
Estimating Optimal Depth of VGG Net with Tree-Structured Parzen Estimators
Sunghwan Yoo Dept of Medical Imaging
Masoom A. Haider Sunnybrook Research Institute
Farzad Khalvati University of Toronto, Toronto, ON, Canada

Abstract

Deep convolutional neural networks (CNNs) have shown astonish-
ing performances in variety of fields. However, different architec-
tures of the networks are required for different datasets, and finding
right architecture for given data has been a topic of great interest in
computer vision communities. One of the most important factors of
the CNNs architecture is the depth of the networks, which plays a
significant role in avoiding over-fitting. Grid Search is widely used
for estimating the depth, but it requires huge computation time. Mo-
tivated by this, a method for finding an optimal architecture depth is
introduced, which is based on a hyper-parameter optimizer called
Tree-Structured Parzen Estimators (TPE). In this work, we show
that the TPE is capable of estimating the CNNs architecture depth
with an accuracy of 83.33% with CIFAR-10 dataset and 60.00%
with CIFAR-100 dataset while it reduces the computation time by
more 70% compared to the Grid Search.

1 Introduction

Ever since Alex Krizhevsky et al. introduced CNNs [1], Alex Net [2],
in 2012, constructing variety of the architectures of CNNs to achieve
better performance in variety of fields such as computer vision [2]
and natural language processing [3] has been a topic of great inter-
est in computer vision communities. Each year, multiple academic
and industrial research groups have come up with new CNNs‘ ar-
chitectures such as ZF Net [4] and VGG Net [5, 6]. Depending
on the size and types of datasets, different architectures are re-
quired for optimal performance. The depth of CNNs is one of the
most important factors because as images sizes become larger,
it requires a deeper network to capture the features of images ef-
fectively. However, as CNNs gets deeper, it would easily be over-
fitted [7]. To overcome the over-fitting by the very deep networks,
designers should come up with innovative ideas such as residual
layers[7]; otherwise precise hand-tuning of hyper-parameters be-
comes inevitable, which is a very challenging task. On the other
hand, if the network is shallow, CNNs cannot effectively capture
the features of images leading to under-performing architectures.
Therefore, finding optimal depth of CNNs in a given dataset is one
of the most important tasks in deep learning.

Nevertheless, the depth of the CNNs architecture is one of the
hyper-parameters, which requires great amount of effort and time
to hand-tune for best performance. In order to design the VGG
Net, which was placed 2nd in 2015 ImageNet Large-Sacle Visual
Recognition Challenge (ILSVRC) [6], 6 different CNNs Configu-
rations with depths of 11 weight layers to 19 weight layers were
tested [5]. For Resdual network (Res Net) [7], which has 152
weighted layers, the Microsoft Research team has tested networks
with the depths of 20 weight layers to the one with the depths of
1202 weight layers, which required a significant amount of effort
and resources.

Grid search is one of the widely used algorithms for such tasks.
The idea of the grid search is straight forward; testing out every
possible choice and combinations of hyper-parameters and picking
the best performing choices. This algorithm works effectively when
the total number of choices and combinations is not overwhelming
and the training time of CNNs is short; but that is not the case in
real life scenarios and hence, it is not practical in most of cases.
This the main reason that the CNNs designers prefer hand-tuning
the architectures. Humans can learn from mistakes and their ex-
perience and analyze it to make better architectures for a better

performance, but it requires great amount of manual labor, which
takes time and effort. Moreover, inexperienced CNNs designers
lack the experience and are unable to decide the starting line to
make an architecture from scratch and thus, end up wasting time
and resources. In addition, a human brain is not capable of memo-
rizing all results and reasons corresponding to those results. If the
process of deciding the depth of architecture can be automated,
it will not only set the best starting architecture, but it will reduce
design time as well.

