
Effects of Spatial Transformer Location on Segmentation Performance of a Dense Transformer
Network
David Abou Chacra University of Waterloo, ON, Canada
John Zelek University of Waterloo, ON, Canada

Abstract

Semantic segmentation solves the task of labelling every pixel in
an image with its class label, and remains an important unsolved
problem. While significant work has gone into using deep learning
to solve this problem, almost all the existing research uses methods
that do not make modifications on spatial context considered for the
pixel being labelled. Spatial information is an important cue in tasks
such as segmentation, reusing the same spatial span for every pixel
and every label may not be the best approach. Spatial Transformer
Networks have shown promising results in improving classification
performance of existing networks by allowing networks to actively
manipulate their input data to achieve better performance. Our work
shows the benefit of incorporating Spatial Transformer Networks
and their corresponding decoders into networks tailored to semantic
segmentation. Our experiments show an improvement in perfor-
mance over baseline networks when using networks augmented
with Spatial Transformers.

1 Introduction

Deep learning has shown promise on a vast variety of tasks: image
classification, autonomous driving, natural language processing,
and text translation are a few notable examples of fields where
deep learning is the current state-of-the-art (and by a wide margin).
Deep learning has also been applied to the task of semantic image
segmentation. Semantic segmentation is an image-to-image trans-
lation task that takes an image as input and must learn to output
another image of the same size, where each pixel in the output
image describes the class of that same pixel in the input image.
Semantic segmentation is still largely an open problem; larger still is
the problem instance segmentation, which aims to classify different
instances of the same class separately. Semantic segmentation can
be used in a variety of different applications, making it an interesting
and useful problem to tackle.

A variety of different methodologies, reflected in a large array
of different network architectures, have been applied to this prob-
lem. Region-based approaches, namely R-CNN and its successors,
encoder-decoder methods, including FCNs [5], Segnet [1] and U-
Net [6], and methods using dilated convolutions, such as Deeplab
and its derivatives. While significant research has gone into the the
application of deep learning techniques to image segmentation, one
common underlying trait in all of these segmentation approaches is
the use of a regular, mainly square, area around a pixel to define its
class. Every image in the train and test sets is treated in a similar
manner, with no regard for image content or class context. Even ar-
chitectures that are applied at multiple scales, still only take square
regions, except at finer or coarser scales.

As a solution to this, researchers at Google DeepMind devel-
oped Spatial Transformer Networks (STNs)[3]. The aim of their work
was to allow networks to spatially manipulate their input data in a
way that improves their performance. STN modules vary in shape,
but are trainable modules that can be inserted into a network in
different locations, and learn to transform input data spatially into
convenient representations that make the subsequent network tasks
simpler, thereby allowing for better performance. They showed that
the inclusion of STNs into existing networks improves their per-
formance, and outperformed the state-of-the-art on challenging
classification datasets, namely the CUB-200-2001 bird classification
dataset [4].

As of yet, there is only one other work applying STNs to image
segmentation: Dense Transformer Networks [4]. In their work, Li et
al. develop the dense transformer decoder layer, which maps STN
transformed feature vectors back to their original space, allowing
spatial correspondence to be preserved between the feature maps
before the transformer, and after the decoder [4]. Their work verifies
the differentiability of this ‘decoder’ function, allowing it to be used
in deep networks and trained by back-propagation.

The aim of this work is to explore the utility of STNs inside
encoder-decoder frameworks for image segmentation. While this

Fig. 1: Sample results on a test images from the KITTI dataset.
The top two rows are from a less challenging marked road class,
whereas the bottom two rows are from a more challenging class
where road is unmarked.

was briefly explored in [4], our work further explores the effects of
the STN location, along with the overall network depth. We show
that properly placed STN modules inside of an encoder-decoder ar-
chitecture can in fact have a positive effect on network performance
for segmentation tasks (see figure 1).

2 Background

2.1 Deep Learning for Semantic Segmentation

Initial deep learning approaches to semantic segmentation were
simply patch classification networks, where patches around each
input pixel were fed into the network, and this pixel’s label was
predicted. This meant that networks with fully connected layers
could be used in the task of segmentation, but it also meant that
segmentation required forward passes equalling the number of
pixels for every image, which meant even for small input images
at test time, these networks would require significant processing
power and time: A 256x256 image for example requires 65,536
forward passes to semantically segment it.

