2019年6月5日 統計数理研究所 オープンハウス Analysis of variance for high dimensional time series

Hideaki Nagahata^{*} and Masanobu Taniguchi (Risk Analysis Research Center, Institute of Statistical Mathematics(^{*}) / Waseda University)

Classical ANOVA works well for high dimensional time series. For example, this method can be applied for radioactive data.

Analysis of variance (ANOVA) is tailored for independent observations. Recently, there has been considerable demand for ANOVA of high-dimensional and dependent observations in many fields. For example, it is important to analyze differences among industry averages of financial data. However, ANOVA for these types of observations has been inadequately developed. In this paper, we thus present a study of ANOVA for high-dimensional and dependent observations. Specifically, we present the asymptotics of classical test statistics proposed for independent observations and provide a sufficient condition for them to be asymptotically normal. Numerical examples for simulated and radioactive data are presented as applications of these results.

1 Theoretical results

1.1 Setting

Let
$$p$$
 vetor-valued series $X_{i1}, \ldots X_{in_i}$
 $(p \rightarrow \infty)$ be generated from
 $X_{it} = \mu + \alpha_i + \epsilon_{it}, t = 1, \ldots, n_i, i = 1, \ldots, q,$

1.3 Results

Assumption 2 (Brillinger condition). Given a p-vector stationary process $\epsilon_{it} = (\epsilon_{it}^{(1)}, \dots, \epsilon_{it}^{(p)})'$ for each $k = 2, 3, \dots$, and $j = 1, \dots, k-1$, there exists an m > 0 with

Sample size		Signif	icance	Level
of each group	Test Statistic	10%	5%	1%
	T_1 (LH)	0.960	0.939	0.890
50	T_2 (LR)	0.768	0.684	0.520
	T_3 (BNP)	0.200	0.108	0.020
	T_1 (LH)	0.844	0.770	0.606
100	T_2 (LR)	0.636	0.518	0.346
	T_3 (BNP)	0.352	0.230	0.086
	T_1 (LH)	0.978	0.959	0.907
500	T_2 (LR)	0.972	0.950	0.864
	T_3 (BNP)	0.958	0.934	0.821
	$T_1 (LH)$	1.000	1.000	1.000
2500	T_2 (LR)	1.000	1.000	1.000
	T_3 (BNP)	1.000	1.000	1.000
	T_1 (LH)	1.000		1.000
7500	T_2 (LR)	1.000	1.000	1.000
	T_3 (BNP)	1.000	1.000	1.000

where

- $\epsilon_i \equiv {\epsilon_{it}; t = 1, ..., n_i}, i = 1, ..., q$, are stationary with mean **0**, autocovariance matrix $\Gamma(\cdot)$ and spectral density matrix $f(\lambda)$,
- { ϵ_{it} ; $t = 1, ..., n_i$ }, i = 1, ..., q, are mutually independent.

Consider the problem of testing

 $H: \boldsymbol{\alpha}_1 = \cdots = \boldsymbol{\alpha}_q.$

Assumption 1 (high dimensional large sample setting).

 $\frac{p}{\sqrt{n}} \to 0 \ as \ n, p \to \infty,$

$$\frac{n_i}{n} \to \rho_i > 0 \ as \ n \to \infty.$$

1.2 Method

• For independent observations, the following Lawley-Hotelling test (1), likelihood ratio test (2), and Bartlett-Nanda-Pillai test (3) have been proposed:

$$LH \equiv n \operatorname{tr} \{ \hat{\mathcal{S}}_{H} \hat{\mathcal{S}}_{E}^{-1} \}, \qquad (1)$$
$$LR \equiv -n \log\{ |\hat{\mathcal{S}}_{E}| / |\hat{\mathcal{S}}_{E} + \hat{\mathcal{S}}_{H}| \}, \qquad (2)$$
$$BNP \equiv n \operatorname{tr} \hat{\mathcal{S}}_{H} (\hat{\mathcal{S}}_{E} + \hat{\mathcal{S}}_{H})^{-1}, \qquad (3)$$

where

$$\hat{\mathcal{S}}_{H}\equiv\sum_{i=1}^{q}n_{i}(\hat{oldsymbol{X}}_{i\cdot}-\hat{oldsymbol{X}}_{\cdot\cdot})(\hat{oldsymbol{X}}_{i\cdot}-\hat{oldsymbol{X}}_{\cdot\cdot})',$$

$$\sum_{t_1,\dots,t_{k-1}=-\infty} \{1+|t_j|\}^m |c_{a_1,\dots,a_k}(t_1,\dots,t_{k-1})| < \infty$$

uniformly for a_1, \dots, a_k , where $c_{a_1,\dots,a_k}(t_1,\dots,t_{k-1}) =$ $\operatorname{cum} \{ \epsilon_{it_1}^{(a_1)}, \dots, \epsilon_{it_k}^{(a_k)} \}.$ Assumption 3 (Uncorrelated disturbance).

