
ConvART: Improving Adaptive Resonance Theory for Unsupervised Image Clustering
Ilia Sucholutsky University of Waterloo, ON, Canada
Matthias Schonlau University of Waterloo, ON, Canada

Abstract

While supervised learning techniques have become increasingly
adept at separating images into different classes, these techniques
require large amounts of labelled data which may not always be
available. We propose a novel neuro-dynamic method for unsuper-
vised image clustering by combining 2 biologically-motivated mod-
els: Adaptive Resonance Theory (ART) and Convolutional Neu-
ral Networks (CNN). ART networks are unsupervised clustering al-
gorithms that have high stability in preserving learned information
while quickly learning new information. Meanwhile, a major prop-
erty of CNNs is their translation and distortion invariance, which
has led to their success in the domain of vision problems. By
embedding convolutional layers into an ART network, the useful
properties of both networks can be leveraged to identify different
clusters within unlabelled image datasets and classify images into
these clusters. In exploratory experiments, we demonstrate that
this method greatly increases the performance of unsupervised
ART networks on a benchmark image dataset.

1 Introduction

Supervised deep learning techniques are achieving increasingly
impressive results on a wide range of vision problems [1, 2, 3].
In particular, supervised learning techniques have been shown to
be able to separate images into classes with incredible accuracy,
even surpassing human performance [4]. Convolution Neural Net-
works (CNN) have been one of the major drivers of this progress in
solving vision problems. Since [5] first described CNNs, numerous
improvements have been made to them [6, 7, 8].

However, supervised learning depends heavily on the avail-
ability of labelled data. Unsupervised learning techniques aim to
solve this problem by working entirely independently of data la-
bels. ART was originally proposed as a solution to the plasticity-
stability dilemma of quickly learning new knowledge without dis-
rupting what was already learned [9], and led to the development of
several unsupervised techniques under the neural network frame-
work [10, 11, 12].

We aim to leverage the benefits of both network types by em-
bedding convolutional layers into ART networks in order to create
a novel biologically-motivated unsupervised method for discovering
classes in image datasets.

2 Theory

2.1 ART

The idea behind ART is to have a self-organizing network that cre-
ates a new template for every class it identifies within data. As the
network observes new data, it compares it to the templates it has
already learned. If any of the templates are sufficiently similar to
the input pattern (as dictated by a vigilance parameter), then the
input is assigned to the class of the best-matching template, and
the template is updated to include this input. If none of the tem-
plates sufficiently match the input, then a new class is created and
the input is used to create the template for this new class. A typical
ART network has 3 main components: The ‘F1(a)’ layer is an input
layer with one node for each input dimension. The ‘F1(b)’ layer is
the the comparison layer where the level of match between input
pattern and template pattern is determined. It has one node for
every node in ‘F1(a)’. The ‘F2’ layer is self-organizing and has one
node for each detected class. ‘F1(b)’ and ‘F2’ are bidirectionally
fully-connected. When a new input arrives at ‘F1(a)’ it is sent to
‘F1(b)’. The signal is then sent on to ‘F2’ multiplied by the ‘bottom-
up’ weights. The resulting values produced at each ‘F2’ node are
used to efficiently search for a matching class going from highest
to lowest. To see if a certain class matches the input, signal mul-
tiplied by the ‘top-down’ weights is sent back from the ‘F2’ node
being considered to the ‘F1(b)’ layer. Within the ‘F1(b)’ layer the

incoming input pattern is compared to the incoming template pat-
tern using a match function that varies between implementations of
ART. Regardless, if the output of this function is higher than the vig-
ilance parameter, the input is considered to match the class, and
learning takes place where the top-down and bottom-up weights
are updated. Otherwise the next node with highest output is con-
sidered, or if none are left, then a new class is created and the input
assigned to it. It has been shown that the algorithmic behaviour of
many of the ART implementations can be fully described using a
set of competitive differential equations [13].

2.2 CNN

One of the issues when working with image data is the large num-
ber of inputs. Even small images like those in CIFAR-10 are 32 pix-
els high, by 32 pixels wide, with 3 color channels, meaning 3072 in-
puts for every image [14]. Clearly, simply representing an image by
a vector of the values for each pixel feeding this to a fully-connected
network is not a scalable solution. However, even when working
with small images, there arises a second issue with a simple vec-
tor representation. Images often have internal spatial relationships
but vary due to translation, scaling, and distortion. For example,
the digit ’8’ has two similarly-sized, stacked circles, but as long as
they are together one on top of the other, these 2 circles can occur
anywhere in the image and one would still have an image of the
digit ’8’. When the image matrix is simply represented as a vector
in a fully-connected network, a lot of this spatial information is lost.
ART networks struggle with these 2 problems as large inputs lead
to large template patterns, while small translations within an image
can lead to an input pattern appearing significantly different from
the existing template.

