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Abstract

With the progress in intelligent transportation systems in smart
cities, vision-based vehicle detection is becoming an important is-
sue in the vision-based surveillance systems. With the advent of
the big data era, deep learning methods have been increasingly
employed in the detection, classification, and recognition applica-
tions due to their performance accuracy, however, there are still
major concerns regarding deployment of such methods in embed-
ded applications. This paper offers an efficient process leveraging
the idea of evolutionary deep intelligence on a state-of-the-art deep
neural network. Using this approach, the deep neural network is
evolved towards a highly sparse set of synaptic weights and clus-
ters. Experimental results for the task of vehicle detection demon-
strate that the evolved deep neural network can achieve a sub-
stantial improvement in architecture efficiency adapting for GPU-
accelerated applications without significant sacrifices in detection
accuracy. The architectural efficiency of v4X-fold and v2X-fold
decrease is obtained in synaptic weights and clusters, respectively,
while the accuracy of 92.8% (drop of less than 4% compared to the
original network model) is achieved. Detection results and network
efficiency for the vehicular application are promising, and opens
the door to a wider range of applications in deep learning.

1 Introduction

With the growth of smart cities, the intelligent transportation sys-
tem (ITS) and technologies deployed in ITS have been developed
and updated constantly [1]. As vision-based surveillance devices
have been increasingly equipped to transportation systems, visual
vehicle detection has become a crucial part in ITS systems as well
as a major research issue in topics from traffic analysis to building
and deployment real-time surveillance systems [2]. Although new
technologies in the computer vision and image processing have
drastically been developed recently, deployable real-time methods
are still strongly needed for ITS applications, particularly for ad-
vanced transportation system and traffic management.

Having a wide range of traditional and new emerging visual
traffic sensors has led to collecting enormous amount of trans-
portation data. With the availability of large scale video datasets,
learning-based approaches have been significantly improved to-
wards the application of vehicle and pedestrian detection, clas-
sification, recognition, and so on. Recently, deep learning meth-
ods have drawn a lot of interest from both academic and industrial
sides, due to its substantial improvement over the state-of-the-art
computer vision methods in many detection and classification ap-
plications. Numerous deep neural network models have been pro-
posed recently to accurately detect vehicles and pedestrians [3–5].

Although new deep learning solutions have elevated the per-
formance of detection and classification methods, deployment cost
of such approaches is still a major concern in ITS applications,
meaning that computational ability, real-time performance require-
ment, and memory capacity have restricted deep neural networks
to be applied in widely in vehicle detection applications. Traditional
deep networks suffer from a big structure with structural redun-
dancy, leading to increasing the required memory as well as train-
ing and decision time, which is in contrast with the requirements for
deploying vehicle detection algorithms in embedded platforms.

Recently, there has been a wide attempt towards attaining ef-
ficient deep neural networks in terms of storage, memory band-
width, computational resources, and power consumption. As there
is significant redundancy in parameters of the deep networks, var-
ious approaches have been proposed to reduce the redundancy
and therefore decrease the amount of computations and memory
required. Compressed deep neural network using vector quantiza-
tion with 1% accuracy loss was proposed by Gong et al. [6]. Net-
work pruning has been also used to lower the network complexity
as well as over-fitting. Examples of such approaches to pruning
are proposed in [7, 8]. A combination of quantization and pruning
was used in [9] to get further improvement. Recently, Shafiee et al.

[10, 11] tackled this problem by offering a new framework inspired
by the evolutionary approach for synthesizing highly efficient deep
neural networks. The proposed evolutionary deep approach fol-
lows biological evolution mechanisms to mimic random mutation,
natural selection, and heredity in synthesizing successive genera-
tions of network models, and as the result more efficient network
architectures was achieved.