We approach this problem by using TPE [8] as a hyper-parameter
optimizer to estimate the optimal depth of CNNs. This approach
has the following advantages. Since TPE can memorize all the
previous results and implement that information into next selection
of parameters, it is efficient in cases where a huge number of iter-
ations and trials are required. In addition, unlike the grid search,
the TPE does not require to test out every single choice of hyper-
parameters for estimating the best architecture among the given
set of choices because it simply skips the choices that are likely to
under-perform compared to other choices, which leads to a more
timely and efficient method than the grid search. Although the TPE
algorithm has been used to optimize the hyper-parameters such
as learning rate, drop rate, and etc. [9, 2], in this work, we apply
TPE to optimize the depth of CNNs, which is an important factor in
designing optimal CNNs architectures. We gave the TPE different
choices for the depth of the VGG Net and tested how TPE is ca-
pable of estimating the optimal depth for the networks. We picked
the VGG Net as our core architecture because it is relatively shal-
low compared to the state of the art but at the same time delivers
decent accuracy, and unlike Res Net, it only has basic CNNs struc-
ture, which makes it easier to tune. However, ResNet could also
be used as a core architecture because the convolutional blocks
can be added to make different choices. We performed our tests
on the datasets of CIFAR-10 and CIFAR-100 [10], as they are com-
mon benchmarks in machine learning for computer vision.

2 Methodology

The main goal of this research is to test the capability of TPE to
estimate the optimal depth (the best choice) of CNNs architecture.
The CNNs used in this study is VGG Net [5, 6] because it is con-
structed only by basic CNNs‘ components making it easier to have
multiple choices. The result of gird search was used as the ground
truth, and the accuracy and computation time of TPE were com-
pared to the ground truth. No data augmentation was performed to
the data sets.

2.1 Choice of VGG Net

VGG Net based CNNs were built with 9 different depths of net-
works. Their depth range was from 3 layers deep to 15 layers
deep. These choices were inspired by the ConvNet Configurations
from the paper Very Deep Convolutional Networks for Large-Sacle
Image Recognition [5], which has shown promise for computer vi-
sion problems. Also, they follow the rule that previous convolution
blocks should not contain more convolution layers (conv) before a
2×2 Max pooling layer to mimic the ConvNet Configuration. Each
convolutional layer has a 3× 3 filter followed by Zero Padding and
ReLu activation [2]. At the end of each convolution block, there is a
2×2 Max pooling layer. After all of the convolution blocks, fully con-
nected layers (FC) follow. FC is composed of a Flatten layer, the



Dense layer with 256 neurons followed by Relu activation, the Drop
out layer with 0.50 dropout rate, and another Dense layer with the
10 neurons followed by softmax activation. These parameters were
selected because CIFAR-10 and CIFAR-100 images are relatively
small. Fig. 1 shows the details about each set of the architectures.

Fig. 1: The details of the VGG architectures. The depth of the
architecture increases from Set 0 (3 layers) to Set 8 (15 layers).

2.2 Grid Search

To account for the randomness nature of CNNs [11], each set was
tested 3 times and results were averaged, where total number of
iterations was 27. The validation accuracies after 50 epochs were
recorded. The stochastic gradient descent was used as an opti-
mizer with 0.9 momentum [12] and 0.001 learning rate. Categorical
cross entropy was used as the loss function. The total computation
time was about 20 hours. Fig. 2 shows the accuracies of each
architecture set with CIFAR-10 dataset.

Fig. 2: The accuracy of each set in Cifar-10 dataset. Set 5 and Set
6 have the best accuracy. Due to the randomness of CNNs, each
set accuracy has variances. As the networks becomes deeper,
CNNs performs better. However, it starts to under-perform due to
the over-fitting after the peak; Set 5/6.

When the architecture is shallow, it under-performs because
it is not able to capture the features of images effectively. When
the architecture is too deep, it also under-performs due to the over-
fitting. For CIFAR-10 datset, Sets 5 and 6 were the best performing
architectures among the 9 sets. Their best validation accuracies
were 78.87% and 78.79%, respectively. The corresponding p-value
(p = 0.78) from McNemar‘s Test of the difference of performances
between Set 5 and Set 6 indicates there is no statistically significant
difference in the performances.

For CIFAR-100 datset, Set 1 has the best performance; accu-
racy of 42.81%. It produces very low accuracy because CIFAR-100
has 100 classes and each class has only 600 samples (CIFAR-10
has 6000 samples per class.) Therefor, we consider Set 5 and Set
6 as the ground truth for CIFAR-10 and Set 1 as the ground truth
for CIFAR-100. If our algorithm can successfully predict best archi-
tecture sets determined by the grid search (i.e., Set 5 and Set 6 for
CIFAR-10, and Set 1 for CIFAR-100), it validates the effectiveness
of TPE as hyper-parameter optimizer. Fig. 3 shows the accuracies
of each set with CIFAR-100 dataset.

