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Abstract

This paper introduces OLIV, a novel end-to-end artificial intelligence-
powered assistant system designed to aid individuals with impaired
vision in their day-to-day tasks in locating displaced objects. To
achieve this goal, OLIV leverages the current advances in AI-based
speech recognition, speech generation, and object detection to un-
derstand the user’s request and give directions to the relative loca-
tion of the displaced object. OLIV consists of three main modules:
i) a speech module, ii) an object detection module, and iii) a logic
unit module. The speech module interfaces with the user to inter-
pret the verbal query of the user and verbally responds to the user.
The object detection module identifies the objects of interest and
their associated locations in a scene. Finally, the logic unit module
makes sense of the user’s intent along with the localized objects of
interest, and builds a semantic description that the user can under-
stand for the speech module to convey verbally back to the user.
Initial results from a proof-of-concept system trained to localize four
different types of objects show promise to the feasibility of OLIV as
a useful aid for individuals with impaired vision.

1 Introduction
There are an estimated 253 million people who live with visual im-
pairment and 36 million of those are legally blind [1]. For these
individuals, undertaking menial daily tasks, such as navigating, de-
tecting obstacles in the way, identifying and locating objects, are
demanding and require prior knowledge of the scene to accom-
plish individually. Using recent advances in artificial intelligence
(AI), specifically in the areas of speech recognition and object de-
tection, AI technology can empower these individuals, as well as
increase independence and productivity in their daily lives.

Current AI technologies for visual impairment have the ability
of reading printed or handwritten text, describe scenes, recognize
currency, as well as recognize faces and emotions [2, 3, 4]. There
has also been ongoing research in areas of mobility aid products
to reduce the stress and discomfort when traveling to unfamiliar
environments, such as using a robotic guide powered by computer
vision and RFIDs, to navigate and detect obstacles [5, 6, 7]. In
addition, there has also been research into combining computer vi-
sion and speech models to educate children in their primary task of
learning to identify objects without supervision [8]. Although there
have been many advances in solutions for people who are visually
impaired, there are still many obstacles that they face in their daily
lives that have not been addressed. Furthermore, the majority of
current solutions require the use of hand-held devices, which may
not be convenient when both hands are required. As such, we are
motivated to investigate and explore hands-free solutions to tasks
currently not well addressed with existing solutions.

Through user interviews with members of the Canadian Na-
tional Institute for the Blind (CNIB), one particularly important task
that has not been addressed or well explored, and is found to be of
significant benefit for those living with visual impairment is the lo-
calization of displaced objects. Currently, these individuals use the
mental models they build of the environment to remember where
items are placed. However, if an individual places an item in the
wrong location by accident, he or she is unable to locate the item
since the mental model has not been updated and have to ask
someone for help.

Motivated to tackle this important problem faced by those with
visual impairments, we propose OLIV (Object Localization for Im-
paired Vision) to tackle this problem leveraging the advancements
of AI-based speech recognition, speech generation, and object de-
tection to direct the individual to a displaced item without using a
hand-held device in an office environment. In addition, OLIV also
reduces their cognitive workload of remembering where each item
is while increasing their independence.

Fig. 1: System overview of OLIV, which consists of three main com-
ponents: a) a speech module that enables the user to interact with
the system and for the response to be communicated back to user,
b) an object detection module that identifies the objects in the cap-
tured image and provides type and location information of each
object, and c) a logic unit module that processes user request to
understand user intent, initializes scene capture, and constructs an
answer from object detection results and user intent.

2 Methods
The proposed OLIV system is designed to aid individuals with vi-
sual impairment to locate displaced items, and is comprised of
three main components: i) a speech module, ii) an object detection
module, and iii) a logic unit module. A system overview of OLIV is
shown in Fig. 1. When a user wishes to locate a displaced item, he
or she will send a verbal query to OLIV. The speech module then
interprets the user’s verbal query and sends the interpreted query
to the logic unit module to understand the user’s intent. The logic
unit module then triggers a snapshot of the scene using a cam-
era, which is received by the object detection module. The object
detection module then identifies all objects of interest and their cor-
responding object types and locations, and feeds that back to the
logic unit module. Based on the user’s intent along with the object
type and location information, the logic unit module then calculates
the relative location of the queried object to the closest landmark
object and constructs a semantic description providing directions
for the user to locate the object. Finally, this semantic description
is sent to the speech module to be verbally conveyed back to the
user. A detailed description of each of the three main components
of OLIV are explained in detail in the following sections.