In this paper, by taking advantage of the evolutionary deep in-
telligence framework [11], an efficient architecture of deep neural
network is presented to improve the efficiency of the deep model
based on the architecture presented by Luo et al. [12]. Although
the Luo’s deep model reached a significant speed gain compared
to other state-of-the-art deep learning methods, its size consumes
considerable memory and computational resources. Therefore, it
is highly desired to deploy such deep learning method in such a
way that those resource demands will not become restrictive for
embedded applications. The network is trained towards yielding a
highly sparse set of synaptic weights and clusters across succes-
sive generations of evolution. The generated model is trained and
validated over large datasets for the application of vehicle detection
demonstrates.

2 Methodology

In this paper, an efficient architecture for a deep neural network
model is presented for the vehicle detection application. The net-
work architecture, on the basis of a non-local deep feature (NLDF)
model [12], is employed as the detector and the evolutionary syn-
thesis of deep neural networks (Evo-net) [10] is used to achieve an
optimized architecture.

The architecture proposed in [12], as a high performance saliency
detection method, is based on a 5×4 grid of multiscale convolution
and deconvolution blocks to capture local and global context as
well as features at different scales of resolution. As illustrated in
Fig. 1, the first row consists of a set of five convolutional blocks de-
rived from VGG-16 to learn the global feature map. In the second
row of the grid, five more convolutional blocks are used to compute
features at each specific resolution. The third row is formed by
a set of five contrast layers to emphasize on features with strong
local contrast at the specific resolution. In the last row, a set of
four deconvolutional blocks is used to up-scale the features to the
desired output size, as well as a block to construct the final local
feature map. At the end two convolutional layers are employed for
the score block by fusing local and global feature maps. Inspiring
by the Mumfordshah functional, the idea of penalizing errors on the
boundary of objects is used to form a loss function in the convolu-
tional neural network.

The method, employed to achieve an efficient model out of
the NLDF deep network [12], is based on the Evo-Net [10] inspir-
ing from biological evolution. In this approach the network model
evolves in successive generations into highly efficient deep neural
networks. The architectural evolution is formulated using a synap-
tic probability model, in which new descendant version of network
is synthesized based on these synaptic probability models from the
ancestor network, as well as computational environmental factors
in a random manner. This approach tries to mimic heredity, natural
selection, and random mutation from biological evolution.

The genetic encoding approach for the network architecture H
with a set of possible synapses S and a set of the synaptic strength
W is formulated as a conditional probability of the network archi-
tecture in generation g given the architecture of its ancestor in gen-
eration g−1,

P(Hg) = F(E) ·P(Sg|Wg−1), (1)

where F(E) models the environmental factor, which computation-
ally restricts resources available to descendant networks. The term
F(E) constrains the number of synapses that can be synthesized
in the descendant network and is set to F(E) = K, where the quan-
tity K enforces the highest percentage of synapses desired in the
descendant network.



Fig. 1: Architecture of the deep convolutional neural network reproduced from the NLDF [12].

As a more efficient genetic encoding scheme, synaptic cluster-
ing proposed in [11] is incorporated to improve the memory and
storage requirements, as well as adaptability for parallel computa-
tions such as embedded GPUs. Therefore, the synthesis proce-
dure in Eq. 2 is reformulated as

P(Hg) = ∏
c∈C

[Fc(E)P(s̄g,c|Wg−1) ·∏
i∈c

Fs(E)P(sg,i|wg−1,i)], (2)

where Fc(·) and Fs(·) denote the environmental factors enforced
at the cluster and synapse levels, respectively. In this equation
sg,c ∈ Sg and s̄g,c ⊂ Sg represent a particular synapse and a partic-
ular cluster of synapses for a given generation g and cluster c, and
wg−1,i ∈Wg−1. The particular synaptic cluster in a deep convolu-
tional architecture can be any subset of synapses such as a kernel
or a set of kernels.

The synthesized descendant networks are trained and the evo-
lutionary synthesis process is successively repeated to attain suc-
cessive generations of descendant networks.

3 Experimental Results and Discussion

In order to investigate the efficacy of the presented architecture,
the evolutionary synthesis across several generations is performed
and the performance of the network for the application of vehicle
detection is evaluated.

