Generalization of t statistic and AUC by considering heterogeneity in probability distributions

Osamu Komori Department of Mathematical Analysis and Statistical Inference, Project Assistant Professor

1 Generalized AUC

We discuss a statistical method of a classification problem for two groups. For a binary class label $y \in \{0,1\}$ and a covariate vector $x \in \mathbb{R}^p$, we consider a statistical situation in which the neither conditional distribution of x given y = 0 nor given y = 1 are well modelled by a specific distribution.

For a sample $\{x_{0i}: i=1,\ldots,n_0\}$ for y=0 and a sample $\{x_{1j}: j=1,\ldots,n_1\}$ for y=1 where $n=n_0+n_1$, we propose a generalized u-statistic defined by

$$L_U(\beta) = \frac{1}{n_0 n_1} \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} U \left\{ \frac{\beta^{\mathrm{T}}(x_{1j} - x_{0i})}{(\beta^{\mathrm{T}} S \beta)^{1/2}} \right\},\tag{1}$$

where U is an arbitrary real-valued function: $\mathbb{R} \to \mathbb{R}$; S is a normalizing factor given as

$$S = \frac{1}{n} \sum_{i=1}^{n_0} (x_{0i} - \bar{x}_0)(x_{0i} - \bar{x}_0)^{\top} + \frac{1}{n} \sum_{j=1}^{n_1} (x_{1j} - \bar{x}_1)(x_{1j} - \bar{x}_1)^{\top}.$$
 (2)

2 Asymptotic consistency and normality

Let us consider the estimator associated with the generalized t-statistic as

$$\widehat{\beta}_U = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmax}} \ L_U(\beta). \tag{3}$$

Then we consider the following assumption:

(A)
$$E_y(g_y \mid w_y = a) = 0$$
 for all $a \in \mathbb{R}$, for $y = 0, 1$

where $w_y = \beta_0^{\mathrm{T}} x_y$, $g_y = Q x_y$, $Q = I - \Sigma \beta_0 \beta_0^{\mathrm{T}}$, $\Sigma_y^* = Q \Sigma_y Q^{\mathrm{T}}$, $\mu_0 + \mu_1 = 0$, and

$$\beta_0 = \frac{\Sigma^{-1}(\mu_1 - \mu_0)}{\{(\mu_1 - \mu_0)^T \Sigma^{-1}(\mu_1 - \mu_0)\}^{1/2}}.$$
 (4)

Theorem 2.1 Under Assumption (A), $\widehat{\beta}_U$ is asymptotically consistent with β_0 for any U.

Next we consider the following assumption in addition to (A):

(B)
$$\operatorname{var}_y(g_y \mid w_y = a) = \Sigma_y^* \text{ for all } a \in \mathbb{R}, \text{ for } y = 0, 1$$

where var_y denotes the conditional variance of x given y. Then we assume mixture model for class label $y \in \{0, 1\}$.

$$p_y(x) = \sum_{k=1}^{\infty} \epsilon_{yk} \phi(x, \nu_{yk}, V_{yk}). \tag{5}$$

Theorem 2.2 For y = 0, 1 assumptions (A) and (B) under the infinite mixture model in (5) are equivalent to

(A')
$$\sum_{k \in K_{u\ell}} \epsilon_k (Q - Q_{yk}) = 0, \quad \sum_{k \in K_{u\ell}} \epsilon_{yk} Q_{yk} \nu_{yk} = 0, \text{ for } \forall \ell \in \mathbb{N}, \ y = 0, 1$$

(B')
$$\sum_{k \in K_{y\ell}} \epsilon_{yk} \left\{ Q_{yk} V_{yk} Q - Q \Sigma_y Q \right\} = 0, \text{ for } \forall \ell \in \mathbb{N}, y = 0, 1$$

where $Q_{yk} = I_p - V_{yk}\beta^*\beta^{*\top}/(\beta^{*\top}V_{yk}\beta^*)$, $K_{y\ell} = \{k \mid \beta^{*\top}\nu_{yk} = \beta^{*\top}\nu_{y\ell}, \beta^{*\top}\nu_{yk}\beta^* = \beta^{*\top}\nu_{y\ell}\beta^*\}$.

Here we assume the following semiparametric model for probability density functions,

$$p_y(x) = \psi_y(c + \beta^\top x)(2\pi)^{-\frac{p}{2}} |\Sigma_y|^{-\frac{1}{2}} \exp\left(-\frac{x^\top \Sigma_y^{-1} x}{2}\right), \text{ for } y = 0, 1, (6)$$

where ψ_y is a function from \mathbb{R} to \mathbb{R}_+ and there exists λ_y such that

$$\Sigma_y \beta = \lambda_y \beta$$
, for $y = 0, 1$. (7)

Theorem 2.3 The target parameter β_0 is proportional to β in (6) and both assumptions (A) and (B) hold for (6).

