Generalization of t statistic and AUC by considering heterogeneity in probability distributions

Osamu Komori Department of Mathematical Analysis and Statistical Inference，Project Assistant Professor

1 Generalized AUC

We discuss a statistical method of a classification problem for two groups．For a binary class label $y \in\{0,1\}$ and a covariate vector $x \in \mathbb{R}^{p}$ ，we consider a statistical situation in which the neither conditional distribution of x given $y=0$ nor given $y=1$ are well modelled by a specific distribution．

For a sample $\left\{x_{0 i}: i=1, \ldots, n_{0}\right\}$ for $y=0$ and a sample $\left\{x_{1 j}: j=\right.$ $\left.1, \ldots, n_{1}\right\}$ for $y=1$ where $n=n_{0}+n_{1}$ ，we propose a generalized u－statistic defined by

$$
\begin{equation*}
L_{U}(\beta)=\frac{1}{n_{0} n_{1}} \sum_{i=1}^{n_{0}} \sum_{j=1}^{n_{1}} U\left\{\frac{\beta^{\mathrm{T}}\left(x_{1 j}-x_{0 i}\right)}{\left(\beta^{\mathrm{T}} S \beta\right)^{1 / 2}}\right\} \tag{1}
\end{equation*}
$$

where U is an arbitrary real－valued function： $\mathbb{R} \rightarrow \mathbb{R} ; S$ is a normalizing factor given as

$$
\begin{equation*}
S=\frac{1}{n} \sum_{i=1}^{n_{0}}\left(x_{0 i}-\bar{x}_{0}\right)\left(x_{0 i}-\bar{x}_{0}\right)^{\top}+\frac{1}{n} \sum_{j=1}^{n_{1}}\left(x_{1 j}-\bar{x}_{1}\right)\left(x_{1 j}-\bar{x}_{1}\right)^{\top} \tag{2}
\end{equation*}
$$

2 Asymptotic consistency and normality

Let us consider the estimator associated with the generalized t－statistic as

$$
\begin{equation*}
\widehat{\beta}_{U}=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmax}} L_{U}(\beta) \tag{3}
\end{equation*}
$$

Then we consider the following assumption：
（A）$\quad E_{y}\left(g_{y} \mid w_{y}=a\right)=0 \quad$ for all $a \in \mathbb{R}$ ，for $y=0,1$
where $w_{y}=\beta_{0}^{\mathrm{T}} x_{y}, g_{y}=Q x_{y}, Q=I-\Sigma \beta_{0} \beta_{0}^{\mathrm{T}}, \Sigma_{y}^{*}=Q \Sigma_{y} Q^{\mathrm{T}}, \mu_{0}+\mu_{1}=0$ ， and

$$
\begin{equation*}
\beta_{0}=\frac{\Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)}{\left\{\left(\mu_{1}-\mu_{0}\right)^{\mathrm{T}} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)\right\}^{1 / 2}} \tag{4}
\end{equation*}
$$

Theorem 2．1 Under Assumption（A），$\widehat{\beta}_{U}$ is asymptotically consistent with β_{0} for any U ．
Next we consider the following assumption in addition to（A）：
（B）$\quad \operatorname{var}_{y}\left(g_{y} \mid w_{y}=a\right)=\Sigma_{y}^{*} \quad$ for all $a \in \mathbb{R}$, for $y=0,1$
where var_{y} denotes the conditional variance of x given y ．Then we assume mixture model for class label $y \in\{0,1\}$ ．

$$
\begin{equation*}
p_{y}(x)=\sum_{k=1}^{\infty} \epsilon_{y k} \phi\left(x, \nu_{y k}, V_{y k}\right) \tag{5}
\end{equation*}
$$

Theorem 2．2 For $y=0,1$ assumptions (A) and（ B ）under the infinite mixture model in（5）are equivalent to
（A＇）$\sum_{k \in K_{y \ell}} \epsilon_{k}\left(Q-Q_{y k}\right)=0, \quad \sum_{k \in K_{y \ell}} \epsilon_{y k} Q_{y k} \nu_{y k}=0$, for ${ }^{\forall} \ell \in \mathbb{N}, y=0,1$
$\left(\mathrm{B}^{\prime}\right) \quad \sum_{k \in K_{y \ell}} \epsilon_{y k}\left\{Q_{y k} V_{y k} Q-Q \Sigma_{y} Q\right\}=0$, for ${ }^{\forall} \ell \in \mathbb{N}, y=0,1$
where $Q_{y k}=I_{p}-V_{y k} \beta^{*} \beta^{* \top} /\left(\beta^{* \top} V_{y k} \beta^{*}\right), K_{y \ell}=\left\{k \mid \beta^{* \top} \nu_{y k}=\right.$ $\left.\beta^{* \top} \nu_{y \ell}, \beta^{* \top} V_{y k} \beta^{*}=\beta^{* \top} V_{y \ell} \beta^{*}\right\}$.

