Penalized Likelihood Estimation in High-Dimensional Time Series Models

植松 良公 統計的機械学習研究センター 日本学術振興会特別研究員(PD)

1 Introduction

Aim: Construct a general estimation method for high-dim. time series models by penalized QML that gives sparse estimates.Examples: *K*-dim. VAR(*r*) model is defined by

$$y_t = \Phi_1 y_{t-1} + \dots + \Phi_r y_{t-r} + \varepsilon_t, \qquad (1)$$

which has K^2r parameters. *K*-dim. MGARCH(1,1) is given by

 $y_t = \Sigma_t^{1/2} \varepsilon_t, \quad \Sigma_t = CC^\top + A^\top y_{t-1} y_{t-1}^\top A + B^\top \Sigma_{t-1} B,$

which has K(5K+1)/2 parameters.

2 General Theory

3 Application to VAR

3.1 Theoretical result for VAR

Consider (1) with $\mathcal{E}_t \sim \text{i.i.d.} (0, \Sigma_{\varepsilon})$. Let $\theta^0 = \text{vec}(\Phi_1^0, \dots, \Phi_r^0) \in \mathbb{R}^p$ with $p = K^2 r$, which is supposed sparse. Using some appropriate Σ instead of unknown Σ_{ε} , we have:

Proposition 1 Under some moment and stability conditions, Thm. 2 (a) – (c) hold for $\hat{\theta}$ in (1), where $I_{\mathcal{M}_0}^0 = P_{\mathcal{M}_0}^\top (\Gamma \otimes \Sigma^{-1} \Sigma_{\varepsilon} \Sigma^{-1}) P_{\mathcal{M}_0}^\top$ and $J_{\mathcal{M}_0}^0 = P_{\mathcal{M}_0}^\top (\Gamma \otimes \Sigma^{-1}) P_{\mathcal{M}_0}$ with $\Gamma = \mathbb{E}[x_t x_t^\top]$.

3.2 Empirical study

2.1 The model and its PQML estimator

Model: Let $\{y_t\}_{t=1}^T$ be a vector stationary process with a continuous conditional density $g(y_t|y_{t-1}, y_{t-2}, ...)$. Consider a parametric family of densities $\{f(y_t|y_{t-1}, y_{t-2}, ...; \theta) : \theta \in \Theta\}$ s.t.:

• $p := \dim(\theta) = O(n^{\delta})$ for some $\delta > 0$, so possibly p > n;

• the "true value" θ^0 , the unique minimizer of the KLIC of g relative to f, is sparse.

Define some notation more precisely:

•
$$\mathcal{M}_0 = \{j \in \{1, \ldots, p\} : \theta_j^0 \neq 0\}$$
 and $\mathcal{M}_0^c = \{1, \ldots, p\} \setminus \mathcal{M}_0;$

• $\theta_{\mathcal{M}_0}^0$ is the *q*-dim. subvector of θ^0 composed of the nonzero elements $\{\theta_j^0 : j \in \mathcal{M}_0\};$

• $\theta^0_{\mathcal{M}^c_0}$ is the (p-q)-dim. subvector of θ^0 composed of zeros.

Estimator: The PQML estimator $\hat{\theta}$ of θ^0 is defined by

$$Q_n(\hat{\theta}) = \max_{\theta \in \Theta} Q_n(\theta)$$
 with $Q_n(\theta) := L_n(\theta) - P_n(\theta)$,

where $L_n(\theta) := n^{-1} \sum_{t=1}^n \log f(y_t | Y_{t-1} : \theta)$ is the quasi-loglikelihood and $P_n(\theta) := \sum_{j=1}^p p_\lambda(|\theta_j|)$ is the penalty term such as L_1 -penalty (lasso), SCAD, MCP, etc., with $\lambda(=\lambda_n) \to 0$.