Theorem 2.4 Under Assumptions (A) and (B), $n^{1/2}(\widehat{\beta}_U - \beta_0)$ is asymptotically distributed as $N(0, \Sigma_U)$, where

$$\Sigma_{U} = c_{U} \Sigma_{0}^{*},$$

$$c_{U} = \frac{E_{0} \Big[E_{1} \{ U'(w) \} \Big]^{2} + E_{1} \Big[E_{0} \{ U'(w) \} \Big]^{2} + 2\rho E \{ U'(w) \} E \{ U'(w) w \} - \Big[E \{ U'(w) w \} \Big]^{2}}{\Big[E \{ U'(w) S(w) + U'(w) w \} \Big]^{2}},$$

$$(9)$$

in which $S(w) = \partial \log f(w)/\partial w$, f(w) is the probability density of $w = w_1 - w_0$, $\rho = E(w)$ and U' denotes the first derivative of U.

3 Simulation studies

We consider normal mixtures as follows:

$$x_0 \sim \epsilon_0 N(\mathbf{0}, \mathbf{I}_p) + (1 - \epsilon_0) N(\mathbf{\nu}_0, \mathbf{I}_p)$$

 $x_1 \sim \epsilon_1 N(\mathbf{\nu}_1, \mathbf{V}_1) + \epsilon_2 N(\mathbf{\nu}_2, \mathbf{V}_2) + (1 - \epsilon_1 - \epsilon_2) N(\mathbf{\nu}_3, \mathbf{V}_3),$

where $\boldsymbol{\nu}_0 = (-2, -0.2, \dots, -0.2)^{\top}$, $\boldsymbol{\nu}_1 = (3, 0.3, \dots, 0.3)^{\top}$, $\boldsymbol{\nu}_2 = (4, 0.4, \dots, 0.4)^{\top}$, $\boldsymbol{\nu}_3 = (-1, -0.1, \dots, -0.1)^{\top} \in \mathbb{R}^p$, $\boldsymbol{V}_1 = \boldsymbol{V}_2 = \boldsymbol{V}_3 = I_p, \epsilon_0 = 0.5$, $\epsilon_1 = \epsilon_2 = 0.1$. We consider the following U functions.

1. optimal-U

$$U_{\text{opt}}(w) = U_{\text{upper}}(w) + a_1 w + a_2 w^2 + \dots + a_m w^m,$$
 (10)

where the polynomial order m is determined by the cross validation of c_U .

2. upper-U

$$U_{\text{upper}}(w) = \log f(w) + \frac{1}{2}w^2 - \frac{\rho^3}{2 + \rho^2}w. \tag{11}$$

3. approx-U

$$U_{\text{approx}}(w) = \log f(w) + \frac{\rho}{2 + \rho^2} w \tag{12}$$

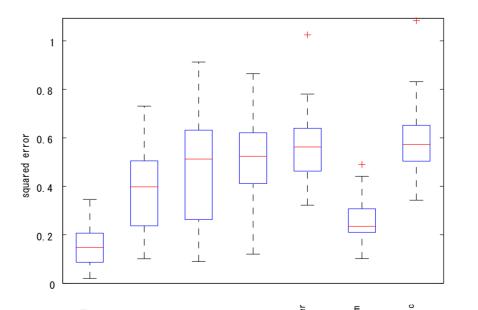
4. auc-*U*

$$U_{\rm auc}(w) = \Phi\left(\frac{w}{\sigma}\right),\tag{13}$$

where $\sigma = 0.01$.

5. linear-U (Fisher)

$$U_{\text{linear}}(w) = w \tag{14}$$



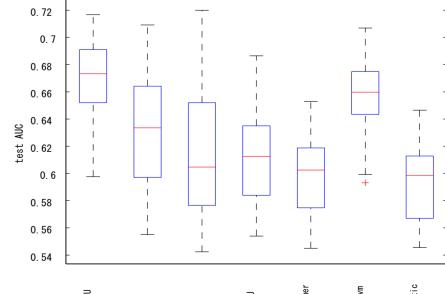


Fig1. Squared errors in upper panel and test AUC calculated by independent sample with size 1000 in lower panel, based on 30 repetitions (p = 20 and $n_0 = n_1 = 50$)