
 
Summary 

Team #8478 

 

For office use only  
T1 ________________  
T2 ________________  
T3 ________________  
T4 ________________  

For office use only  
F1 ________________  
F2 ________________  
F3 ________________  
F4 ________________  

 

2017  
 

20th Annual High School Mathematical Contest in Modeling (HiMCM) Summary Sheet  
(Please make this the first page of your electronic Solution Paper.)  

 
Team Control Number: 8478  

Problem Chosen: A  
 

Please paste or type a summary of your results on this page. Please remember not to include the name 
of your school, advisor, or team members on this page. 

 

Within the 36 hours, we constructed a model for an outdoor aerial light show that will 
organize 272 drones into the formations of a Ferris wheel, dragon, and a firework display. 
By mathematically analyzing the flight path of the drones, and taking external factors such 
as regulation, collisions, launch area, and viewer perception into account, we formulated an 
efficient model for the light show. 
 
In both the Ferris wheel and the dragon design, we chose to make most of our models by 
spacing the drones along lines and curves. The Ferris wheel was a combination of line 
segments and concentric circles and the dragon used reference points spaced along a sine 
curve. Both used parametric equations to calculate the movement of the drones when 
animating the designs. The third design started with drones clustered in the center and 
used both defined and randomly-generated angles to create a visually appealing scatter 
firework effect with a less complex model.  
 
We also considered launch area, air space, display angle, safety considerations and 
regulations alongside the duration of the show to provide an optimum viewing experience 
and practicality for the city. We determined that we would require a 333 ft x 333 ft x 30 ft 
air space and 920 ft2 of launch area. Finally, we considered possible improvements we 
could make on our model to reduce the number of assumptions required and more 
comprehensively model the show. With these animations as the models of our light show, 
we will be able to effectively carry out this event. 

 



 
Page 1 of 37 
Team #8478 

PROBLEM A: DRONE CLUSTERS AS LIGHT DISPLAYS 
 

Table of Contents: 
Restatement of the Problem 2 
Assumptions and Justifications 3 
Part I: Models and Solutions 6 

Ferris Wheel Model 6 
Dragon Model 9 
Firework Model 14 

Part II: Requirements and Considerations 17 
Strengths and Weaknesses 20 
Letter to the Mayor 21 
Appendices 23 

Appendix A: Python 23 
Appendix B: Desmos 23 
Appendix C: Ferris Wheel Model 26 
Appendix D: Dragon Model 30 
Appendix E: Fireworks Model 34 

Works Cited 37 
 
  



 
Page 2 of 37 
Team #8478 

Restatement of the Problem: 
The integration of drones for light shows, alongside modes of delivery, have seen soaring 

popularity with modernity: both literally and physically. With the employment of drones in 

events like the Superbowl, and Intel light shows, drones’ uses have widespread 

implications that are quickly gaining momentum. In an order to implement these drones in 

light shows, adherence to regulations alongside quantifying and monitoring the path for a 

set number of drones is crucial. 

 

For an outdoor aerial light show that will display a Ferris wheel, a dragon, and another 

unique image, various factors need to be taken into account including the required 

airspace, launch site, safety considerations, and flight path.  

 

Our objective is to mathematically delineate the flight path for the drones and form the 

desired figures in the sky. We plan to achieve this goal by quantitatively analyzing the 

shape of the displays while calculating their path. By investigating these formations, we 

hope to have an efficient model for drone light shows that adhere to the standards and 

regulations.  

 

  



 
Page 3 of 37 
Team #8478 

Assumptions and Justifications: 

1. Drones act as a point source or single pixels of light. 

● Each drone has one light, and all are far enough away from the audience so that only 

the light on each drone is visible. In the 

Intel video, they used this technique to 

model the placement of the drones as 

shown in Figure 2. 

 

Figure 1. The allotted distance from the viewer 
demonstrates the miniscule nature of the drones 
in the sky from a set distance: the drones 
resemble points on a plane.  

 

2. No drones lose connection with their operator or lose 

battery during the display. 

 

● For the purpose of our model, no drones fail 

during the display because our model does not 

account for filling in gaps. Intel drones are equipped 

with a GPS to return to their starting point if they 

fail so this assumption would not harm the safety of 

the audience if it was incorrect. We also assume that 

the drones will remain in range while in the 

intended performance area. The drones also return to their starting point if they go 

out of range or lose connection. 