Here we assume the following semiparametric model for probability den－ sity functions，

$$
\begin{equation*}
p_{y}(x)=\psi_{y}\left(c+\beta^{\top} x\right)(2 \pi)^{-\frac{p}{2}}\left|\Sigma_{y}\right|^{-\frac{1}{2}} \exp \left(-\frac{x^{\top} \Sigma_{y}^{-1} x}{2}\right), \text { for } y=0,1 \tag{6}
\end{equation*}
$$

where ψ_{y} is a function from \mathbb{R} to \mathbb{R}_{+}and there exists λ_{y} such that

$$
\begin{equation*}
\Sigma_{y} \beta=\lambda_{y} \beta, \text { for } y=0,1 \tag{7}
\end{equation*}
$$

Theorem 2．3 The target parameter β_{0} is proportional to β in（6）and both assumptions（ A ）and（ B ）hold for（6）．
Theorem 2．4 Under Assumptions (A) and $(B), n^{1 / 2}\left(\widehat{\beta}_{U}-\beta_{0}\right)$ is asymp－ totically distributed as $N\left(0, \Sigma_{U}\right)$ ，where
$\Sigma_{U}=c_{U} \Sigma_{0}^{*}$,
（8）
$c_{U}=\frac{E_{0}\left[E_{1}\left\{U^{\prime}(w)\right\}\right]^{2}+E_{1}\left[E_{0}\left\{U^{\prime}(w)\right\}\right]^{2}+2 \rho E\left\{U^{\prime}(w)\right\} E\left\{U^{\prime}(w) w\right\}-\left[E\left\{U^{\prime}(w) w\right\}\right]^{2}}{\left[E\left\{U^{\prime}(w) S(w)+U^{\prime}(w) w\right\}\right]^{2}}$,
in which $S(w)=\partial \log f(w) / \partial w, f(w)$ is the probability density of $w=w_{1}-w_{0}, \rho=E(w)$ and U^{\prime} denotes the first derivative of U ．

3 Simulation studies

We consider normal mixtures as follows：

$$
\begin{aligned}
x_{0} & \sim \epsilon_{0} N\left(\mathbf{0}, \boldsymbol{I}_{p}\right)+\left(1-\epsilon_{0}\right) N\left(\boldsymbol{\nu}_{0}, \boldsymbol{I}_{p}\right) \\
x_{1} & \sim \epsilon_{1} N\left(\boldsymbol{\nu}_{1}, \boldsymbol{V}_{1}\right)+\epsilon_{2} N\left(\boldsymbol{\nu}_{2}, \boldsymbol{V}_{2}\right)+\left(1-\epsilon_{1}-\epsilon_{2}\right) N\left(\boldsymbol{\nu}_{3}, \boldsymbol{V}_{3}\right)
\end{aligned}
$$

where $\boldsymbol{\nu}_{0}=(-2,-0.2, \ldots,-0.2)^{\top}, \boldsymbol{\nu}_{1}=(3,0.3, \ldots, 0.3)^{\top}, \boldsymbol{\nu}_{2}=$ $(4,0.4, \ldots, 0.4)^{\top}, \boldsymbol{\nu}_{3}=(-1,-0.1, \ldots,-0.1)^{\top} \in \mathbb{R}^{p}, \boldsymbol{V}_{1}=\boldsymbol{V}_{2}=\boldsymbol{V}_{3}=$ $I_{p}, \epsilon_{0}=0.5, \epsilon_{1}=\epsilon_{2}=0.1$ ．We consider the following U functions．
1．optimal－U

$$
\begin{equation*}
U_{\mathrm{opt}}(w)=U_{\mathrm{upper}}(w)+a_{1} w+a_{2} w^{2}+\cdots+a_{m} w^{m} \tag{10}
\end{equation*}
$$

where the polynomial order m is determined by the cross validation of c_{U} ． 2．upper－U

$$
\begin{equation*}
U_{\text {upper }}(w)=\log f(w)+\frac{1}{2} w^{2}-\frac{\rho^{3}}{2+\rho^{2}} w \tag{11}
\end{equation*}
$$

3．approx－U

$$
\begin{equation*}
U_{\text {approx }}(w)=\log f(w)+\frac{\rho}{2+\rho^{2}} w \tag{12}
\end{equation*}
$$

4．auc－U

$$
\begin{equation*}
U_{\mathrm{auc}}(w)=\Phi\left(\frac{w}{\sigma}\right) \tag{13}
\end{equation*}
$$

where $\sigma=0.01$ ．
5．linear－U（Fisher）

$$
\begin{equation*}
U_{\text {linear }}(w)=w \tag{14}
\end{equation*}
$$

Fig1．Squared errors in upper panel and test AUC calculated by indenendent sample with size 1000 in lower panel，based on 30 repetitions（ $p=20$ and $n_{0}=n_{1}=50$ ）