However, CNNs repeatedly make use of 2 special layers to
solve these issues: Convolutional layers can be thought of as pass-
ing a small filter over the entire image in a windowed way. Each
neuron receives only the result of applying this same filter to one
particular window of the image. This provides varying degrees of
translation, scale, and distortion invariance while preserving spa-
tial relations as the same transformation is performed on each part
of the image. Pooling layers essentially perform down-sampling
by providing some sort of smaller descriptive statistic about each
window. For example, max pooling outputs the maximum value of
each window. This reduces the dimension of the data. Of course,
other layers and elements are also present within CNNs: Recti-
fied Linear Units (ReLU) perform non-linear transformations of the
data, and fully-connected layers are used in the typical way.

2.3 Embedding convolutions into ART

While the windowed filtering analogy is useful for conceptually un-
derstanding the operation of convolutional layers, the reality is that
these layers are simply sparse, weight-sharing counterparts of fully-
connected layers. As such, if filter dimensions are pre-determined,
it is straightforward to embed a block of convolutional layers into an
ART network. The convolutional block simply takes in and trans-
forms input from the ‘F1(a)’ layer of the ART network. The output
from the block is then treated the same way that output from the
‘F1(a)’ layer of an ART network is treated and sent to the ‘F1(b)’
layer. In such a way, we extend the ‘F1(a)’ layer of the ART net-
work to perform a more complex transformation and encoding of
the input pattern. It is important that our modification be an exten-
sion of specifically the ‘F1(a)’ layer as this preserves the differen-
tial equations governing the ART network learning dynamics which
occur exclusively between ‘F1(b)’ and ‘F2’. The resulting ConvART
network still provides a solution to the plasticity-stability dilemma
while taking advantage of the translation and distortion invariance
properties of CNNs to extend ART to the image domain.
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3 Experimental Results

We used normalized MNIST data for our experiment [15]. We used
our proposed method to embed an ART1 network as described by
[10], with 4 additional layers: a convolutional layer with all 512 pos-
sible binary 3-by-3 filters pre-defined and ReLU activation, a max
pooling layer reducing the dimension by a factor of 3, another con-
volutional layer with all 16 possible binary 2-by-2 filters pre-defined
and ReLU activation, and finally, a max pooling layer reducing di-
mension by a factor of 3. The final outputs of the model are 16
2-by-2 matrices for each image, which we reshaped into a vector
of length 64.

We randomly selected 350 MNIST images. The number of
samples of each digit can be seen in the last column of Table 1.
Since we extended an ART1 network which works best with bi-
nary data, we first pre-processed the normalized MNIST data by
rounding all the values to the nearest integer. We also normalized
the output of the final pooling layer and rounded these normalized
values.We stream the samples to our ConvART network with a de-
caying vigilance parameter with initial value of 0.75, minimal value
of 0.45, and a decay rate of 1.01. Since the data is streamed in, at
each step the model both classifies and learns.

The proposed model detected 40 classes. To understand per-
formance, we recorded a matrix of how many times each number
was assigned to each class as visualized in Figure 1. While the
number of predicted classes is high, Figure 2 shows each digit had
less than 5 classes to which it was mostly assigned. Meanwhile,
Figure 3 shows that each large class corresponded mainly to just
one digit, although it is clear that the network struggled to separate
certain pairs of numbers. For example, examining class 25 in Fig-
ure 1 reveals that the network had trouble separating the numbers
1 and 4.

Running an ART1 network with the same vigilance parameter
and decay on the same 350 pre-processed images leads to detec-
tion of 334 classes, 8.35 times as many as our proposed model,
suggesting ART1 did not recognize similarities between most im-
ages and placed them in separate classes. To reduce this to 40
classes, the vigilance parameter was set to a constant 0.016. Com-
pared to the ART1 network, our proposed model put 15% more of
all digits within their respective 3 (out of 40) top classes as seen in
Table 1, suggesting much better similarity recognition.

Fig. 1: ConvART un-
sorted matrix

Fig. 2: ConvART ma-
trix sorted by class

Fig. 3: ConvART ma-
trix sorted by digit

Table 1: Proportion of MNIST digits classified within their respec-
tive largest 3 classes

Digit ConvART1 ART1 Total # in sample
0 0.489 0.277 47
1 0.568 0.568 37
2 0.412 0.294 34
3 0.429 0.314 35
4 0.611 0.278 36
5 0.545 0.318 22
6 0.4 0.371 35
7 0.444 0.361 36
8 0.444 0.278 36
9 0.469 0.281 32
Total 0.483 0.334 350

4 Conclusion

We have demonstrated that extending ART networks with convo-
lutional components results in a novel biologically motivated tech-
nique for unsupervised image clustering. The proposed method
led to a 44% increase in the number of MNIST digits classified
into their top 3 classes relative to the ART1 model when the mod-
els were configured to return the same number of classes, and an
over 8-fold decrease in the number of predicted classes when pa-
rameters were held constant across the two models. Some future
directions include comparing ConvART with non-biologically moti-
vated clustering techniques like k-means, developing a mechanism
for automatically merging similar clusters, and reducing the number
of filters used.
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