Guarding Against Adversarial Attacks using Biologically Inspired Contour Integration
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Abstract

Artificial vision systems are susceptible to adversarial attacks. Small
intentional changes to images can cause these systems to mis-
classify with high confidence. The brain has many mechanisms for
strengthening weak or confusing inputs. One such technique, con-
tour integration can separate objects from irrelevant background.

We show that incorporating contour integration within artificial vi-
sual systems can increase their robustness to adversarial attacks.

1 Introduction

Deep neural networks have surpassed human-level performance [1]
on visual perception tasks such as object classification. However,
the performance of these networks degrades dramatically when
presented with adversarial images [3]. In these adversarial images,
small perturbations which are often imperceptible to humans are
added to cause these models to misclassify with high confidence.

Under difficult viewing conditions, the brain uses a variety of
contextual modulation techniques, whereby signals from outside
the receptive field (RF) of neurons alter within RF responses, to
augment weak and confusing feed-forward inputs. One such tech-
nique, contour integration [6] is employed with edge extraction in
the primary visual (V1) cortex. Contour integration was first ob-
served psycho-physically as the popping out of patterns of small
line segments that followed smooth trajectories in the presence of
distractors (see figure 2A and C). Next, it was found that V1 neu-
rons whose RFs overlapped with co-aligned fragments showed el-
evated responses. [15, 6]. As the contours of natural objects are
mostly smooth with few sharp edges, contour integration is thought
to be a mechanism for separating out object contours from irrele-
vant background.

In this study, we investigate whether such a mechanism em-
bedded within a large-scale artificial object classification can assist
in combating adversarial attacks. This might be expected, because
contour integration makes the brain more sensitive to features that
often appear in natural scenes, and have significance for under-
standing these scenes, whereas adversarial attacks often involve
changes changes with quite different statistics. The contributions
of this study are:

1. A novel contour integration model is proposed. Different from
previous stand-alone models [7, 8, 9], the primary focus of
the model is on investigating the role of contour integration
within an object classification network.

The structure is similar to a convolutional feature extracting
layer but includes constraints that replicate properties of lateral
connections of V1 neurons. First, contour integration is a modula-
tory effect that is present only when there exists a signal within the
RF. Second, if there is no contour enhancement, the feed-forward
input passes through as is. Third, as the spatial extent of lateral
connections is much larger than the RF of V1 neurons [4], contour
integration kernels are larger than feature extracting ones. Forth,
since contour integration kernels model lateral connections, there
needs to be a one-to-one correspondence between the number of
feature extracting and contour integration kernels. No other con-
straints are included and contour integration kernels need to learn
which of their neighbors to connect with in order to enhance con-
tours of their corresponding feature extracting kernels.

2.2 Training the Contour Integration Layer

Stimuli similar to those of [5] were used for training. They con-
sisted of co-aligned 2D Gabor fragments (contour) embedded in a
sea of similar but randomly oriented fragments. Each contour was
defined by four parameters: (1) contour length ¢;.,,, (2) the spacing
between fragments cpacing » (3) contour curvature, B, and (4) the
deviation of individual fragments from the orientation of the contour,
o (see Table 1 for details and values used in the training set). In
each training image, contours were centrally placed with the mid-
dle fragment aligned with the RF of the middle neuron of the target
edge extraction kernel. A sample training image is shown in 1.

Table 1: Contour Parameters and their Ranges in the Training Set.

Name | Range | Definition

Clen (1,3,5,7,9) | Number of co-aligned fragments.
(1,12, 1.4 Ratio of distance (pixels) between
Cspacing | 1 6. 1 ’9)' ’ the centers of two consecutive
o fragments to fragment length.
Contour curvature. The rotation
B $4§1fs$30 (degrees) of the orientation between
’ consecutive contour fragments.
Orientation offset of a fragment
* (0, 15, £30) with respect to contour curvature.

Each contour integration kernel was trained individually. First,
the optimum 2D Gabor fragment that maximally activated the target
feature extracting kernel was found. Next, 200 training images for
each contour parameter combination (Table 1) were constructed.

