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ABSTRACT RESULTS

In this paper, we look at the Special Orthogonal group of 3x3 matrices over a finite field, denoted SO(3,p). In particular, we focus on

classifying the generalized symmetric spaces, which are defined by an involution f:S0(3,p) — SO(3,p) such that f(f(M)) = M, for
these matrices. We begin by explaining what types of involutions exist for our group, and once those involutions are established, we '

classify two important spaces: the Extended Symmetric Space R and the General Symmetric Space Q. We describe these spaces for the
two isomorphy classes of involutions (building off of Benim & Wu) through counting arguments, in which we split R and Q into unipotent Remark 4. The following tables indicate the patterns we have observed. Those that have been proven
and semisimple cases. Some counting arguments are established for the size of R,, Q,, and R, (unipotent matricesin R, unipotent are included below.

matrices in Q, and semisimple matrices in R, respectively). Further progress can be made on verifying our other conjectures and
generalizing our results to field extensions. Applications of our research can be seen in physics, where the SO(3,p) matrices are

The following conjectures and theorems are for Type 1 Involutions.

For type 1 involutions in the same class as A, :

. . or o . . |R| Ql Ru |Qu| Rss| Istl J
particularly effective at describing the effects of rotation and spin. p=1modd|pP~1| T, |2p—1|2p—1|(p—1)2+2 | Tpg+1|
p=3 modd|p*+1|Tp, 1 1 p*+1 Tpr |
For type 1 involutions in the same class as A;:
MOTIVATIONS
1 . 1 H H H B . |R| Ql | R, | |Qu| | Rss' | Istl
Computer Graphics: Rotational Matrices are also Special Orthogonal. Because special orthogonal matrices preserve sizeand p=3 mod8 | 21| T) (2911291 (p=1252 Ty g1
shape, they are used to rotate objects in 3D space, and thus can be used by computers to animate objectsin a 3D scene. p=5 mod8|pP+1[Ty| 1 | 1 [ pPP+1 [ T, |
where T, = """V represents the nth triangular number.

Theorem 5. The number of unipotent matrices in the extended symmetric space R(3,p) for involution
A,, where p is an odd prime, is:

PR Rl 2p—1 p=1 mod4
. ) — ) ) ) [Buf = 1 p=3 mod4
Quantum Physics The Special Orthogonal group is also relatea to the Sspecial Unitary group, which have a basis formed by

] ) ) _ _ i - - Proof. For p =1 mod 4, where —1 is a quadratic residue, take:
the three Pauli matrices. The Pauli matrices are used to representspin of particles in guantum mechanics.
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where ¢ ranges from 1to p — 1 for p — 1 cases,
2. Matrix Operations 4. How to Generate SO(3, p) S N o i = N = S
—_pd — 02— S
VAI-EAVET AR e/
Definition 1. The transpose takes a matrix A and flips it about its diagonal to form another matrix, The Bad \Q)Iay= We can iterate over all members of M (3,p), but this gives us an algorithm with com- —¢ ey=i :
denoted A”. plexity O(p"). where ¢ ranges from 1 to p — 1 for another p — 1 cases, and the identity matrix for 1 case and a total
o Works okay for small p <= 13, where we test 13 = 10, 604, 499, 373 matrices. count of 2(p — 1) +1=2p-1.
T
abc adg o To generalize our results, we were required to look at p > 13.
‘; . J; = f ; ’; The Good Way: Forp =3 mod 4, where —1 is not a quadratic residue, take the identity matrix for a total count of 1.
1. First find all vectors v with |v|? = 1 1 g. This step has complexity O(p?).
Definition 2. The determinant of a square matrix A is a notion of the area/volume/hyper-volume en- ) _ I _ mocd P P _ y ol 2) ) )
closed within the region formed by the parallelpiped with sides being the row or column vectors of the 2. Use list of vectors to find all pairs of orthogonal vectors. Gomplexity O((p°)*) = O(p").
matrix. 3. Find a third vector which is pairwise orthogonal to the first two. Complexity O(p°) Theorem 6. The number of unipotent matrices in the extended symmetric space R(3,p) for involution
4, Check that the matrix formed by the 3 vectors is special. Complexity O(1) Ay, where p is an odd prime, is:
e The complexity is equal to the slowest step, thus this algorithm has complexity of O(p°)
o We later combined the last two steps into one with complexity of O(1) due to us finding an expres- R, = 2p—1 p=1,3 mod38
sion for the last vector, thus our algorithm has complexity O(p*). 1 p=5"7 modS8

¢ Instead of being limited to p = 13 , we have gone as high as p = 101
Proof. For p = 1,3 mod 8, where —2 is a quadratic residue, take:

248 —22y=2—dx z?+d4zy=2
\ - :
—x?y/=2-4x 4—z? —?y/=2+4z
. . . 12—43\/—2 —12\-/:2—41 128—-8
3. Special Orthogonal Group 5. Involutions and Symmetric Spaces 8 8 3
where x ranges from 1 to p — 1 for p — 1 cases,
Definition 3. A matrix A is special if the determinant of A is 1. o Our goal is to study symmetric spaces. First we must describe P48 22y/B+dzr  2P-dz/=3
Definition 4. A matrix is orthogonal if all of its row (or column) vectors are pairwise orthogonal. Equiv- symmetry. A Ddy 4w D
alently, a matrix A is orthogonal if AAT = ATA = 1. 4 8

