Penalized Likelihood Estimation in High－Dimensional Time Series Models

植松 良公 統計的機械学習研究センター

1 Introduction

Aim：Construct a general estimation method for high－dim．time series models by penalized QML that gives sparse estimates．
Examples：K－dim．VAR (r) model is defined by

$$
\begin{equation*}
y_{t}=\Phi_{1} y_{t-1}+\cdots+\Phi_{r} y_{t-r}+\varepsilon_{t} \tag{1}
\end{equation*}
$$

which has $K^{2} r$ parameters．K－dim． $\operatorname{MGARCH}(1,1)$ is given by

$$
y_{t}=\Sigma_{t}^{1 / 2} \varepsilon_{t}, \quad \Sigma_{t}=C C^{\top}+A^{\top} y_{t-1} y_{t-1}^{\top} A+B^{\top} \Sigma_{t-1} B
$$

which has $K(5 K+1) / 2$ parameters．

2 General Theory

2．1 The model and its PQML estimator

Model：Let $\left\{y_{t}\right\}_{t=1}^{T}$ be a vector stationary process with a con－ tinuous conditional density $g\left(y_{t} \mid y_{t-1}, y_{t-2}, \ldots\right)$ ．Consider a para－ metric family of densities $\left\{f\left(y_{t} \mid y_{t-1}, y_{t-2}, \cdots: \theta\right): \theta \in \Theta\right\}$ s．t．： －$p:=\operatorname{dim}(\theta)=O\left(n^{\delta}\right)$ for some $\delta>0$ ，so possibly $p>n$ ；
－the＂true value＂θ^{0} ，the unique minimizer of the KLIC of g relative to f ，is sparse．
Define some notation more precisely：
－ $\mathscr{M}_{0}=\left\{j \in\{1, \ldots, p\}: \theta_{j}^{0} \neq 0\right\}$ and $\mathscr{M}_{0}^{c}=\{1, \ldots, p\} \backslash \mathscr{M}_{0}$ ；
－$\theta_{\mathscr{M}_{0}}^{0}$ is the q－dim．subvector of θ^{0} composed of the nonzero elements $\left\{\theta_{j}^{0}: j \in \mathscr{M}_{0}\right\}$ ；
－$\theta_{\mathscr{M}_{0}}^{0}$ is the $(p-q)$－dim．subvector of θ^{0} composed of zeros．
Estimator：The PQML estimator $\hat{\theta}$ of θ^{0} is defined by

$$
Q_{n}(\hat{\theta})=\max _{\theta \in \Theta} Q_{n}(\theta) \text { with } Q_{n}(\theta):=L_{n}(\theta)-P_{n}(\theta) \text {, }
$$

where $L_{n}(\theta):=n^{-1} \sum_{t=1}^{n} \log f\left(y_{t} \mid Y_{t-1}: \theta\right)$ is the quasi－log－ likelihood and $P_{n}(\theta):=\sum_{j=1}^{p} p_{\lambda}\left(\left|\theta_{j}\right|\right)$ is the penalty term such as L_{1}－penalty（lasso），SCAD，MCP，etc．，with $\lambda\left(=\lambda_{n}\right) \rightarrow 0$ ．

2．2 Theoretical results

Theorem 1 （Weak oracle property）Under regularity condi－ tions，there is a local maximizer $\hat{\theta}=\left(\hat{\theta}_{M_{0}}^{\top}, \hat{\theta}_{\mathcal{M}_{0}}^{\top}\right)^{\top}$ of $Q_{n}(\theta)$ s．t．： （a）$P\left(\hat{\theta}_{\mathscr{M}_{0}^{c}}=0\right) \rightarrow 1 ; \quad$（b）$\left\|\hat{\theta}_{M_{0}}-\theta_{\mathcal{M}_{0}}^{0}\right\|_{\infty}=O_{p}\left(n^{-\gamma} \log n\right)$ ．
Corollary 1 （ L_{1}－penalized QML estimator）Under regularity conditions in Theorem 1，there is a local maximizer $\hat{\theta}=$ $\left(\hat{\boldsymbol{\theta}}_{\mathscr{M}^{\prime}}^{\top}, \hat{\boldsymbol{\theta}}_{\mathcal{M}_{\mathrm{o}}}^{\top}\right)^{\top}$ of $Q_{L_{1 n}}(\theta)$ s．t．Thm．I（a）and（b）hold．
Theorem 2 （Oracle property）Under regularity conditions， there is a local maximizer $\hat{\theta}=\left(\hat{\theta}_{M_{0}}^{\top}, \hat{\theta}_{M_{0}^{c}}^{\top}\right)^{\top}$ of $Q_{n}(\theta)$ s．t．：
（a）$P\left(\hat{\theta}_{\mathscr{M}_{0}^{c}}=0\right) \rightarrow 1 ; \quad$（b）$\left\|\hat{\boldsymbol{\theta}}_{\mathscr{M}_{0}}-\theta_{\mathscr{M}_{0}}^{0}\right\|=O_{p}\left(n^{-1 / 2}\right)$ ．
If a stronger assumption is added to the penalty，we have
（c）（Asy．$N) n^{1 / 2}\left(\hat{\boldsymbol{A}}_{\mathscr{M}_{0}}-\theta_{\mathscr{M}_{0}}^{0}\right) \rightarrow{ }_{d} N\left(0,\left(J_{\mathscr{M}_{0}}^{0}\right)^{-1} I_{\mathscr{M}_{0}}^{0}\left(J_{\mathscr{M}_{0}}^{0}\right)^{-1}\right)$ ．