2.1 Speech Module
The speech module of OLIV is responsible for interpreting the ver-
bal query from the user as well as providing a verbal response to
the user’s query to inform the user with directions on where the
displaced item is. To realize the capabilities needed for the speech
module, off-the-shelf commercial smart assistant solutions such as
Microsoft Cortana were leveraged as the interface and feedback
to the user not only because of their state-of-the-art capabilities
in speech recognition and speech generation, but also based on
widespread adoption of commercial devices currently using these
voice assistance solutions and results obtained from the interviews
we conducted. For example, current products such as Microsoft
SeeingAI use audio feedback to communicate the results to the



user [3]. When a user points their device to a scene, SeeingAI uses
audio feedback to communicate the description of what is currently
in view. When interviewing members of CNIB, they expressed that
they prefer audio feedback as a response from a system. Also
from the interviews, some individuals with visual impairment stated
that they already use voice assistant devices because of its simple
interface to set up alarms, timers and other simple tasks. In addi-
tion, by utilizing off-the-shelf smart assistant solutions, the devices
are not only used for this particular system but also what users
currently use them for. Home assistants are also affordable and
accessible, making these devices easy to obtain.

2.2 Object Detection Module
The goal of the object detection module of OLIV is to identify which
objects are in the scene, identify what type of objects they are, as
well as locate where they are in the image. In order to achieve this
goal, there are two main considerations that must be investigated.
First, a suitable dataset that contains objects that are representa-
tive of those found in the user’s environment needs to be identi-
fied. Second, object detection models that can perform well on this
type of data need to be identified, trained, and compared based on
a number of different factors such as accuracy (via performance
metrics such as intersection over union (IoU) and mean average
precision (mAP)) and speed to identify which is the most appropri-
ate for the proposed OLIV system. Here, we primarily focused on
object models based on deep convolutional neural networks given
their demonstrated state-of-the-art performance for a wide variety
of object detection tasks in literature [9, 10].
Dataset Along with the recent advancements in object detection
models, there have also been the introduction of a wide variety of
large publicly available datasets, such as Common Objects in Con-
text (MS-COCO) and ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), which are used as benchmark for compar-
isons [11]. The MS-COCO dataset consists of 80 object categories
with a total of 330K images [12] and the ILSVRC consists of hun-
dreds of object categories with over a million images [13]. Both
these datasets have collected ground truth annotations, including
labels and bounding boxes, for each image [12, 13].

By leveraging the existence of these datasets, a model can be
trained to detect objects in a workplace. In addition, since this task
is limited to just an office environment, only a subset of relevant
object categories are needed. The MS-COCO dataset consists of
24 objects that might appear in a workplace and ILSVRC consists
of 29 objects.

As a proof of concept, MS-COCO was used to pretrain the
model, followed by training with a custom dataset consisting of
four objects: bottle, cup, bowl and kettle. The custom dataset con-
sisted of 800 images in total. Data augmentation was performed
on the custom dataset via horizontal and vertical flips, leading to
a dataset of 1849 total images (subdivided into 1387 images for
training and 462 images for testing). MS-COCO was chosen be-
cause the dataset is of higher quality and a more widely used for
object detection training than ILSVRC [12, 11]. In the future, the
goal is to use a subset of ILSVRC in combination with a subset of
MS-COCO, which contain workplace objects, to obtain more data
for training.
Models A challenge in object detection is that, while a number
of powerful deep convolutional neural network architectures have
been demonstrated to achieve high accuracies in both localization
and mAP [11], these networks have very high computational com-
plexities. This results in a speed-accuracy trade-off that becomes
critical for OLIV, which has real-time, low-latency requirements. For
instance, when a user asks for where an item is, the objection de-
tection model must be accurate enough so that the user is directed
in the right direction. However, the model must also be fast enough
so that the user is not waiting a long time for a response, allowing
a more natural experience.

In the 2017 ILSVRC object localization challenge, an mAP of
0.73 was achieved using the provided data [14]. The winning team
leveraged a residual-inception network architecture as the feature
extractor; however, even though this feature extractor is the most
accurate, the speed of the resulting object detection network is rel-
atively slow [11]. Based on comparisons in [11], Faster R-CNN
with a residual network architecture as the feature extractor was
found to achieve the best balance between speed and accuracy.
Furthermore, a recent convolutional deep neural network architec-
ture that has gained considerable popularity is SSD with a Mo-
bileNet network architecture [15, 16, 11] as the feature extractor,

which has been shown to give strong object detection performance
while providing fast inference speed. A comparative analysis was
performed on Faster R-CNN with a residual-inception network ar-
chitecture, Faster R-CNN with a residual network architecture, as
well as SSD with a MobileNet network architecture based on the
accuracy-speed requirements of OLIV, and it was determined that
SSD with a MobileNet architecture provided the best accuracy-
tradeoff that still meets operational requirements.