8
22 +dzy=2 %/ =2-4x 2?48
8 8 8

where z ranges from 1 to p — 1 for another p — 1 cases, and the identity matrix for 1 case and a total

l .
| adel’ [ade countof 2(p—1)+1=2p—1.
s L db fl =|dbf
va e e e [ Forp=5,7 mod 8, where —2 is not a quadratic residue, take the identity matrix for a total count of 1.
O
o o . Conjecture 7. For all odd primes p, the number of unipotent matrices in the extended symmetric space
e A matrix is symmetric if B = B~. R(3,p) for any type 1 involution and the number of unipotent matrices in the general symmetric space
Definition 5. The Special Orthogonal Group SO(n,p) is the group of n x n matrices in a finite field ' ' — _ Q(3, p) for any type 1 involution are equal.
F, that are both special and orthogonal. We can think of this as a set of rectangular prisms whose ¢ In R the set of all symmetric matrices ? = {B € R|B = B} is a symmetric space.
volumes are all congruentto1 mod p. e We are interested in the function 6 : SO(3,p) — SO(3,p) where #(X) = AXA~! for some

A e O(3,p). Ry = Qy

e We observe that, 8((X)) = X so 6 is an involution.

e Define sets R and @ such that R = {X € SO(3,p)|8(X)~! = X}
and Q = {X6(X)™'|X € SO(3,p)}. We have verified that this is true for type 1 involutions of class 1:

¢ We will call R the Extended Symmetric Space and @ the General Symmetric Space.

for all R and @ with given p.

« As one might guess from their names, Q C R. Proof. The identity matrix I is clearly in Q,. The other matrices in R,(3, p) for this case can be repre-

, , , , _ , , sented by
e R generalizes the idea of a symmetric matrix B = B7, while ) generalizes the idea of the set of
symmetric matrices expressible as BBT. - -

« For the Special Orthogonal G have four diff f 6 th be used 2 ? Vol-v=l oo

00 1 100 119 pecial Orthogonal Group, we have four different types of maps 6 that can be used to Vo = 2_12\/— ) 2229 VT
; = define an involution ML= 1Vl T Ve 2 Ty —=1f-
Example of some Elements in SO(3,5): ¢ |0 1 0],]|0 4 0],|1 2 1 : ) ‘
- -y =1 1
100 00 4 211
or

2
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-z /-1 1

CLASSIFYINGSYMMETRIC SPACES

where z is a nonzero free variable.

Let
6. Types of Involutions 7. Unipotent and Semisimple = C{? o/
VT

Theorem 1 (Benim, Dometrius, Helminck, Wu). If8(X) = AX A~! is an involution then A®> = =1. « We can further divide up the sets R and Q into unipotent and semisimple matrices.

where x = 2c. g, € SO(3,p) and giag;'a™! = M, s0 M; € Q,,.

For SO(3,p) we have 4 types of involutions to consider: e A unipotent 3x3 matrix only has an eigenvalue of 1 with algebraic multiplicity 3.
A =T A%=-1 e A semisimple 3x3 matrix has a minimal polynomial that splits into distinct linear factors. Most Let
F, |Type1| Type3 commonly, the matrix has 3 distinct eigenvalues. 1 V=1
Fylva] | Type 2| Type 4 1 e c
e For Type 1 involutions, we define 2 isomorphic subclassses (Benim et al): o6.) 92= 1= =l c\_/l_l _C“'l_l '
A 3. p — —_— —-—
— Class 1: Represented by I-¢c 1-¢
10 0
A= [0 1 0 ] where x = 2¢. g; € SO(3,p), and gag; 'a~! = My, 0 My € Q..
00 -1
This is the involution subclass on which we made the most progress. Since all matrices in R, are also elements of Q,, R, € Q,, SO R, = Q.. O
- Class 2: Represented b
P y 19 o ‘ The following theorems and corollaries are for the other types of Involutions.
{ o (1) 1 02 bgl y Theorem 8. There are no Type 3 involutions for 3x3 matrices.
M, it
where M, is nonsquare in F, and a? + b = M,, as described by Benim et al. This is an example Proof. A Type 3 involution ig f(g) = AgA~', where A% = —J and A is orthogonal. Thus, A has determi-
of the below form when 2 is not a square: nant +1 and A? has determinant 1 mod p. However,
001
-1 0 0
AQ:{“O] “I=|0 -1 0
200 Theorem 2. Every matrix in SO(3,p) has eigenvalues 1, , ;. 0 0 -1
4, is the specific case abtained by setting a = 1, b = 1 and M, = 2. The general form is required Proof. It is well known that every orthogonal matrix must have 1 as an eigenvalue. In addition, the
in a field where 2 is a square. product of the three eigenvalues must be 1, the determinant of the matrix. The result follows. O has determinant —1. There is no odd p such that 1 = —1 mod p, so there is no such A such that
« For Type 3 and 4 there are no involutions. Corollary 3. Every non-identity matrix in R and Q is either unipotent or semisimple. A% = —], and thus there are no Type 3 involutions for 3x3 matrices.
definition. only orthogonal matrix in R that has eigenvalues 1, —1, —1 is symmetric and thus semisimple. O

Corollary 9. There are no Type 3 involutions for any nxn matrices where n is odd.
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