 $\Gamma(j) = 0$ for all $j \neq 0$.

Remark 1. Assumption 3 is not severe because vector GARCH model (very practical nonlinear time series model) satisfies it.

Theorem 1. Suppose Assumptions 1-3. Then, under the null hypothesis H,

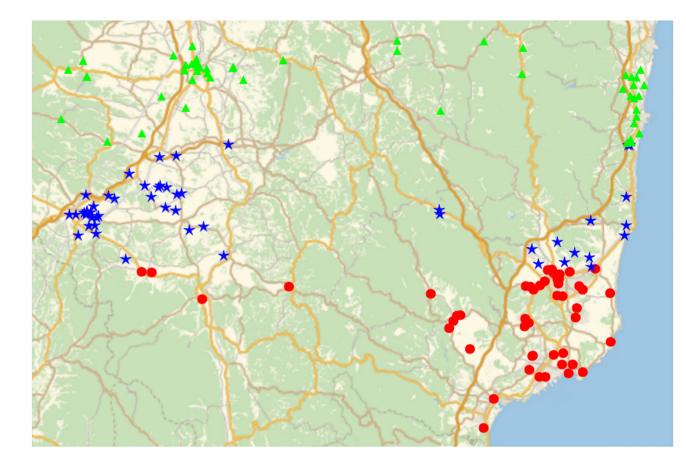
$$T_i \xrightarrow{d} N(0,1), \quad i = 1, 2, 3.$$

2 Simulation results

Sample size	Significance Level			
of each group	Test Statistic	10%	5%	1%
50	T_1 (LH)	0.906	0.879	0.78
	T_2 (LR)	0.615	0.493	0.313
	T_3 (BNP)	0.089	0.037	0.01
100	T_1 (LH)	0.564	0.460	0.28
	T_2 (LR)	0.323	0.212	0.09
	T_3 (BNP)	0.107	0.060	0.01
500	T_1 (LH)	0.161	0.100	0.03
	T_2 (LR)	0.134	0.082	0.02
	T_3 (BNP)	0.101	0.055	0.01
2500	T_1 (LH)	0.114	0.062	0.01
	T_2 (LR)	0.108	0.058	0.01
	T_3 (BNP)	0.100	0.057	0.01
7500	T_1 (LH)	0.109	0.058	0.01
	T_2 (LR)	0.107	0.055	0.01
	$\overline{T_3 (\text{BNP})}$	0.105	0.054	0.01

Table 2: Powers of the test statistics under the alternative hypothesis (ii) $\boldsymbol{\alpha}_1 = (-0.01, \dots, -0.01)', \quad \boldsymbol{\alpha}_2 = \mathbf{0}, \quad \boldsymbol{\alpha}_3 = (0.01, \dots, 0.01)'.$

3 Application to radioactive data



$$\hat{\mathcal{S}}_E \equiv \sum_{i=1}^q \sum_{t=1}^{n_i} (\boldsymbol{X}_{it} - \hat{\boldsymbol{X}}_{i\cdot}) (\boldsymbol{X}_{it} - \hat{\boldsymbol{X}}_{i\cdot})'.$$

• We can derive the stochastic expansion of the standardized versions T_1, T_2, T_3 of three tests LH, LR, BNPrespectively;

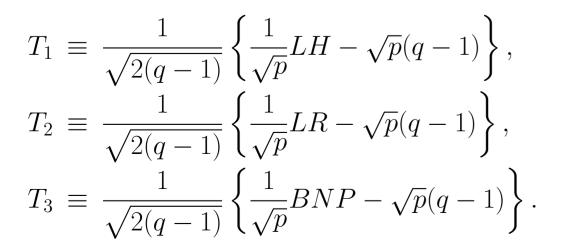


Table 1: Rejection rate of the test statistics.

- We apply T_1, T_2, T_3 to the radioactive data of Fukushima.
- Data: This data set consists of three groups with 50 dimensions and about 8000 cell lines.
- -3 groups, (i) Green area, (ii) Blue area, and(iii) Red area.
- -Very low autocorrelation;
- \rightarrow All of the tests reject hypothesis H, and their P-values are all around 0.

The Institute of Statistical Mathematics