 

 



 
Page 4 of 37 
Team #8478 

3. Drones do not veer off course or collide with each other if their paths do not cross. 

● For the purpose of our model, drones operate in their intended manner. While we 

do take into account their proximity by making sure drones are at minimum 2 feet 

apart to account for their size, their proximity does not otherwise affect 

performance or course.  

● For the 3rd design only, randomly determined directions sometimes cause the 

drones to cross. This iteration of our model is not robust enough to account for this 

eventuality, so we assume drones do not collide at all in this design only. 

4. The audience will be at a location from where they can watch the display as it was meant 

to be seen (i.e. viewers will be able to see a 2D display as if watching it on a screen). 

● This allows us to simplify our models by calculating 2D positions and paths while 

allowing the entire audience to experience the full show. 

5. Drones can display any color of light. 

● Intel’s drones have an LED that can display 4 billion color combinations. We assume 

our drones will have these same features. 

6. No obstructions will be made to the drone’s path, including but not limited to airplanes, 

trees, wind, or weather. 

● Drones are not be permitted in a 5-mile radius from airports and public areas such 

as national parks. Our light show will not account for any external factors in the air 

including avian wildlife. 

● The drones will be placed and moved as if there is no wind or weather interference, 

which could disorient the drone. We assume wind and weather (such as climate, 

rain, storms, etc.) are not factors. This allows us to focus more clearly on the 

problem, because both wind and weather are relatively random natural phenomena 

that we cannot accurately predict and implement. Considering its effect would 

distract us from creating our models. 

7. There is no disturbance to the visibility of the drones during the light show. The show is 

performed on a clear night for the optimal viewing experience and the distance of the 

drones do not put them out of visible range. 



 
Page 5 of 37 
Team #8478 

● We assume that the launch site will be far enough away from other lights to prevent 

them from obstructing the display. This is so that the formation of drones that we 

account for will not be hindered in any way by other external lights, which would 

detract from our show.  

8. There is already available land for viewing of the show 

● In order to have an accurate estimation for the amount of land that will be used for 

the launch site, we will assume that there will be ample land to view the drone light 

show. While we will factor the viewing site into the viewer's perspective of the light 

show, the amount of land for the attendees will be presumed to be sufficient and 

apart from the drone launch area. 

9.  FAA clearance is obtained 

●  As Intel obtained special permission from the Federal Aviation Administration to 

launch the drone swarm, we have assumed that we can attain this same clearance 

because we use fewer drones in our display. Our embodiment should not be 

hindered by the inability to attain this, and would distract from the implementation 

of our drones for the light show. 

10. We get permission to use the land  

● An additional assumption is that we would have attained permission to use the land 

for the drone show. As we would need a large open space, for both the viewers and 

the launch, we would want to ensure that we have procured access to this space. In 

order for everything to run according to plan, a non-disrupted area to initiate the 

show is an utmost requirement. 

 

  



 
Page 6 of 37 
Team #8478 

Part I: Models and Solutions 

Using our assumption that drones act as point sources or single pixels, we created our 

models by defining and transforming the coordinate location of each drone. We assumed 

that drones operate exactly as intended with no external interference, so we only 

accounted for the size of the drones when determining the scale and distance between the 

drones for the first 2 models. We assumed that all viewers would be at a location where 

they could view the show as if projected on a screen (i.e. would be properly located to view 

a 2D display). We assumed that drones could display any color, so the colors in our third 

design could be arbitrarily chosen. 

We simulated each of our models using the graphics.py module in Python. For the purposes 

of our model, each pixel is equal to 0.5 feet for all designs. All angles are in radians. The 

coordinate system of graphics.py places the point (0,0) in the top left corner with x 

increasing towards the right and y increasing downwards.  

 

Ferris Wheel Model: 

Variables: 

(x_o in code): initial x-value in pixels (of each unit) xo  

(y_o in code): initial y-value in pixels (of each unit) yo  

 

For each spoke: 

(O_o in code): initial angle in radians (of each spoke)θo  

t: time in radians (used for parametric equations) 

 

Solution: 

In the code, we used the center of the concentric circles as the reference point. However, 

when designing the model, we used the end of the left leg of the Ferris wheel as the origin. 