The dataset of vehicles of all kinds as well as pedestrians and
bicycles provided in [13] is used for training the models across dif-
ferent generations. Examples of captured images from this database
are shown in Fig. 2. The foreground objects have been identified to
provide the corresponding ground truth maps, where the salient ob-
jects are labelled with pixel-wise annotation. The detection results
are validated using a separate dataset of 25K samples of vehicles,
bicycles, and pedestrians.

The deep network architecture in [12] is to used to learn dis-
criminant saliency features. The input image to the model is a
352×352 image and the output is a 176×176 saliency map, which
is resized to the size of input image using a bilinear interpolation.
The network model was implemented in TensorFlow, and was ini-
tialized with the pretrained weights of the model in [12]. The Adam
optimizer was employed to train the model with the default parame-
ters, learning rate of 10−6, β1 = 0.9, and β2 = 0.999. The other net-
work settings are set to the default values suggested in the original
model in [12]. The inputs were resized to 352×352 for training.

To assess the performance of saliency detection for the evolved
deep neural networks at different generations, the detection accu-
racy metric is computed for each generation. The efficiency of the
network architecture over successive generations is presented as
synaptic and cluster efficiency for the convolutional and deconvolu-
tional layers. The synaptic efficacy of the architecture is described
as the total number of synapses in the original network divided by
the one in the network of the current generation. Similarly, clus-
ter efficiency is defined as ration of the number of clusters in the
original network over that of the current synthesize network.

Fig. 2: Sample images from the dataset [13] used for training.

The deep neural network with the above settings is trained over
a number of generations. At every generation, the environment
factor is forced to the model to yield progressively more efficient
network architectures while maintaining the modelling accuracy. In
this set of preliminary experiments, each kernel is considered as
a synaptic cluster in the synapse probability model. Fig. 3 shows
the architectural efficiency of the network over a number of gener-
ations. It can be observed that over successive generations of evo-
lution, the architectural efficiency is improved. Particularly, after six
generations, the number of preserved synapses and synaptic clus-
ters goes down to less than half and around a quarter of the ones
for the original network.

The detection accuracy of the deep neural network in the cor-
responding generations is shown in Fig. 4. As is observed, the
accuracy of the model is decreasing over generations, and after
six generations, the cost would be accuracy drop of less than %4
compared to the original network at Generation 0. Sample results
of the saliency map detection is shown in Fig. 5, for which, the
synthesized network at the sixth generation was employed. In this
figure, the purple regions show where the neural network speci-
fies as the detected regions. As is observed, the model is able to
clearly detect cars and the motorbike in these samples.

To investigate the effect of network reduction on different layers
of the deep neural network, architectural efficiency is considered
for each convolutional and deconvolutional layers separately. Table
1 shows the synaptic and cluster efficiency of the synthesized deep
neural network obtained after sixth generations. It can be seen that



Fig. 3: Efficiency of the network architecture over different genera-
tions for synthesized deep networks.

Fig. 4: Accuracy of the deep neural network for saliency map de-
tection over different generations.

all layers ended up with almost the same amount of synapse reduc-
tion. However, for the cluster efficiency, reduction is more substan-
tial for the first set of five convolutional blocks. The convolutional
layers Conv-6 to Conv-10, which take care of computing features,
preserve higher percentage of synaptic clusters compared to the
ones on the first row of the network grid.

Quantitative and qualitative assessment of the experiments for
the task of vehicle detection demonstrate the architecture efficiency
of the network while maintaining detection accuracy of the model.
Based on the results in this paper, applying Evo-Net to the NLDF
network significantly improves the architecture efficiency of the model
in formation of highly sparse synaptic weights and clusters, and
therefore facilitates the adaptation for highly parallel computations
such as GPUs. Yielding a highly efficient, yet powerful deep mod-
els for vehicular applications can lead to a promising direction for
future exploration in embedded deep learning.
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