This led to the use of Fully Convolutional Networks (FCN) [5]
which do away completely with the fully connected layers, allowing
networks to output where class activations happened. FCNs were
the first deep learning architectures to be tailored specifically for se-
mantic segmentation, and they used transpose convolution layers to
get back to an image the same size as the input, and also introduce
skip connections to improve the final output. Transpose convo-
lutions (contentiously referred to as ‘deconvolutions’) are actually
already done when training any convolutional neural network with
backpropagation, as the backwards pass of the training algorithm
applies transpose convolutions. Despite the usefullness of the FCN
architechture, the reliance on the coarsely downsampled activations
led to a coarse segmentation. Follwing FCN’s, Segnet [1] utilized
an encoder-decoder architecture with increased skip connections
between max-pooling and un-pooling layers (where the fine details
were usually lost) to preserve more of the fine detail in the final
segmentation. Finally, the U-Net [6] architecture also employs this
encoder-decoder framework, doubling the feature map depth with
each max-pool and uses skip connections between encoder feature
maps and the corresponding decoder feature maps to generate a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waterloo Library Journal Publishing Service (University of Waterloo, Canada)

https://core.ac.uk/display/234014129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2: The spatial transformer module is composed of three parts.
The localization network learns to output transformation parameters
θ of the affine transformation to be applied to the input feature
map, this network can be a fully connected network, a convolutional
network or a mix of both. The grid generator uses the generated
θ to generate a sampling grid specifying which points from the
input feature map must be sampled to produced the transformed
output. Finally, the sampler uses bilinear interpolation, or alternately
another differentiable interpolation, to sample the input feature map
and generate a transformed feature map.

segmentation map for every class in the training set. U-Net originally
was used on medical images, and required few training examples
(as little as 30 per class), however it is usable with natural images
as well [4]. We modify U-Net in our work, as we desired a network
employing encoder-decoder architecture, as well as one that can
be trained rapidly and using a relatively small dataset.

2.2 Spatial Transformer Networks

All of the segmentation approaches discussed in the previous sec-
tion share a common trait: they operate on predefined, regularly
shaped patches. Whether they employ an encoder-decoder frame-
work, or atrous convolutions and transpose convolutions, or region
of interest alignment, these networks operate on square patches
of the input images. Frequently, researchers use data augmenta-
tions on the training set to teach these networks spatial invariance,
which range from random crops, rotations, even deformed grids
[6], yet the networks themselves are never taught to understand
these spatial invariances. This is what makes Spatial Transformer
Networks (STNs) so timely and useful [3], as they offer the key to
networks gaining spatial understanding through several of their prop-
erties. Most importantly they are differentiable, this allows STNs to
be trained with ordinary backpropagation, just like any other part
of the network. Furthermore, they can be placed in one or more
streams of any existing network, and simply treated as a black-box
of sorts. Their main property is their ability to learn how spatially to
transform the activations of the previous feature layer, and output a
transformed feature tensor in a manner that boosts network perfor-
mance, or at worst. keeps it constant by virtue of being capable of
learning the identity mapping. The architecture of the STN module
is presented in figure 2.

STNs have been applied to various classification tasks, and
proved that they do improve network performance when included
[3]. However, they have only been applied to semantic segmentation
in one other work: Dense Transformer Networks (DTNs) [4]. The
authors of [4] insert STNs into an encoder-decoder architecture,
as well and show an improvement in performance of the modified
network on the PASCAL 2012 dataset. They prove the differen-
tiability of the inverse of a spatial transformer sampler, a spatial
decoder sampler, which allows the use of STNs for convolution as
this decoder now transforms feature maps that have passed through
an STN back into their previous space. This can be done by sharing
the transformation parameters θ between the STN and the STN
decoder. In their work, the authors of [4] provide only basic experi-
mentation results using DTNs for segmentation, only including the
results of a single architechture with an STN module at the deepest
layer only. We build on the work of [4] by utilizing their STN decoder
to experiment with different positions of the STN-STN decoder pairs
in the U-Net network,with different network depths, and their effect
on the final segmentations.

