

{m}{np} —

mn, factors
I+p=2 m+n=2)
(2.6)

<Elml=ma anPZ’H
w0,0=1, w1.0:w=0,1:0

Beginning relations are also shown in the

appendix Al

Then we have

WNANB:Z E(Wm,n(l)

_ /Na\/Ns
=)
Here M is the number of all possible different

W, (See [1]).
Substituting (2.7) into (2.4) and utilizing

4 +wm,n(M)>

(2.7)

the symmetry characters of the term in the
trace calculations, we can carry out the follow-

ing transformations.

Ng Na Np
Zowe= [ (D [AD Y ¥ @0t 200,
m=0 n=0
XpNANB 0
Na Ng Na N N N ‘
=[ab[an s £ (74 (7% wmmoran,©
1 1 m=0n=0 n
_ Na N NA, NB’
=2 Ea TN 1 (Na—r) 1

j<n>[<n>wmj<n> (T oy,

NaA NB
~Zon @ % 3 [ D (D,
m=0n=0m.
XpNAm; NBn(O) (2~8)

where we have used the notations
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Na
Zy, O = (IDpy,®, etc.
1

o _  Na!

Na
N e E R

(0)

0) 0
pNAm; IVBn( )*‘,ONAm( )pNBn

(2.9)
ovam® is the m-particle reduced density
matrix of the corresponding single component
ideal system.

Further, 'deﬁriing Ryyms vpon and @, by

Na Ng
e Y <mI'!:1) j‘ <,,,];—I1)IONANB © :RNAm; Ngn

—pymyn (N?V‘A;ﬂ) ! OV];V;!IL)! oo e ©
(2.10)
Win,n =W R ms ¥an (2.11)
we obtain
rinm e .5 (W) ()L
m=0n=0\ m n/V

< (0 [ D) G,y i 27, y™)

(2.12)
This 1s equivalent to

7 —_ 0
[NANB - ZNANB( )YNANB

1 Na o Ng
YNANB=WJ(III)J () G,y

+ o At | YA, ) (2.13)
as may be seen easilv. Now we introduce (7,,},
operators using the relations which correspond

to (2.6)
wm,n:z 2 SASBHHﬁl,p"'ﬁl,p (2. 14)
P ———

{mi}{n,} 1
mn, faetors

(Xlmy=m, Epn,,sn; I=p=2,m+nz=2)
and complement the relations Us,o=1, U=
Uo,lzl-
Wxans by

Then we can define the operator

Wyiwe=2 T SaSs LIy, Ty, (2.15)
P ~———

{m, "’P} l

' mn, factors
(2 lmy= Ny, zpnp:NB)
which corresponds to (2.5) and get

_ 0
ZNAN,; = ZNANB( ) YNANB

1 (g )
Yans :mj ( Ill)j(l}) ("™, ™ | Wy ang |

xa, gy (2.16)
The procedure which have led us from 2. .11)
to (2.16) corresponds to the stéps from (2.4)
to (2.8) in backward direction.

The formula (2.16) 1s the cluster decomposi-
tion formula for the partition function Zy,y,
of our quantum mixtures. As may be seen
easily the effects of the quantum statistics are
taken into consideration through Zy,x,® and
Ryymivgne From the formula (2.16), we can
proceed completely in the same way as in the
usual cluster expansion theory for the classical

system, using the newly defined cluster integral

»
e ! P ’ ~
PUpts,= [ (ID [(ID) G, 37| Oy 47)
(2.17)

3. Cluster decomposition of the reduced

density matrix.

Now we go to the cluster decomposition of
the reduced density matrix-the correlation
function-, ’

(‘h, k)-particle reduced density matrix based
on the canonical distribution is defined by

' Qa"ha', 1B/"'/€B/\,0NANB(”’H [La-ha, lp---k,)

T ONaNg 8 ((h) 5 (k)

1 N ! Na_ o Np
B ZNANB(NiYi}z];r?&NB—k) ! j (L) (L
X (La"ha' (h+1) 4", - Na's 15" kg ky',
(lﬂ+1)Bl7 "'NB/I WNANB,ONANB(O) IlA"'hm
(h+1)a, ~*Naslg---kp, (k-+1)g, ---Np)
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(3.1)
From now on we use the abbreviated notations
for the matrix elements. For instance, we

©((h), h+1, - Na; (B), k+1,
© in place of the full

write W’VANB:ONANB
Ny) or

expression is (3. 1).

