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【Abstract】
We propose a new method for clustering based on the local minimization of
theγ-divergence, which we call the spontaneous clustering. The greatest ad-
vantage of the proposed method is that it automatically detects the number of
clusters that adequately reflect the data structure. In contrast, exiting meth-
ods such asK-means, fuzzyc-means, and model based clustering need to
prescribe the number of clusters. We detect all the local minimum points of
theγ-divergence, which are defined as the centers of clusters. A simulation
study is performed to compare our proposal with existing methods.

【Motivational Example】
Consider the problem of estimating Gaussian mean parameterµ. The max-
imum likelihood estimator (MLE) ofµ is given by the arithmetic mean of
the data set as the unique maximum point of the log likelihood function. It
is known that the MLE poorly behaves in various situations where Gaus-
sianity assumption is inappropriate. For example, the log likelihood function
suggests rather a misleading summary as seen in panel (a) of Figure 1. Al-
ternatively, theγ-loss function properly reflects the data shape. For the same
data set in panel (a) of Figure 1, panel (b) shows that theγ-loss function has
two local minimum points corresponding to the two normal distributions.
We will propose to determine the centers of clusters by such local minimum
points.
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Figure 1. (a) Log likelihood function. (b) Minusγ-loss function (γ = 1). In
panels (a) and (b) the data of size 200 is generated from the mixture of two

standard normal distributions centered at 0 and 10, respectively.

【γ-loss Function for Normal Distribution】
We consider theγ-loss function for the normal distribution with mean vector
µ and covariance matrixΣ,

Lγ(µ,Σ) = − det Σ
− γ

2(1+γ)

n∑
i=1

exp
(
−γ

2
(xi − µ)⊤Σ−1(xi − µ)

)
.

An iteration algorithm to find the local minimum points ofLγ(µ,Σ) is pro-
posed in Fujisawa and Eguchi (2008) and Eguchi and Kato (2010). We name
it ALGORITHM.

【Spontaneous Clustering Based on the Normal Distribution】
The spontaneous clustering based on the normal distribution is defined as
follows. We setΘµ andΘ(µ,Σ) are the empty sets at the start of the algo-
rithm. ALGORITHM is employed in the spontaneous clustering below.

Step 1-1If Θµ is the empty set, chooseM initial valuesx(1), . . . , x(M) in
the data set{x1, . . . , xn} at random. Otherwise, choose initial values
in {x1, . . . , xn} as follows: x(1), . . . , x(M) are M maximum points of
d(·,Θµ), where

d(x,Θµ) = min
µ̂∈Θµ

∥x− µ̂∥.

Step 1-2Apply ALGORITHM to the data setM times with each initial value
x(i), i = 1, . . . ,M to find the local minimum points ofLγ(µ). Then add
the obtained local minimum points toΘµ.

Step 1-3Repeat Step 1-1 and 1-2 until the number of elements inΘµ does
not increase.

Step 1-4For each local minimum point̂µ ∈ Θµ, obtain a minimum point of
Lγ(µ̂,Σ) with respect toΣ, denoted bŷΣ, with ALGORITHM. Then add
(µ̂, Σ̂) toΘ(µ,Σ).

Step 2Write Θ(µ,Σ) by {(µ̂k, Σ̂k)}Kk=1 and assign each observationxi to the

k̂-th cluster with

k̂ = argmin
k=1,...,K

(xi − µ̂k)
⊤Σ̂−1

k (xi − µ̂k).

【Selection Procedure forγ】
We propose two methods to select the value ofγ. One is a heuristic choice of
γ that depends on the range of the data. Our proposal isγ̂ = 72/R2, where
R is defined by the maximum range:

R = max
j=1,...,p

{(
max

i=1,...,n
xij

)
−

(
min

i=1,...,n
xij

)}
,

wherexi = (xi1, . . . , xip)
⊤. We also propose a more sophisticated method

based on AIC. The value ofγ which minimizes AIC is recommended as the
optimal selection ofγ.

【Simulation】
We demonstrate the performance of the spontaneous clustering in compari-
son with theK-means algorithm. The value ofγ for the spontaneous clus-
tering is determined by the two methods described above. The number of
clusters for theK-means algorithm is determined by two criteria, CH and
the gap statistic. The performance of clustering is measured by BHI.

The sample of size200 is generated from the mixture of five standard nor-
mal distributions centered at(0, 0)⊤, (3, 3)⊤, (−3, 3)⊤, (−3,−3)⊤, (3,−3)⊤

with equal mixing proportion. We simulated 100 runs, and compared clus-
tering results from the spontaneous clustering with those from theK-means
algorithm.

Table 1. Frequencies of ChoosingK Clusters.
K 1 2 3 4 5

SC with the range 0 0 0 9 91
SC with AIC 0 0 0 1 99

K-means with CH 0 0 0 0 100
K-means with Gap 91 7 0 0 2

Table 2. Mean Value of BHI and DM1-DM5.
BHI DM1 DM2 DM3 DM4 DM5

SC with the range 0.93 0.38 0.38 0.37 0.33 0.34
SC with AIC 0.94 0.34 0.32 0.28 0.27 0.26

K-means with CH 0.95 0.25 0.23 0.21 0.21 0.21
K-means with Gap 0.22 0.16 0.49 0.23 0.41 0.21
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