2.2 Theoretical results

Theorem 1 (Weak oracle property) Under regularity conditions, there is a local maximizer $\hat{\theta} = (\hat{\theta}_{\mathcal{M}_0}^{\top}, \hat{\theta}_{\mathcal{M}_0^{\circ}}^{\top})^{\top}$ of $Q_n(\theta)$ s.t.: (a) $P(\hat{\theta}_{\mathcal{M}_0^{\circ}} = 0) \rightarrow 1$; (b) $\|\hat{\theta}_{\mathcal{M}_0} - \theta_{\mathcal{M}_0}^{0}\|_{\infty} = O_p(n^{-\gamma}\log n)$. **Corollary 1** (L_1 -penalized QML estimator) Under regularity conditions in Theorem 1, there is a local maximizer $\hat{\theta} =$ $(\hat{\theta}_{\mathcal{M}_0}^{\top}, \hat{\theta}_{\mathcal{M}_0^{\circ}}^{\top})^{\top}$ of $Q_{L_1n}(\theta)$ s.t. Thm. 1 (a) and (b) hold. **Theorem 2 (Oracle property)** Under regularity conditions, there is a local maximizer $\hat{\theta} = (\hat{\theta}_{\mathcal{M}_0}^{\top}, \hat{\theta}_{\mathcal{M}_0^{\circ}}^{\top})^{\top}$ of $Q_n(\theta)$ s.t.: (a) $P(\hat{\theta}_{\mathcal{M}_0^{\circ}} = 0) \rightarrow 1$; (b) $\|\hat{\theta}_{\mathcal{M}_0} - \theta_{\mathcal{M}_0}^{0}\| = O_p(n^{-1/2})$. If a stronger assumption is added to the penalty, we have (c) (Asy. N) $n^{1/2} (\hat{\theta}_{\mathcal{M}_0} - \theta_{\mathcal{M}_0}^{0}) \rightarrow_d N(0, (J_{\mathcal{M}_0}^{0})^{-1} I_{\mathcal{M}_0}^{0} (J_{\mathcal{M}_0}^{0\top})^{-1})$. Compare performances of sparse VAR and dynamic Nelson-Siegel (DNS) model in terms of yield curve forecasting.

Data: Zero-coupon US government bond yields that are:

• monthly from January 1986 to December 2007;

• made of 8 maturities $\tau = 3, 6, 12, 24, 36, 60, 84, 120$ months. Model 1: DNS model is defined by

$$y_{\tau t} = \beta_{1t} + \beta_{2t} \left(\frac{1 - e^{-\eta_t \tau}}{\eta_t \tau} \right) + \beta_{3t} \left(\frac{1 - e^{-\eta_t \tau}}{\eta_t \tau} - e^{-\eta_t \tau} \right),$$

$$\beta_{it} = a_i + b_i \beta_{i,t-h} + u_{it} \text{ for each } i = 1, 2, 3.$$

where β_{1t} , β_{2t} and β_{3t} may be interpreted as latent dynamic factors and η_t is a sequence of tuning parameters.

Model 2: In sVAR strategy, the model is specified as 8-dim. VAR(12) below and is estimated by SCAD penalized QML.

$$\begin{pmatrix} \Delta y_{3,t} \\ \Delta y_{6,t} \\ \vdots \\ \Delta y_{120,t} \end{pmatrix} = \Phi_1 \begin{pmatrix} \Delta y_{3,t-1} \\ \Delta y_{6,t-1} \\ \vdots \\ \Delta y_{120,t-1} \end{pmatrix} + \dots + \Phi_{12} \begin{pmatrix} \Delta y_{3,t-12} \\ \Delta y_{6,t-12} \\ \vdots \\ \Delta y_{120,t-12} \end{pmatrix} + \mathcal{E}_t.$$

Forecasting strategy: The two models are estimated recursively, using the data from Jan. 1986 to the time that the

h(=1,3,6,12)-month-ahead forecast is made, beginning in Jan. 2001 and extending through Dec. 2007.

Result: The comparison result is summarized below:

Table 1: Relative RMSEs of forecasting (sVAR/DNS)

$h \setminus au$	3	6	12	24	36	60	84	120
1	0.356	0.301	0.288	0.279	0.266	0.254	0.258	0.275
3	0.418	0.393	0.358	0.345	0.333	0.324	0.329	0.356
6	0.557	0.513	0.443	0.405	0.391	0.379	0.381	0.400
12	0.625	0.591	0.540	0.492	0.468	0.442	0.435	0.445

The Institute of Statistical Mathematics