統計的機械学習による 音声認識研究

松井 知子 モデリング研究系 教授

【概要】

本研究室では統計的学習機械を用いて、音声/音楽/画像/SNSなどを処理する方法について研究しています。具体的にはカーネルマシン、ブースティング、 協調フィルタリングの手法を用いて、

- 1. 音声•話者認識
- 2 音楽情報処理
- 画像識別 3.
- 4. SNS解析
- WEBユーザビリティ評価
- 6. 都市インテリジェンス など

の研究課題に取り組んでいます。

本研究室では統 都市インテリジェンス 計的機械学習と その応用研究に ネルマシン 興味のある学生 画像情報処理 さんを 協調フィルタリング 募集しています 音情報処理

【統計的機械学習】

- 統計科学を用いて、
 - データから、内在する数学的な構造を発見する。
 - その数学的な構造に基づいて、予測や判別などの情報処理を行う。
- 帰納的アプローチ

- 自然科学でよく見られる演繹的アプローチ
 - 仮説をたて、推論し、実験的または理論的に検証する。

- カーネルマシン
 - 自動的な特徴(/モデル)選択機構を含む。
 - 非線形の扱いに優れている。
 - サポートベクターマシン(SVM)、罰金付ロジスティック回帰マシン
- いろいろな確率モデルによる方法
 - 混合ガウス分布モデル
 - 隠れマルコフモデル
- ガウス過程状態空間モデル など

【Generalized distillation frameworkを用いた音声認識】

teacher Generalized Distillation 追加情報 student

先生がいる or 追加情報を使う方 が学習が進む!

[D. D. Lopez-Paz, L. Bottou, B. Schoʻlkopf, and V. Vapnik, "Unifying distillation and privileged information," ICLR, 2016]

Hinton's Distillation

- Training many different models on same training data:
- · Improves the performance, but
- Makes the whole model big and unsuitable in practice.
- · How to train single, small model with simlar performance? Use the output of the big model as "soft" targets for the small model – Model Compression (Caruana, 2006).
- When references, i.e. "hard" targets, are available (Hinton, 2015): Combine the "soft" and "hard" targets and control the **softness** of the "soft" targets.
- The big model is called teacher and the small one student.
- Given the c-class classification task with training data $\{(x_i,y_i)\}_{i=1}^n \sim P^n(x,y), \ x_i \in \mathbb{R}^d, y_i \in \mathbb{Q}^c, \text{ where } \mathbb{Q}^c \text{ is a space of c-dimensional probability vectors, teacher training is to find:}$

$$f_t = \arg\min_{f \in \mathcal{F}_t} \frac{1}{n} \sum_{i=1}^n l\left(y_i, \sigma(f(x_i))\right) + \Omega(\|f\|)$$

where $\sigma()$ is a softmax, l() is the loss, and $\Omega()$ is a regularizer.

. Then, for the student we have:

$$f_s = \underset{f \in \mathcal{F}_s}{\arg\min} \frac{1}{n} \sum_{i=1}^n \left[(1-\lambda) l\left(y_i, \sigma \left(f(x_i)\right)\right) + \lambda l\left(s_i, \sigma \left(f(x_i)\right)\right) \right]$$

where $s_i = \sigma(\frac{f_t(x_i)}{T}) \in \mathbb{Q}^c$ and T > 0 controls the smoothness.

Vapnik's Privileged Information

 Often during training some additional information is available which is not accessible during test time. Given training data

$$\{(x_i, x_i^*, y_i)\}_{i=1}^n \sim P^n(x, x_i^*, y)$$

- How to leverage this information to make better model?
- The naı̈ve way estimate the mapping $x \xrightarrow{f} x^*$ and generate x^*
- Vapnik's way (restricted to SVMs):
- *Similarly control (Vapnik, 2009). Implemented in SVM+ objective. *Knowledge transfer (Vapnik, 2015). Train f_t on $\{(x_t^*, y_t)\}_{t=1}^n$ and use it during the training of f_s on $\{(x_t^*, y_t)\}_{t=1}^n$.

Generalized Distillation

- · Combination of Hinton's distillation and Vapnik's privileged information approaches (Lopez-Pas, 2016).
- Three step process. Given training data $\{(x_i, x_i^*, y_i)\}_{i=1}^n$
- 1. Learn teacher $f_t \in \mathcal{F}_t$ using $\{(x_i^*, y_i)\}_{i=1}^n$; 2. Compute teacher "soft" labels $s_i = \sigma\left(\frac{f_t(\mathbf{x}_i^*)}{T}\right)$ for some temperature T;
- Learn student f_S ∈ F_S using both {(x_i,s_i)}_{i=1}ⁿ and {(x_i,y_i)}_{i=1}ⁿ, distillation objective and imitation parameter λ ∈ [0,1].
- Generalized distillation reduces to:
- Hinton's distillation when $x_i = x$
- Vapnik's method when x_i is privileged description of x_i.

Application in Speech Recognition

- · Features for ASR:
- Spectrum based MFCC, FBANK, etc. Main features, widely used
 - Easy to obtain
- Affected by noise, etc

- Difficult to obtain EMA, X-rays, MRI
 Impractical for real time ASR.

Articulatory and Spectrum Feature Integration

- · Feature based.
- · Articulatory Inversion
- Most popular approach

Model based

- HMM/BN (Markov, 2006)
- Generalized Distillation (this work).

GMM-HMM versus DNN-HMM AMs

DNN Distillation Training and Testing

共同研究者: Konstantin Markov (会津大学)

Experiments

Database

Features

- University of Wisconsin X-ray micro-beam database (XRMB).
- English speakers.

- All feature vectors normalized and synchronized
- Training procedure 1. Train conventional GMM-HMM model using both acoustic and articulatory
- 2. Perform forced alignment to obtain DNN "hard" targets
- 3. Train teacher DNN using both acoustic and articulatory features.
- 4. Train student DNN using acoustic features only and guided by the "teacher".
- Use student DNN with acoustic features only to obtain HMM state probabilities.
- 2. Use standard HMM decoding (Viterbi) to obtain recognition result.
- Evaluation metric Phoneme Error Rate (PER)

Results

- DNN parameters:
- Feed Forward.
- Input widow 17 frames Activation – ReLU.
- Dropout 40%.
- Teacher DNN
- 5 layers3073 no
- Student DNN
- 4 layers2048 nodes

By integration type

Conclusions

- Is an effective method for model based integration of information unavailable at testing time.
- Allows smaller student models (4 layers / 2048 nodes) to reach performance close to bigger teacher models (5 layers / 3072 nodes).

DNN structure:

- Recurrent DNNs outperform Feed-Forward DNNs in the ASR task since they bette model long-term temporal dependencies.
- . Time complexity of Recurrent DNNs is higher than Feed-Forward DNNs

Integration approach:

- Model based and Feature based integration achieve comparable results
- · Feature based integration requires higher computational power