2. An evaluation of the proposed contour integration model within This resulted in a total of 30,000 training images for each con-
an object classification network on adversarial images to demofour integration kernel. For a given magnitude of g and o, pos-

strate its efficacy for providing defence against adversarial
attacks.

2 Methodology

2.1 Contour Integration Layer

Contour integration works in conjunction with edge detection. Once
pertinent edges are extracted, contour integration modulates the
output of each edge-extracting neuron based on how many of its
neighbors detected co-aligned edges.

We define contour integration as,
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where, Af (x,y,k) is the contour enhanced activation at position (x,y)
on channel k, Ar(m,n,i) is the activation of the neuron at position
(x—m,y—n) and channel i in the previous layer, W, is the contour
integration kernel for channel k, b is a bias term, o(.) is a nonlinear
activation function and ® is the convolutional operator.

itive and negative values were drawn randomly for each contour
fragment, so the contours in each training image were unique. Fur-
ther unigueness was added by generating randomly oriented back-
ground fragments in each image.

Contour-integration kernels were learned using supervised train-
ing. Expected enhancement gains were derived from the results
of [5, 6]. The results in [6] provide empirically measured enhance-
ment gains at the level of individual neurons, but only for linear con-
tours. [6] found a strong correlation between behavioral detectabil-
ity and empirically measured enhancement gains in macaques.
Therefore we extrapolated these results to curved contour based
on the behavioral results of [5], which measured the ability of test
subjects to detect curved contours. As contour detectability de-
creases with curvature, we equated behavioral detectability of 100
percent with enhancement gains of a linear contours with a similar
configuration. Expected enhancement gains for curved contours
were found by multiplying detectability results with measured linear
gains.

A mean square error (MSE) cost function was used during
training,
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where L(x,y,k) is the loss for kth contour integration kernel, N is
the total number of images in the training set, Gy jecreq is the ex-
pected contour enhancement gain and A is a scaling parameter.
L1 weight regularization was used to limit the number of learned
lateral connections.
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Fig. 1: Training contour-integration kernels. (A) Sample image
for an edge extracting kernel with a vertical orientation. All frag-
ments are identical except for their orientation. Centrally located
fragments were co-aligned to form a contour (ce, =9, ¢spacing = 1,
B =+15, a =0). Contour fragments are bounded by red tiles (only
for display) (B) (Top) activation map of the edge extracting kernel
(Bottom) activation map of the corresponding contour integration
kernel. (C) Difference between feature extracting and contour inte-
gration activations.

2.3 Training the Full Model

AlexNet [2] was selected as the parent classification system. The
contour integration layer was inserted after the first convolutional
layer. Many of the feature extracting kernels in this layer function
as edge detectors. The large size (11x11) of these kernels facil-
itated finding optimal 2D Gabor fragments necessary for training
contour integration kernels. Not all feature extracting kernels are
edge extractors. Moreover, some fitted 2D Gabor fragments had a
high spatial frequency and were unsuitable for the contour image
generation process. For these feature extracting kernels, their con-
tour integration kernels was set to zero, thereby allowing their acti-
vations to pass through unaltered. In summary, contour integration
kernels were learned for 22 of the 96 possible feature extracting
kernels.

Contour integration kernels are learned after edge extracting
kernels are finalized. Starting from a pre-trained model [10], the
contour integration layer was trained separately and inserted back
into the larger object classifications system. The weights of the first
feature extracting and contour integration layers were fixed and the
rest of the model was retrained for object classification on Ima-
geNet [12]. Training parameters for the contour integration and the
full model are listed in Table 2.

