Density estimation based on U－divergence

Osamu Komori

Prediction and Knowledge Discovery Research Center，Project Researcher

$1 \quad U$－divergence

Let $U: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a convex and strictly increasing function with the derivative u and the inverse function $\xi=u^{-1}$ ．Then for real－valued func－ tions f and $g: \mathbf{R}^{p} \rightarrow \mathbf{R}^{+}$，the U－divergence is given as a special case of the Bregman divergence（？）：

$$
\begin{equation*}
D_{U}(g, f)=\int d(\xi(g(\boldsymbol{x})), \xi(f(\boldsymbol{x}))) d \boldsymbol{x} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
d\left(g^{\prime}, f^{\prime}\right)=U\left(f^{\prime}\right)-\left\{u\left(g^{\prime}\right)\left(f^{\prime}-g^{\prime}\right)+U\left(g^{\prime}\right)\right\} \tag{2}
\end{equation*}
$$

Note that $D_{U}(g, f)$ is non－negative because of the convexity of U ．The equality holds if and only if $f=g$（a．e． \boldsymbol{x} ）．It is also simply expressed as

$$
\begin{equation*}
D_{U}(g, f)=C_{U}(g, f)-H_{U}(g) \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
C_{U}(g, f) & =-\int g(\boldsymbol{x}) \xi(f(\boldsymbol{x})) d \boldsymbol{x}+\int U(\xi(f(\boldsymbol{x}))) d \boldsymbol{x} \tag{4}\\
H_{U}(g) & =-\int g(\boldsymbol{x}) \xi(g(\boldsymbol{x})) d \boldsymbol{x}+\int U(\xi(g(\boldsymbol{x}))) d \boldsymbol{x}\left(=C_{U}(g, g)\right) \tag{5}
\end{align*}
$$

and $C_{U}(g, f)$ and $H_{U}(g)$ are called the U－cross entropy and U－entropy，re－ spectively．

U－loss function with volume－mass－one

The U－loss function for observations $D=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$ ，which derived from the cross－entropy in（4），is defined as

$$
\begin{equation*}
L_{U}(f)=-\frac{1}{n} \sum_{i=1}^{n} \xi\left(f\left(\boldsymbol{x}_{i}\right)\right)+\int U(\xi(f(\boldsymbol{x}))) d \boldsymbol{x} \tag{6}
\end{equation*}
$$

Then，we consider the following variant：

$$
\begin{align*}
\mathcal{L}_{U}(f) & \equiv L_{U}\left(u\left(U^{-1}(f)\right)\right) \tag{7}\\
& =-\frac{1}{n} \sum_{i=1}^{n} U^{-1}\left(f\left(\boldsymbol{x}_{i}\right)\right)+1 \tag{8}
\end{align*}
$$

The point is that the second integral term in（6）is restricted to be 1 ，which we call volume－mass－one．Here we consider $U(t)=(1+\beta t)^{(1+\beta) / \beta} /(1+\beta)$ with $\beta>0$ ．

2 Algorithm

1．Set $f_{0}(\boldsymbol{x})=0$ ．

2．For $k=1, \ldots, K$ ，
（a）Initialize $\pi=\pi_{0}(\ll 1), \boldsymbol{\Sigma}=\boldsymbol{I}$ and $\boldsymbol{\mu}=\underset{\mu \in D}{\operatorname{argmin}}\left\{\mathcal{L}_{\beta}\left((1-\pi) f_{k-1}^{1+\beta}+\right.\right.$ $\pi \phi(\boldsymbol{\mu}, \boldsymbol{I}))\}$ ，where \boldsymbol{I} is the $p \times p$ identity matrix；ϕ is the basis function in \mathcal{D}_{β} ．Define

$$
\begin{equation*}
\mathcal{R}_{\mu, \Sigma}=\left\{i \left\lvert\, \frac{\beta}{2(1+\beta)}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)<1\right., \boldsymbol{x}_{i} \in D\right\} \tag{9}
\end{equation*}
$$