3 Application to VAR

3．1 Theoretical result for VAR

Consider（1）with $\varepsilon_{t} \sim$ i．i．d．$\left(0, \Sigma_{\varepsilon}\right)$ ．Let $\theta^{0}=\operatorname{vec}\left(\Phi_{1}^{0}, \ldots, \Phi_{r}^{0}\right) \in$ \mathbb{R}^{p} with $p=K^{2} r$ ，which is supposed sparse．Using some appro－ priate Σ instead of unknown Σ_{ε} ，we have：
Proposition 1 Under some moment and stability conditions， Thm． $2(a)-(c)$ hold for $\hat{\theta}$ in（1），where $I_{\mathscr{M}_{0}}^{0}=P_{\mathscr{M}_{0}}^{\top}(\Gamma \otimes$ $\left.\Sigma^{-1} \Sigma_{\varepsilon} \Sigma^{-1}\right) P_{\mathscr{M}_{0}}^{\top}$ and $J_{\mathscr{M}_{0}}^{0}=P_{\mathscr{M}_{0}}^{\top}\left(\Gamma \otimes \Sigma^{-1}\right) P_{M_{0}}$ with $\Gamma=\mathrm{E}\left[x_{t} x_{t}^{\top}\right]$ ．

3．2 Empirical study

Compare performances of sparse VAR and dynamic Nelson－ Siegel（DNS）model in terms of yield curve forecasting．
Data：Zero－coupon US government bond yields that are：
－monthly from January 1986 to December 2007；
－made of 8 maturities $\tau=3,6,12,24,36,60,84,120$ months．
Model 1：DNS model is defined by

$$
\begin{aligned}
& y_{\tau t}=\beta_{1 t}+\beta_{2 t}\left(\frac{1-e^{-\eta_{i} \tau}}{\eta_{t} \tau}\right)+\beta_{3 t}\left(\frac{1-e^{-\eta_{i} \tau}}{\eta_{t} \tau}-e^{-\eta_{t} \tau}\right), \\
& \beta_{i t}=a_{i}+b_{i} \beta_{i, t-h}+u_{i t} \text { for each } i=1,2,3 .
\end{aligned}
$$

where $\beta_{1 t}, \beta_{2 t}$ and $\beta_{3 t}$ may be interpreted as latent dynamic fac－ tors and η_{t} is a sequence of tuning parameters．
Model 2：In sVAR strategy，the model is specified as 8 －dim． $\operatorname{VAR}(12)$ below and is estimated by SCAD penalized QML．

$$
\left(\begin{array}{c}
\Delta y_{3, t} \\
\Delta y_{6, t} \\
\vdots \\
\Delta y_{120, t}
\end{array}\right)=\Phi_{1}\left(\begin{array}{c}
\Delta y_{3, t-1} \\
\Delta y_{6, t-1} \\
\vdots \\
\Delta y_{120, t-1}
\end{array}\right)+\cdots+\Phi_{12}\left(\begin{array}{c}
\Delta y_{3, t-12} \\
\Delta y_{6, t-12} \\
\vdots \\
\Delta y_{120, t-12}
\end{array}\right)+\varepsilon_{t} .
$$

Forecasting strategy：The two models are estimated recur－ sively，using the data from Jan． 1986 to the time that the $h(=1,3,6,12)$－month－ahead forecast is made，beginning in Jan． 2001 and extending through Dec． 2007.
Result：The comparison result is summarized below：
Table 1：Relative RMSEs of forecasting（sVAR／DNS）

$h \backslash \tau$	3	6	12	24	36	60	84	120
1	0.356	0.301	0.288	0.279	0.266	0.254	0.258	0.275
3	0.418	0.393	0.358	0.345	0.333	0.324	0.329	0.356
6	0.557	0.513	0.443	0.405	0.391	0.379	0.381	0.400
12	0.625	0.591	0.540	0.492	0.468	0.442	0.435	0.445