W’NAAYBI()AVAJVB

As in the paper [1], we introduce U "

operators with (%, k) reserved coordinates.
Wyane(L, oo, Nas 1, -+, Ng)
=2 % SaSsUi,.p, ™8 ((h), h+1,

{I:Hp;}

el (k),

k-l—l, '”’Pl)
X ILIL Uy, p, (ryeeorys S100085p,) (3.2)
(Xli=Na, Xp;=Ns, Li=h, py=k)
Not ations are quite similar to that of (2.5)
Several beginning equations are given in the

appendix A 2. With these U;,,**, we define

Whimion™® operators by
Wi mpem ™ (R B A1, oo
k), k+1, - k+n)
=3 ¥ SaSsUnityhepy ¥ ((R), R+ 1, -h+1i;
(k) k+1--k+p) X ILILUY,,,, (3.3)

(zli:ma zpj:n, llgoaplgO)
(li+pj22) i,j22)

and we have

WNANH

Na-h Np-k
E E <wh+m,k+n(hlk)+”'+wh+m,k+n(h,k))
n=0 m=0 D e ——
<NA—IL> (N,rlc
X
m n

Putting (3.4) into (3.1), we get
oy ans P ((h) (k)

B NalNg! NA_hNB*h<NA—h
T e (N LN =) e & )

> terms

3.4)

(VD [ ™2 (),

k) () ()

h+m+1J k+n+1

h+1,-h+m; k), k+1,

0 -k k
0 — Zyang'® AA NB
Zyang
hk
th+m.k+n( ! )((h)7 h+17

k+n)p®

ONaNp

=[G [

P 0 n= om’n‘ E+1
h+m;(k), k+1, -
Nahemi Nok+n

(3.5)
where we have used the definition of the (h
+m, k+n)-particle reduced density matrix of

the ideal system given in (2.9). We introduce

Whsm, b sn BF operators by
whm,kw(h’k):wh+m,k+n(h’k)RNAhm;.Nskm
(3.6)
RNA.h+m;N5k+n 1s defined in (2.10). So we
obtain,
Pxany *P :,ZNAN“(O) Na! Ng!
Zyavg  (Na—h) ! (Npg—k)!
Nash Mpck (Na—h) ! (Ns—kg) !

m;) n;) (Na—h—m)!m!(Ng—k—n)!n!

1
Simmgre % [ D [ T teen® (W41,

htmy (k) E+1,

Now we

~k+n) 3.7
decompose  Wim i ™ by the
following scheme, 1. e. the successive definition

(k, k) (h,k)

of the operators (71,,, and

Ui,

Wn, ™8 ((h) 3 (B)) = Un ™ ((R) ; (k) (3.8)

Wharw ™ ((R), h+1; (k) = ﬁhu,k(h’k)((h)’
h+1;(k)) (3.9)

Whazg M ((R), B4+ 1, h+2; (k) = Upas, P
((h), h+1,h+2;(k))
+Uni ™ ((B); () Us(h+1, h+2)

(3.10)

by Whsm k+n

Whome P (R A+ 1, htm; (k) =T ®®
((R)sh+1, - h-+m;(B) +[Unim-2p ™ ((R) A

+1, v h+m—2; (k) Uy(h+m—1, h+m) + -
('g) terms]+[Upsp-sip ¥ ((R), h+1, - -h+m
—3: (k) Us(h+m—2, h+m—1, h+m) + -
(%) terms]+ [0 0™ (), A+ 1, bt m

—4; (k) x{Us(h+m—3, h+m—2, h+m—1,
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h+m) + Uy (h+m—3,h+m—2)U,(h+m—1,
h+m)+U,(h+m—3, h+m—D)U(h+m—2,h
+m)+U,(h+m—3, h+m) U (h+m—2, h+m

_1)}+...<Zl> terms] + "'[ﬁh+1,k(h’k)((h),
h+1: () x{Un 1 (A+2, - h+m) +Uy,-o(h+

1, bt m—2)Ua(htm—1, h+m)} (™)

m—1
terms]+ Uy, ™% ((A) ; (k) X {U,.(h+1, ---h+
m) 4+ Up-y(h+1, -h+m—2)U(h+m—1, b+
m) Ao}, e (3.11)

The general relation is given in the paper
[I] (1930 p Equ. (A19)).
from the relation of w,,,, Ul,}, in (2.14), the

As may be seen

curly bracketed factors in (3.11) can be
replaced by @,-1,.,-p,- Then we have
wh+m~k+n(h,k) = f i SASB[jh+ll.k+Px (h’k)ﬁ]m“llvn“Px
l,=0p,=0
(3.12)

(See [I] (A20)). If we put the decomposition

(3.12) into (3.7), we can proceed to get the

(h,k)

formula for oy, For the purpose of the

present paper, however, only the formula for

(1,0

0 and pyg, O

the special cases oy,n, will
be sufficient. Hence, we wil work with them
hereafter.