（b）For \boldsymbol{x}_{i} such that $i \in \mathcal{R}_{\mu, \Sigma}$ ，calculate

$$
\begin{align*}
q\left(\boldsymbol{x}_{i}\right) & =\frac{\pi \phi\left(\boldsymbol{x}_{i}\right)}{(1-\pi) f_{k-1}\left(\boldsymbol{x}_{i}\right)^{1+\beta}+\pi \phi\left(\boldsymbol{x}_{i}\right)} \tag{10}\\
\boldsymbol{\mu}_{q} & =\frac{\sum_{\mathcal{R}_{\mu, \Sigma}} q\left(\boldsymbol{x}_{i}\right)^{\frac{1}{1+\beta}} \boldsymbol{x}_{i}}{\sum_{\boldsymbol{R}_{\mu, \Sigma}} q\left(\boldsymbol{x}_{i}\right)^{\frac{1}{1+\beta}}} \tag{11}
\end{align*}
$$

where $\sum_{\mathcal{R}_{\mu, \Sigma}}$ is the summation of i over $\mathcal{R}_{\mu, \Sigma}$ ．
（c）Update $\boldsymbol{\mu}=\boldsymbol{\mu}_{q}$ and go to step（d）if $\mathcal{R}_{\mu, \Sigma} \subset \mathcal{R}_{\boldsymbol{\mu}_{q}, \Sigma}$ ；otherwise go back to step（b）．
（d）For \boldsymbol{x}_{i} such that $i \in \mathcal{R}_{\mu, \Sigma}$ ，update $q\left(\boldsymbol{x}_{i}\right)$ as in（10）and calculate

$$
\begin{equation*}
\boldsymbol{\Sigma}_{q}=\frac{2+(2+p) \beta}{2(1+\beta)} \frac{\sum_{\mathcal{R}_{\boldsymbol{\mu}, \Sigma}} q\left(\boldsymbol{x}_{i}\right)^{\frac{1}{1+\beta}}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\prime}}{\sum_{\mathcal{R}_{\mu, \Sigma}} q\left(\boldsymbol{x}_{i}\right)^{\frac{1}{1+\beta}}} \tag{12}
\end{equation*}
$$

（e）Update $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{q}$ and go to step（f）if $\mathcal{R}_{\mu, \Sigma} \subset \mathcal{R}_{\mu, \Sigma_{q}}$ ；otherwise go back to step（d）．
（f）For \boldsymbol{x}_{i} such that $i \in \mathcal{R}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}$ ，update $q\left(\boldsymbol{x}_{i}\right)$ as in（10）and calculate

$$
\begin{equation*}
\pi_{q}=\frac{A_{2}^{1+\beta}}{A_{1}^{1+\beta}+A_{2}^{1+\beta}} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}=\sum_{\mathcal{R}_{\mu, \Sigma}}\left(1-q\left(\boldsymbol{x}_{i}\right)\right)^{\frac{1}{1+\beta}} f_{k-1}\left(\boldsymbol{x}_{i}\right)^{\beta} \tag{14}\\
& A_{2}=\sum_{\mathcal{R}_{\mu, \Sigma}} q\left(\boldsymbol{x}_{i}\right)^{\frac{1}{1+\beta}} \phi\left(\boldsymbol{x}_{i}\right)^{\frac{\beta}{1+\beta}} \tag{15}
\end{align*}
$$

and update $\pi=\pi_{q}$ ，and $q\left(\boldsymbol{x}_{i}\right)$ as in（10）．
（g）Repeat the steps from（b）to（f）until the values of $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ and π converges， and set them to be $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \pi_{k}$ ，respectively．
（h）Update f_{k-1} with $\phi_{k}(\boldsymbol{x})=\phi_{\beta}\left(\boldsymbol{x}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ and π_{k} as

$$
\begin{equation*}
f_{k}=\left\{\left(1-\pi_{k}\right) f_{k-1}^{1+\beta}+\pi_{k} \phi_{k}\right\}^{\frac{1}{1+\beta}} \tag{16}
\end{equation*}
$$

3．Output $\hat{f}=f_{K}$ ．

Theorem 2．1 The empirical loss $\mathcal{L}_{\beta}\left(f_{k}\right)$ in the boosting algorithm is monotonically decreasing with respect to k ．That is，for $k=1, \ldots, K$ ，

$$
\begin{equation*}
\mathcal{L}_{\beta}\left(f_{k}\right) \leq \mathcal{L}_{\beta}\left(f_{k-1}\right) \tag{17}
\end{equation*}
$$

Fig1．Contour plots for the true density（a）and density estimators by three methods（b）， （c）and（d）．Observations from the normal distributions are denoted by circles；noisy obser－ vations are denoted by cross marks．Observations that are not used in the estimation are deleted in the panel（b）．

