Zuse Institute Berlin
Department Optimization

UG Framework to Parallelize MIP, MINLP, and ExactIP Solvers

Yuji Shinano Timo Berthold Ambros M. Gleixner Stefan Heinz Thorsten Koch Michael Winkler Kati Wolter

Ubiquity Generator (UG) Framework

A generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment.

- ▶ Exploits powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc.,
- ▶ without the need for base solver parallelization.

Abstraction of base solvers and communication libraries

Small and simple interfaces between

- ▶ UG framework and base solver
- ▷ UG framework and communication library
- A parallel solver instantiated by UG framework is named
 - ug[Base Solver, Communication library]

Current projects

- ▶ ParaSCIP: ug[SCIP, MPI]
 - Uses CIP solver SCIP
 - Used to investigate a large scale parallelization
 - Runs on up to 7,168 cores at supercomputer HLRN II
- ⊳ FiberSCIP: ug[SCIP, Pthreads]
 - Uses CIP solver SCIP
 - Enables parallelization on single desktop computers
- ParaCPLEX: ug[CPLEX, MPI]
 - Uses MIP solver CPLEX

Current results of ParaSCIP (ug[SCIP, MPI])

The following open instances from MIPLIB2003 were solved to optimality the first time:

- - $[Run\ 1]$ solved in ${\sim}86$ hours (restarted from checkpoint 16 times) using up to 2,048 cores
 - $[{
 m Run} \,\, {
 m 2}]$ solved by a single job with 4,096 cores in \sim 76 hours
- ▷ stp3d 159,488 constraints, 204,880 binary variables
 - after applying SCIP presolving 9 times, problem was reduced to 88,388 constraints and 123,637 binary variables
 - $[\mathbf{Run}\ \mathbf{1}]$ solved in \sim 114 hours (restarted from checkpoint 10 times) using up to 2,048 cores
 - $[\mathbf{Run}\ \mathbf{2}]$ proved optimality of solution using a single job with 4,096 cores in \sim 44 hours
 - [Run 3] proved optimality of solution using a single job with 7,168 cores in \sim 32 hours

Computed optimal solutions for 50-10v, probportfolio, reblock354, rmatr200-p20, dg012142, dc1c, germany50-DBM from MIPLIB2010.

Evolution of computation for instance ds [Run 1]

New features

- ▷ Can handle both MIPs and MINLPs (Beta version is released as a part of the SCIP Optimization Suite)

Cooperation