Fig. 3: The accuracy of each set in Cifar-100 dataset. Set 1 has the
best accuracy. Due to the randomness of CNNs, each set accuracy
has variances. There is the peak performance at relatively shallow
architecture (Set 1.) It is because CIFAR-100 has 100 different
classes and there is only 600 samples per classes, which lead to
over-fit relatively easier that CIFAR-10 dataset.

2.3 Tree-Structured Parzen Estimators

For Each iterations, the TPE collects new observation and defines
a prior distribution with given observations, thus, for the first few it-
erations, the TPE searches the parameter space randomly. When
there are enough data to define prior distribution, the TPE divides
collected observations into two groups. The first group is the best
performing observations which are 10% of total observations, and
the second groups is the remaining observations. Next, the TPE
finds a set of parameters that are more likely in the first group and
less likely in the second group. After this process, the TPE de-
fines the models of likelihood probability for each of the two groups.
From the observed parameters, the TPE picks the candidates that
are more likely in the first group. The expected improvement per
each candidate is defined as the following formula.

El =
l(x)
g(x)

(1)

where El is the expected improvement per iteration, l(x) is a prob-
ability being in the first group and g(x) is a probability being in the
second group.

Because of the prior distribution, the TPE does not have to
search every simple parameter. It skips testing the parameters
that have likely low performance, and hence, the decision of the
TPE converges in the early iterations. This means that the TPE will



not waste its time to test too deep networks, leading to decreased
computation time. In addition, the TPE memorizes all previous re-
sults as the prior distribution and can make a decision to choose
the best parameter to test next. We set the number of iterations of
the TPE to 10. Multiple tests were conducted and the accuracy of
estimating the the best number of layers for the VGG Net and the
computation time were measured.

3 Results

Despite the fact that there were 9 choices of network depth and
only 10 iterations were done, our TPE algorithm was able to es-
timate the best architecture sets that gives the highest accuracy
among given sets. In Cifar-10 dataset, the accuracy of estimating
the best sets (Sets 5 and 6) was 83.33% (For Cifar-10, a total of
6 different tests were conducted with iteration of 10). In CIFAR-
100 dataset, the accuracy of estimating the best sets was 60.00%
(For Cifar-100, a total of 5 different tests were conducted with iter-
ation of 10). Not only were we able to estimate the best architec-
ture sets with reasonable accuracy, we were also able to reduce
the computation time by 70%. While the grid search took approxi-
mately 20 hours, the TPE algorithm took only 6 hours for CIFAR-10
and 5 hours for CIFAR-100. The TPE with CIFAR-100 took 1 hour
less because the optimal set was shallower than the optimal set
required for CIFAR-10. However, the limitation of the number of
iterations causes the TPE to mis-estimate the architecture set in
some cases. In those mis-estimated cases, the TPE did not test
the ground truth sets, leading the TPE to build a wrong prior dis-
tribution. To overcome the mis-estimation, the number of iterations
has to be increased, which will be done as a future work. The di-
rect comparison between grid search and the TPE algorithm in the
number of iterations and computation time is shown in Table 1.

Table 1: The direct comparison between traditional Gird Search
and our TPE algorithm for Cifar-10 and Cifar-100 datasets. Our
TPE algorithm requires significantly less iterations to estimate the
best set than the Grid Search.

Algorithms Iterations Time Trials
Estimated

Sets
Accuracy

Grid
Search

27 20 hrs - - -

TPE
(Cifar-10)

10 6 hrs 6
5,5,6,
6,6,8

83.33%

TPE
(Cifar-100)

10 5 hrs 5
1,1,1,
2,2

60.00%

4 Conclusion

We validated the effectiveness of the TPE algorithm for estimating
the optimal depth of VGG Net styled CNNs. Our result showed
that the TPE algorithm requires significantly shorter computation
time relative to the grid search while retaining estimating the opti-
mal depth of CNNs architecture. We anticipate that the proposed
algorithms perform even better with the core architecture that re-
quires deeper networks such as ResNet where its depth could go
as deep as 152 layers.

References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks.

In Advances in neural information processing systems, pages
1097–1105, 2012.

[3] Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Le-
cun. Very deep convolutional networks for text classification.
arXiv preprint arXiv:1606.01781, 2016.

[4] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, pages 818–833. Springer, 2014.

[5] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[8] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems, pages
2546–2554, 2011.

[9] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. Journal of ma-
chine learning research, 15(1):1929–1958, 2014.

[10] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. 2009.

[11] Simone Scardapane and Dianhui Wang. Randomness in neu-
ral networks: an overview. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 7(2), 2017.

[12] François Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.