2.4 Adversarial Attack

The adversarial attack of [13] is used to test the robustness of the
full model. Starting with a random population of pixel perturbations
(location and RGB values), differential evolution is used to itera-
tively search for a configurable set of perturbations that cause the
model to misclassify an image. It is a black-box technique that only
requires predicted class probabilities. Compared to other adver-
sarial attacks, it is simpler to use, applicable to more models (does
not require access to gradients or network structure) and the size
of the induced perturbation can be controlled. Using an AlexNet

Table 2: Training Parameters

Model Contour Integration | AlexNet + Contour
Layer Integration

epochs 100 35

batch size 32 64

loss function Mean Square Error Cross Entropy

kernel size 35x35

A 0.0005

Activation | | ooy ReLU (a = 0.9)

function

model, [13] achieved a single pixel attack success rate of 41.22%
over the ImageNet (ILSVRC 2012) validation set. We attack the
fully trained model using 1,3,5 pixels attacks. Parameters for the
differential evolution algorithm were similar to those of [13]. Source
code for the adversarial attack was taken from [11].

3 Results

Figure 2A and C show example contour images not seen during
training. The model successfully detected the embedded contours
even though they are of a unknown shape, length and position,
Figure 2B and D respectively. Figure 3 shows that the model suc-
cessfully learned many contour integration properties. Enhance-
ment gains increase with contour length, but decrease as contour
curvature or fragment spacing increase. Moreover, the learned
connection pattern are similar to known connectivity profiles of V1
lateral connections [14]. Excitatory connections are formed in the
preferred direction of the feature extracting neuron while mostly in-
hibitory connections are learned in the orthogonal to the preferred
direction (results not shown).
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Fig. 2: Enhancing unseen contours. (A) A circular contour embed-
ded in a sea of distractors. (B) Modifications made by the contour
integration layer. Shown is the maximum difference between con-
tour enhanced and edge extraction activations across all channels.
Circular contours were not included in training. (C and D) are simi-
lar to figures (A) and (B) but for a position not included in training.

Results of the adversarial attacks on our contour integration
model and a control AlexNet model are shown in Table 3. Both
models were trained similarly. Results are averaged across 3 trials.
In each trial, 1000 image were randomly chosen from the ILSVRC
2012 validation set to access model accuracy. From the set of
images that the network correctly classified, 300 images were ran-
domly selected for pixel level attacks. As can be seen, the inclusion
of the contour integration layer provides marginally better results for
all pixel-level attacks.

Our attack success rates for the 1 pixel attack are lower than
those of [13]. We used different image pre-processing and trained
our model for a shorter period of time. We additionally tested the
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Fig. 3: Replicated neurophysiological properties. (A) Gain vs. contour length. (B) Gain vs. contour curvature. (C) Gain vs. fragment
spacing. Each point is the average across 100 images. Vertical bars show + 1SD. Expected gains are derived from [5, 6] as explained

in section 2.2.

the 1 pixel attack on a pre-trained Mobilenet [16] that used similar
pre-processing to our model. Even though the model had a much
higher accuracy of 67%, an attack success rate of only 13% was
found. In general, the parameters of the differential evolution algo-
rithm need to be tuned for the expected range of input values. This
is left for future work. In summary, our results show that the pro-
posed model outperformed the control model for all pixel attacks
under identical attack settings.

Table 3: Adversarial Attack Results

Model [ Top-1 Accuracy | Pixels | Attack Success
AlexNet 36.1+0.4 1 8.54+0.4 %

3 10.6+2.2 %

5 10.4+2.1 %
AlexNet + 38.0+1.1 1 8.2241.8 %
Contour

3 9.764+2.0 %

5 9.55+1.75 %

4 Conclusion

Contour Integration is a technique that the brain’s object detection
system uses to augment feed-forward signals under difficult view-
ing conditions. In this study, we present a novel model of contour
integration that is embedded inside a large-scale artificial object
classification system. We show that the model replicates many of
the neurophysiological properties of contour integration and pro-
vides some robustness to adversarial attacks for these systems.
As such, the preliminary results presented above indicate that the
inclusion of contour integration offers some protection against ad-
versarial attacks. We plan to further refine the results by tuning the
model for better accuracy, incorporating more contour integration
kernels, and testing against multiple other adversarial attacks.
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