We can show that the formula

oy Zara Nal Ng!
PRalz Zvivs  (Na—1)1 Ng!
(Na—1)! Ng! 1

(Na—1—m)!'m!(Ng—n)!ln! P*mp"

X [ [ D 1 @0 (D), 2, 1 ms 1, -n)

m n .
~ 1,0 7 1,0) ~
wl+m,n( )z 2 SASBU1+II, 1( )wm—l“rr 1t

1,=0p,=0 £ P

(3.13)

can be transformed into the form given (3.17)
below. We exchange the order of the summa-

tions and replace m by m’ (m=I,+m'), that is

Npa~-1 m 1

>

m01,=0 (Na—1—m)!m!

Na—l Na-1 1
zzo mal, (Na—1—m) !m!
Na-1 Na-1-) 1
120 m2=0' (Na—1-1,—m)1(Q,+m")!

and similarly

N n 1

X

n=0 p1=0 (Ng—n) !n!

Ng Np-p1 . 1

p1=0 n’/=0 (NB—pl_“n) 'n!

So we obtain

0
Lo) ZNAI\'B( )
IOAVAAVB) - 5
ZNANB
NA!NB! Na-1Na-1-I; Ng Ngz—}n
(]VA—I)!]VB! 1,=0 m/=0 p;=0 n/=0
(Na—1)! Ng!

(NA—I—Zl—m/) ! (ll“"‘m/)!
(Ng—pr—n") ! (pr+n)!

1

_}}f 1 +ml I?;T,fr[ I

< (D [ ADSuSaB1r,

((])a 25 1+l1; 17 Pl)
X Wyt (L+1;+1, 141, +m's py+1, «-py+n')

NAz_l Yoo Zv o, © Na! Ng!
=0 p1=90 ZNANB (NA*l#ll) ! (NB_P]') ! .

X L 1 1f[h) i U (1,0
et ipr ) (D) D Ui,

((1)727 N ol PR Pl)
Sasi-liVap N 1 =D\ (Ng—pry 1
X[ ,,,Z.o n;:o < m' >< n’ ) ymyn

1+l +m! ppren’
f(n) (T i, (L1 41, o1+ m's

1+, +1 p1+l

P1+1a"'[)1+n/):l (3.14)

The factor in the large [ ] bracket of the
above equation is nothing but the decomposi-
tion of Zy,-1-1,v5-p./Z ¥ ¥a-1-1,.45-p;» 25 may be
seen from (2.12). Here we replace [, by I’
=];—1. So we get
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.01\' N (1,0) — A3 1 ll
ane ly/=1p1=0 V1+lll_lVP1 llllpll
1+0,/-1
(H) (H) Oretyrerp, ™) (1), 2, -1+ 1)
0
% Z/\'ANB() ZNA"1—+1-1\'B—p1
Z(O)I\'A_l'_lll+lvNB—PlzNANB
NaolNg!
(3.15)

(Na=1—=04'+1) ! (Ng—py) !
Defining the cluster integral 4, by

~ i P
“Plbz,},“v” =J‘(I}>\!‘(E[)Ul,p(l,0)((l>a 9, -+l

1,p) (3.16)
we have
No Ng ZNANB(O)
mes(l,O)_lZ: 2: (1,0) ZNA_,,NB-,,“”
pNa-lyNs2p 1 .
(Na—D I (Ng—p)!  P¥apts (3.17)
Na!Ngl

where we have written [, p in place of [/, p;.
This is the end of our straightforward calcu-
jation. At this point we make a limitting step
which will be allowed for N— oo,
) be the chemical

V— oo

N/V=p=const., Let ua(us®

potential of the component A and zi=ef"*

D =eF4al0) " then we have from the defini-

(2
tion of the chemical potential (us=— (9kT log

ZNANB/aNA)NB,T,V>7

ZNA © ZN,rl _VNA_l(NA—l) ! N ZA
ZNA_I(O) ZNA VNANA! _Q)pAXW
(3.18)

We use this limitting relation repeatedly for
each term of (3.17).

For instance,

ZNANB(O) ZN4~2,NB VNA—ZVNB VNAVNB

Zyy-205  Zyawwy  (Na—2)!Ng! Ni!Ng!