3 Network Architecture

Our work aims to prove the positive effect STNs can have on network
performance in the case of semantic segmentation. Our baseline
network is U-Net [6]. We modify the network architecture to include
spatial transformers and their corresponding decoders, an example

Table 1: A sample modified U-Net network of depth 6, with an STN
at depth 4 (layer Down 3 and Up 3), this is shown in figure 3. Con-
volutions (denoted by conv) are followed by batch normalization.
Single asterisks denote the connection via a skip layer between
convolution and transpose convolution(tconv) layers in correspond-
ing down and up layers, these are present in the original U-Net.
Double asterisks denote the skip layer connections between the
spatial transformer and decoder which share the information on
the transformation θ . A similar scheme is employed in all of our
experiments, while we vary U-Net depth, and STN/STN decoder
location.

Part

Layer Layer Name Operations Output Size

0 Input - 256x256x3

1 Down 0 c1, c2*, pool 128x128x64

2 Down 1 c1, c2*, pool 64x64x128

3 Down 2 c1, c2*, pool 32x32x256

4 Down 3 c1, Spatial Transformer**,
c2*, pool 16x16x512

5 Down 4 c1, c2*, pool 8x8x1024

6 Bottom c1, c2 8x8x1024

7 Up 4 tc1, concatenate*, tc2, tc3 16x16x512

8 Up 3 tc1, concatenate*, tc2,
Spatial Decoder**, tc3 32x32x256

9 Up 2 tc1, concatenate*,
tc2, tc3 64x64x128

10 Up 1 tc1, concatenate*,
tc2, tc3 128x128x64

11 Up 0 tc1, concatenate*,
tc2, tc3 256x256x2

12 Output - 256x256x2

of our modified networks is shown in figure 3. For this work we
limit our experimentation to one STN module inside of the network,
however, multiple STN modules can also be used. We place an
STN module at different depths of the encoder portion of the U-Net,
as explained in table 1. We place the corresponding STN decoder
at the appropriate layer of the decoder portion of the U-Net, allowing
the network to transform the intermediate decoded feature maps
back to the space of the input image to get a non-transformed
semantic segmentation.

4 Experiments

We use tensorflow for our experimentation. We utilize and modify
the STN implementation of [7], the U-Net implementation of [6], and
the DTN implementation of [4] to generate our final framework. Our
experiments are run on a Microsoft Azure virtual machine with one
half of a Tesla K-80 GPU.

We experiment with varying the depth of the U-Net, along with
placing STN modules in different locations of the U-Net, or the U-Net
without STN modules, for our baseline measure. We experiment
with a U-Net of depths 4, 5 and 6. We place STNs and their
corresponding decoders at the second layer of the network, and
onwards till the deepest layer. We were unable to experiment
with STNs after the first layer due to memory constraints (as the
feature map size would still be large at 128x128x64). We trained
our network for 4000 epochs with a batch size of 10 images, and
evaluated the networks on the test set at epochs 3000, 3500, and
4000 and chose the best performing of them to represent the class
of networks.

Our experiments are done using the KITTI road dataset [2]. The
dataset is composed of 289 labelled images of which we used 150
for training, 79 for validation, and 60 for testing. The metrics used
for evaluation are precision, recall, false-positive rate (FPR), and
F1-measure. Precision reflects how much of the proposed road
segmentation is truly road, recall measures how much of the overall
road in the image was detected, the false-positive rate reflects

Fig. 3: Our modified U-Net architecture (as a tensorflow graph)
with a depth of 5 + 1 (6) encoder layers, and their corresponding
decoder layers. Note that in the above figure, the data flows from
left to right. We place an STN in the path of the encoder, while
the STN decoders are placed in the decoder paths. In the above
example, the STN is at the 4th ’layer’ (down3), note that each
encoder layer is formed of two convolutions (with normalization)
followed by a pooling layer. The transformation via STN happens
in between the first and second convolutions. The encoded feature
maps are also shared via skip connections of the layers that follow
them. The decoder layers concatenate the encoded feature maps
(via skip connections) with the transpose-convolved feature maps
via the regular pipeline. This is followed by two other transpose
convolutions, the spatial decoder acts on the feature map before the
final convolution of a decoder layer. Our input images are of size
256x256x3. Table 1 describes the encoder layers in more detail.

Table 2: Results, in percentages, on the test subset of the KITTI
road dataset. Results are separated based on their base network
depth. The top performance metric for each network depth is bolded,
while the overall best metrics are italicized and bolded.

