[ Abstract]

We propose a new method for clustering based on the local minimizatio
the~-divergence, which we call the spontaneous clustering. The greates;
vantage of the proposed method is that it automatically detects the numb
clusters that adequately reflect the data structure. In contrast, exiting I
ods such ag<-means, fuzzy-means, and model based clustering need
prescribe the number of clusters. We detect all the local minimum point:
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Step 1-1lf ©,, Is the empty set, choos¥ Initial values:z:<1), T In
of the data sefz;,...,z,} at random. Otherwise, choose initial values
ad- In {xy,...,z,} as follows: L)y T(M) are M maximum points of
or of d(+,0,,), where
eth- min ||z — [l
to HED,

s ofStep 1-2Apply ALGORITHM to the data sed/ times with each initial value

AN

d(:l?, @,M)

the v-divergence, which are defined as the centers of clusters. A simulafion %),z‘ = 1,..., M to find the local minimum points of~(x). Then add

study is performed to compare our proposal with existing methods.

[ Motivational Examplg

Consider the problem of estimating Gaussian mean paramefBne max-
Imum likelihood estimator (MLE) of: is given by the arithmetic mean of
the data set as the uniqgue maximum point of the log likelihood function,

the obtained local minimum points ¢,.

Step 1-3Repeat Step 1-1 and 1-2 until the number of elements,jrdoes
not increase.

Step 1-4For each local minimum point € ©,,, obtain a minimum point of

«  Ln(i1,X) with respect ta”, denoted by, with ALGORITHM. Then add

Is known that the MLE poorly behaves in various situations where Gals- (f1,X) tO O(.5):

sianity assumption is inappropriate. For example, the log likelihood funct
suggests rather a misleading summary as seen in panel (a) of Figure 1

OnStep 2Write O, 1y by {(fu, ;) }j_; and assign each observationto the
Al J.-th cluster with

ternatively, they-loss function properly reflects the data shape. For the sgme

data set in panel (a) of Figure 1, panel (b) shows that/thess function has
two local minimum points corresponding to the two normal distributior
We will propose to determine the centers of clusters by such local minim
points.

(@) (b)

AN
AN

k= argmin (z; — ji) ' S (25 — fig).
S. k=1,... K
um
[ Selection Procedure for]
We propose two methods to select the value.dDne is a heuristic choice of
~ that depends on the range of the data. Our proposaHsr2/R?, where

R 1s defined by the maximum range:

T Q S - R = max max Z;; | — | min x;;
8 8 _ N « — jl,...,p{(z’l,...,n K 1=1,....n K ’
= 2 Q-
__95’ | ; - wherex; = (z;1,. .. ,azz-p)T. We also propose a more sophisticated metho
> O g S based on AIC. The value of which minimizes AIC is recommended as the
L2 8- 7 optimal selection ofy.
i © LI
-5 0 5 10 -5 0 5 10 [Simulation]
I I We demonstrate the performance of the spontaneous clustering in comp

Figure 1. (a) Log likelihood function. (b) Minug-loss function{ = 1). In
panels (a) and (b) the data of size 200 is generated from the mixture of
standard normal distributions centered at O and 10, respectively.

[~-loss Function for Normal Distribution
We consider the-loss function for the normal distribution with mean vecta
1 and covariance matrix,

n
Ly(p,5) = —det £ 7700 3

1=1

exp (=2l — ) 2 (@i — p))

An iteration algorithm to find the local minimum points 6f(x, X)) is pro-

posed in Fujisawa and Eguchi (2008) and Eguchi and Kato (2010). We ngdme

it ALGORITHM.

[ Spontaneous Clustering Based on the Normal Distribiti

The spontaneous clustering based on the normal distribution is defined as
follows. We seto,, and @(u y) are the empty sets at the start of the alg¢-

rithm. ALGORITHM is emp’loyed In the spontaneous clustering below.
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clusters for thek-means algorithm is determined by two criteria, CH anc
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tering results from the spontaneous clustering with those fronktmeans
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Table 1. Frequencies of ChoosiagClusters.

K 1234 5
SCwiththerange 0009 91
SC with AIC 0001 99

K-meanswithCH 0 0 0 0 100
K-meanswithGap 91 700 2
Table 2. Mean Value of BHI and DM1-DM5.
BHI DM1 DM2 DM3 DM4 DM5

SC withtherange 0.93 0.38 0.38 0.37 0.33 0.34
SC with AIC 0.94 0.34 0.32 0.28 0.27 0.26
K-meanswithCH 0.95 0.25 0.23 0.21 0.21 0.21
K-means with Gap 0.22 0.16 0.49 0.23 0.41 0.21
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