_ Z!\'ANB(O) ) ZNA—I.NB(O) ..... _VNA_ZVNB
Zya-15 " Zyyeany, @ (Na—2) ! Ng!
NaI/Ns 2

Vray S op zA

]VA!NB! ZA(0)2

Zyaws'®  Zyyiwaar pratiphesl

Zyg-ig1 Zuyn, (Na—D (N —1)!
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VNAVNB . ZNANB(O) ZNA—I-NB(O) ZNA"lvNB
NA!NB! ZNA—I,NB(O) ZNA“I.NB“I(O) ZNA"I.NE—I

ZNA_I.NB VNA_lVNB"l VNAVNB
Zyywp  (Na—=DH(NVg—1)! Na!Ng!

ZAZB
= PAPB (). )
PALE "0, ©

Introducing the new notations such as zax=px
@, we have finally
,OA'ANB(I’O)=b Lo L0z, 42 bzo (1,0) £,2

+b (L0 ZaZp+ -

z2a/za

NaNB
=2 X 2 2 (3.19)
By the similar procedure we get
NoA N
oxany N = 20 lebz » VgatzgP  (3.20)
1=0p

These formulae have formal resemblance to
the fugacity expansion of the correlation func-

tions in the theory of classical system.
4. Formulae for the chemical potentials.

Carrying out the trace calculation with

respect to the coordinates in py,y,"® and

onane Y, we obtain
N, Na .
A= =% z by pzalze?  (4.1)
1=1 p=o0
Np Na Np :
- s? 4.
om V l=0 p=1Pb ( 2)
where the relation
j\(ll[)[;l,},(l’o) = Vl;l,p (4 3)

1s used. The cluster integral 5;,}, In our case,
depends on pa and pp through the Fermi or
Bose ~ distribution function which appear in
the reduced density matrices for the reference
ideal system, the appearance of which is the
characteristic feature of our formalism. Here,
however, we disregard these pa and pp depen-
dence and make the formal inversion of the

series in (4.1) and (4.2). We put
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- ZA=pa exvp'(—gzﬁk,q(A)pAkqu) (4.4)
L (kiqfo)) .
zp=pp exp(— %z\zﬁk;q(B)pAkqu) (4.5)

. q :
- (k=g=0)!

and determine successively 6k;q(A) and 8,,®,
substituting (4.4), (4.5) in (4. 1), (4.2). This
is the process which 1s quite well known in
the theory of the classical impertect gases.
Now we obtain ,

Br.oM =2 52,0 , BO,I(B) =9 50,2

BO,I(A) = 51’1:61,0(3)

BN =4 51.152,9 > /31,1(]3) =4 51,150.2

U
’ /30,2(%) ?2 bo,i_ (51,1)2

~ 1 .
Bz,om) =2 bz.o? (b1,1)2

ceeveereedieans (4.6)
From (4.4) and (4.5) we have
B(,UA—AA(O)') =— % Zq\/ﬁk.q(A)pAkqu.
(k=g=00)/

=—2 52,091\
- 51,1:0B —4 52,051,10A0B

— <2 50,2——;‘“ (51,152),032"' |
- 1.7

Blup—up'”)=— kz'ZIBk,q(B)/OAkqu

(k=g=0)1

= —250,2/013
- 51,10A —4 50,251,10A,0B

A
4.8)
In the aboves, (k=¢=0)" below the summa-
tion sign means to omit the term k=g¢=0.
ua@ (up®) is the chemical potential of the

reference ideal system of the component A
(B) which has the same T,V, and Na(Ng).
This is

determined. from the well known

formula

Y futt =Ny (4.9)

where fi'* is the Fermi or Bose distribution
function corresponding to the statistics of the
particle A.

The formulae derived here have already
been applied to the theory of the surface
tension of the liquid *He-*He system. For the
details of the cluster integrals see the paper
[1]. '

Al

W1,1:U1,1+U1,o[70,17 Wl,ozUl,o, WO,:UO.I’

Woo=Us,o+ UroUie

Wso0=Us,o+ Us,Uso+ UroUioUs ,

Won=Us1+ Us,oUs i+ UyoUri+UyoUs

+U1,0U1,0Us,1 5

wy=U,,

wa,0=Usz,0, wo,2=Uo,2,

w;3,0=Us,o,

wy,1 =Us,1y w1,e=Us,s,

w2 =Us,s+ Us,oUo,e+ Uy Ui+ UiiUs s
A 2.

WI,O;U1,0k1’0)7

W= Ul,l(l'o) + Ul,o(l'o) Us.1 s

Wao=Uso™ + Upo ™ Uso » .

W1,2:U1,2(1’0)+Ul,l(l’O)U1,1+ U1,1(1’°>U0,1

Uy O U+ Uro ™ Uy iUy >

Wz,lzUz,l(l’o)+U2,o(l’0)Uo,1+U1,1(l’o) Ul,o

U1 U,
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