Network Architecture

Depth STN
Position F1-Score Precision Recall FPR

4 2 92.92 93.11 92.74 1.52
4 3 96.37 96.46 96.28 0.78
4 None 95.73 95.46 96.01 1.01

5 2 92.86 92.91 92.81 1.57
5 3 95.95 96.45 95.46 0.78
5 4 95.71 95.25 96.17 1.06
5 None 95.75 94.65 96.88 1.22

6 2 93.86 93.69 94.03 1.40
6 3 95.74 95.83 95.66 0.92
6 4 96.64 96.42 96.86 0.80
6 5 96.49 96.29 96.69 0.83
6 None 95.55 95.80 95.31 0.93

how much of the background class was improperly classified, and
the F-measure is the harmonic mean that measures a trade-off
between precision and recall for the foreground classes. The key
performance metric we rely on is the F1-measure, as it shows the
best all-encompassing result of the network, however, individual
metrics may be of interest depending on the application. Numerical
results are shown in table 2, while sample analytical results are
shown in figure 1.

5 Discussions and Conclusions

5.1 Discussions

Based on the experimental results shown, we verified the perfor-
mance gains that can be achieved by using STNs inside existing
architectures. The baseline U-Net networks of various sizes already
perform well on their own, yet the modified U-Nets with added STN
modules still manage to outperform the baseline. We can clearly
see that the top performing networks for each depth in terms of the
F-measure are always STN-modified networks, and this is true for
every metric, with the one exception of the recall rate attained by
the baseline U-Net of depth 5, which the STN modified networks
underperform by a small percentage.

Another noteworthy observation is that STN modules usually
yield better performance when placed towards the bottom-half of
the encoder and decoder frameworks, while STNs placed in shallow
layers did not improve performance. This could be due to those
networks requiring more training epochs or data. We use the same
STN architecture regardless of layer position, hence it could also be
the case that the STN modules themselves require different internal
architectures depending on where they are placed in a network.

Finally, shallower STN modified networks performed better than
deeper baseline networks, which could be an indication that STN
modules can be used to improve computational efficiency and de-
crease train time of a network by making it smaller. We noted that
train time increased when STNs were placed in shallower portions
of the network (as a result of them dealing with larger feature maps),
however, training time for an STN-modified network did not exceed
that of a deeper baseline U-net. However, due to the different depth
baselines performing comparably, it could mean that the U-Net net-
works require more training to reach their full capacity, despite a
plateau seen in the validation loss.

5.2 Conclusions and Future Work

Overall, we can conclude that the addition of STNs does yield
tangible performance gains, and sometimes can allow shallower
networks to outperform deeper ones that haven’t been modified with
an STN. We did not expect the baseline U-Net to perform so well on
the test set, and experimenting with a more challenging dataset may
further prove the utility of STN modules for segmentation, especially
if the baseline network doesn’t already perform well on it. While
it’s clear that STNs provide improved performance, they still cannot
be used as blackboxes, and must be incorporated carefully. We
noted that in some cases STNs also decreased the performance of
a baseline network, which could mean the STN has not converged
to an identity transformation. This is an indication that STN location
and train time must also be studied carefully.

For our future work, we plan on testing on more challenging
datasets to verify the performance gains using STNs in networks
used for segmentation. Furthermore the use of multiple STN mod-
ules inside a network architecture has never been explored, and it
would be interesting to see if further performance gains could be
achieved by the use of multiple STN modules of different types and
shapes within the same network. We also would like to explore the
effect of STNs on other types of segmentation networks, such as
ones that utilize atrous convolutions, and regional CNNs.

References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Seg-
net: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

[2] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new
performance measure and evaluation benchmark for road de-
tection algorithms. In International Conference on Intelligent
Transportation Systems (ITSC), 2013.

[3] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in Neural Information
Processing Systems, pages 2017–2025, 2015.

[4] Jun Li, Yongjun Chen, Lei Cai, Ian Davidson, and Shuiwang Ji.
Dense transformer networks. arXiv preprint arXiv:1705.08881,
2017.

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3431–3440, 2015.

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmenta-
tion. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 234–241. Springer,
2015.

[7] Kevin Zakka. Tensorflow implementation of spatial transformer
networks. https://github.com/kevinzakka/spatial_
transformer_network, 2017.

https://github.com/kevinzakka/spatial_transformer_network
https://github.com/kevinzakka/spatial_transformer_network

	Introduction
	Background
	Deep Learning for Semantic Segmentation
	Spatial Transformer Networks

	Network Architecture
	Experiments
	Discussions and Conclusions
	Discussions
	Conclusions and Future Work

