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1 Generalized t statistic

For a binary class label y ∈ {0, 1}, let {x0i : i = 1, . . . , n0} be a sample with
y = 0 and {x1j : j = 1, . . . , n1} be a sample with y = 1, where n = n0+n1.
Then we propose a generalized t-statistic defined by

LU (β) =
1

n1

n1∑
j=1

U

{
βT(x1j − x̄0)

(βTS0β)
1/2

}
, (1)

where U is an arbitrary real-valued function: R → R; x̄y and Sy are the
sample mean and the sample variance given y, respectively. The expectation
of LU (β) is defined by

LU (β) = E1

[
U

{
βT(x− µ0)

βTΣ0β

}]
, (2)

where Ey, µy and Σy denote the conditional expectation, mean and variance,
respectively, given y. For the distribution of the control group (y = 0), we
assume normality such as

x0 ∼ N(µ0,Σ0). (3)

That is, the information of 0-group population is assumed to be simply re-
duced to the statistics x̄0 and S0; while we carefully have to choose U to
extract the information of 1-group population. In the cancer data analysis
based on the gene expression data, a small part observations of disease group
(y = 1) is usually over- or down-expressed. To treat this heterogeneity, sev-
eral types of t-statistics are proposed to individually detect genes that are
useful in cancer studies (Tibshirani and Hastie, 2007; Wu, 2007; Lian, 2008).

If we adopt a linear function U(w) = w, then the generalized t-statistic
becomes the simple t-statistic standardized by S0:

LI(β) =
βT(x̄1 − x̄0)

(βTS0β)
1/2

. (4)

When U is the cumulative function of the standard normal distribution:
U(w) = Φ(w), the generalized t-statistic is viewed as c-statistic (area under
the ROC curve) because of the normality assumption of 0-group population
in (3):

LΦ(β) =
1

n1

n1∑
j=1

Φ

{
βT(x1j − x̄0)

(βTS0β)
1/2

}
, (5)

which converges to pr(βTx0 < βTx1) as n0 and n1 go to infinity by a con-
ditional expectation argument (Su and Liu, 1993). Hence, the generalized
t-statistic is a natural extension of the common statistics such as t-statistic
and c-statistic. Moreover, there is some relationship with Fisher linear dis-
criminant function if we choose a specific quadratic function as U , which is
discussed in detail later.

2 Asymptotic consistency and normality

Let us consider the estimator associated with the generalized t-statistic as

β̂U = argmax
β∈Rp

LU (β). (6)

Then we consider the following assumption:

(A) E1(g | w = a) = 0 for all a ∈ R,

where w = βT0 (x − µ0), g = (I − P0)(x − µ0) with I being the p × p unit

matrix and P0 = Σ0β0β
T
0 , where

β0 =
Σ−1
0 (µ1 − µ0)

{(µ1 − µ0)TΣ
−1
0 (µ1 − µ0)}1/2

. (7)

Theorem 2.1Under Assumption (A), β̂U is asymptotically consistent
with β0 for any U .

Next we consider the following assumption in addition to (A):

(B) var1(g | w = a) = Σ∗
0 for all a ∈ R,

where vary denotes the conditional variance of x given y and Σ∗
0 = (I −

P0)Σ0(I − PT
0 ).

Theorem 2.2Under Assumptions (A) and (B), n
1/2
1 (β̂U−β0) is asymp-

totically distributed as N(0,ΣU ), where

ΣU = cUΣ
∗
0, (8)

cU =
E1{U ′(w)2} + π1/π0

[
E1{U ′(w)w}

]2
+ π1/π0

[
E1{U ′(w)}

]2[
E1{U ′(w)S(w)} + E1{U ′(w)w}

]2 , (9)

in which π0 = pr(y = 0), π1 = pr(y = 1), S(w) = ∂ log f1(w)/∂w and U ′

denotes the first derivative of U .

Theorem 2.3The optimal U function under Assumptions (A) and (B)
has the following form:

Uopt(w) = log
f1(w)

ϕ(w, µw, σ2w)
, (10)

where µw = E(w) and σ2w = var(w). Moreover, the minimum of cU is
given by

min
U

cU =
σ2w

µ1,S2 − 1 + (π0µ
2
1,w + σ21,w − 1)(π0 + π1µ1,S2)

, (11)

where µ1,w = E1(w), σ
2
1,w = E1{(w − µ1,w)

2} and µ1,S2 = E1{S(w)2}.

Remark 2.1The expectation of generalized t-statistic based on Uopt is
equivalent to the Kullback-Leibler divergence given as:

LUopt
(β) =

∫
f1(w) log

f1(w)

ϕ(w, µw, σ2w)
dw. (12)

That is, the maximization of the generalized t-statistic is considered as
the maximization of the Kullback-Leibler divergence.
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Fig1. Contour plots of probability densities of y = 0 in gray and y = 1 in black, which

satisfy Assumptions (A) and (B).
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