Once a model has been trained and tested to meet the re-
quirements of speed and accuracy, the model was incorporated
into OLIV. Fig. 2 shows an example of how the object detection
module takes input from the camera, adjusts the input to a desired
size, sends the image through the model to detect objects in the
image and then sends the detected objects to the logic unit mod-
ule. The object detection module can take in images of any size
or resolution, which makes the system robust to different camera
configurations. Before sending the image through the model, the
image is resized to improve inference speed. In this example, the
image is resized from 640x480 to 300x300. After the image is sent
through the object detection model, the output is the most probable
objects and their corresponding bounding boxes. For this example,
the top three most probable objects are the monitor, keyboard and
water bottle.

Fig. 2: Object detection module overview. Once the camera takes a
snapshot of the scene, the image is passed to the object detection
module. First, preprocessing is done, such as re-sizing the image
to 300x300. Then, the preprocessed image is sent to an object
detection model where the most probable object type and bounding
box of each object are determined for each object. The object types
and corresponding bounding boxes are then sent to the logic unit
module.

2.3 Logic Unit Module
The purpose of the logic unit module is to interact with the speech
module with the object detection module to understand user intent
and construct a semantic description based on intent and object
detection results so that a verbal response can be provided for
the user. The logic unit module achieves these connections us-
ing three main functions. The first function is to determine what the
object of interest is based on the interpreted query passed in by
the speech module. The next function is to initiate image capture
so the object detection module can determine what objects are in
the scene. The third function is to build a semantic description re-
sponse to pass back to the speech module based on the objects in
the scene and the locations and the user intent for what he or she
is looking for. The first and last function of the logic unit module
uses a web-hook, which is a way for an application to deliver data
to other applications, to relay the request from the speech module
and the response to the speech module, respectively. Once the re-
quest is received, the sentence is parsed for a word that matches
one of the objects in the data set or a synonym of it. For instance,
if a user asks for a “bottle“, this will correspond to the “water bottle“
class in the dataset. For the second function of requesting the cam-
era to capture the scene, the camera is connected to the system as
a video source so only a command is needed to activate the cam-
era. Once the semantic description response builder, shown in Fig.
3, receives the type and locations of all the objects identified by the
object detector module, it identifies the target object of interest and
calculates which landmark object is closest to the target object and
where that target object is located relative to the landmark object.
A landmark object is an object that the user is already well aware
of where it is located and is rarely moved. For instance, in Fig. 3



the landmark objects are “monitor“ and “keyboard“. Using the rel-
ative location, such as “lower right“, the response builder builds a
sentence for the speech module to reply back to the user verbally.
An example is shown in Fig. 3.

Fig. 3: Logic unit module. First, the user request gets processed,
then the camera command is executed. After the image is pro-
cessed by the object detection module, the types and locations of
each object identified are sent to the response builder. The re-
sponse builder finds the closest landmark object to the object of
interest based on the user’s intent, calculates the relative location,
and builds the user response. Lastly, the response is communi-
cated to the user via the speech module.

3 Results
As a proof of concept, an initial OLIV system is constructed, with
the object detection module leveraging a SSD object detection model
with a MobileNet architecture that is trained on a custom dataset.
The model is trained for a total of 700,000 iterations, achieving a
test mAP of 96.5% with IoU from 0.5 to 0.95. Inferencing was per-
formed on an Intel Core i7-4700MQ 8-core CPU at 2.40 GHz, with
the average runtime of detecting and identifying objects taking an
average of 58.1 ms with a standard deviation of 2.8 ms.

Fig. 4: Proof-of-concept OLIV system. In this example, the user
asks ”Where is my bottle?”. Based on the detected ’bottle’ object
and its location (shown by a green bounding box) and its location
relative to the landmark object (in this case, it is a stationary mon-
itor), the semantic description response verbally conveyed to the
user is “The bottle is right of the monitor“.

4 Discussion
In this paper, we propose OLIV, an AI-powered system for aid-
ing individuals with visual impairment in locating displaced items
in the environment. OLIV offers both advantages and limitations
that needs to be considered. One advantage is that OLIV is voice-
driven and thus omits the use of hands and is unobtrusive. Users
do not need to pull out their mobile device to scan the room. How-
ever, a limitation with the current proof-of-concept embodiment of
OLIV is that it currently leverages just one camera, which limits the
space that it is able to cover. In future work, images of the scene

can be captured from multiple camera angles and then stitched
together to overcome the limitations of one camera. Another ad-
vantage is that OLIV can be used not only by people with visual
impairment but also those who experience dementia and may not
remember where they placed an object. This system can remind
them where the item is, which also increases their independence.

For the object detection module, future work includes training
on more objects and exploring more environments, not just the
workplace. In addition, further investigation of more architectures
will be conducted to better understand the speed accuracy trade-
off. For the speech and logic unit module, different ways of con-
veying the message to be more user friendly and conversational
should be explored. Currently for the system to work, there must
be a camera placed in the scene. However, it is not feasible to
have cameras everywhere, so a more portable hands-free solu-
tion, where the user can take the system anywhere, should also be
explored to increase independence when in a new environment.
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