Initially we planned our model in Desmos, and this draft can be seen in the Figure 3. The 

Ferris wheel composed of 2 circles, 8 spokes, 2 legs, and 8 carriages. The circles were 

represented on Desmos with an equation of  andx 5) y 4) 84( − 2 2 + ( − 4 2 = 4   



 
Page 7 of 37 
Team #8478 

. The “legs” of the Ferris wheel were represented by two linex 5) y 4)( − 2 2 + ( − 4 2 = 9  

segments. The line segments of our model have a linear equation of   with a domainxy = 2  

of [0,22] and a linear equation of  with a domain of [28,50]. The 8 spokes− x 00y = 2 + 1  

consist of 4 line segments total. These segments all intercept the center of the circles and 

the endpoints of the segments all intersect the larger circle. The equations for these line 

segments are:  with a domain of [3,47],  with a range of [22,66], 4y = 4 5x = 2 9y = x + 1  

with a domain of  , and   with a domain of 25 , 5][ − 22
√2

√242 + 2 − 9y = x + 6 25 , 5][ − 22
√2

√242 + 2

. We then used this draft to create our Ferris wheel model which can be seen in Figure 4. 

The z coordinate for each drone is as follows: 1.5 for the drones that make up the inner and 

outer circles, 0 for the drones that make up the spokes, and -1.5 for the drones that make 

up the legs and feet. This is to prevent possible drone collisions at points of intersection 

between the spokes, circles, and legs. 

 

The two circles are concentric and have a radii of approximately 253.96 feet and 34.63 feet. 

There are a total of 64 drones in the larger circle and 18 drones in the smaller circle. Since 

the circumference of the circles would be 44 and 6 , the drones for the circles wereπ π  



 
Page 8 of 37 
Team #8478 

spaced accordingly in our model since there must be an integer amount of drones. There 

are 8 spokes consisting of 8 drones each connecting the smaller and larger circles. Then, 

there are two legs on the Ferris wheel with “feet” at the end. The “feet” are each 4 drones 

long. The legs are each 8 drones long. Finally, there are 8 carriages on the Ferris wheel 

which move around in a circular fashion. These carriages consist of 6 drones. In total, we 

used 219 drones including a drone added in the center to create this model. 

 

Algorithm: 

variables: same as above 

parameters: t_int =  - interval between successive ‘frames’ of the animation, arbitrarily/32π  

chosen for smoothness 

 

The code we used to test our model and equations is included in Appendix item C3, and the 

algorithm is explained here. We used python and the graphics module to display and 

animate our design. 

 

We used the same base class, or python object, called Group for each group of drones, 

initialized with the parameters x_o, y_o, xshift, and yshift. Respectively, these are the initial 

x and y coordinate of the reference point, and the x and y coordinates of the drones relative 

to the reference point. Each spoke on the Ferris wheel uses a subclass called Spoke that 

inherits from Group, initialized with the parameters x_o, y_o, O_o, and shift.  

A variable t is created to represent time in radians and the current angle of the spoke. Since 

the spokes follow a circular motion, we used polar coordinates to represent the locations of 

the drones: shift contains the r coordinates and t is the   coordinate of the locations of theθ  

drones relative to the reference point. Each spoke has a corresponding carriage object, 

which used the Group class. The carriage uses the spoke’s last point as its reference point.  

 

When initialized, the class would display each drone as a black point in the specified 

location. The drones that make up the circles and legs are stationary (they use the Group 



 
Page 9 of 37 
Team #8478 

class), while the drones that make up the spokes and carriages follow a circular motion 

(they use the Spoke class). The Spoke class includes a method called tick to move itself and 

its corresponding carriage. This method increments t by radians, then calculates theπ
16  

polar coordinates of each drone using r coordinates from the initial shift list. The reference 

point (the center of the wheel) doesn’t move, so calculating the new coordinates uses a 

very similar process as calculating the initial coordinates. The method then converts each 

coordinate to rectangular, calculates the difference between the new and current 

coordinates, and moves each point to their new location. 

 

In our code, we defined a list spokeShift with incremental values (see appendix C) to be 

used as relative r coordinates for each drone that make up each spoke. We initialized 8 

Spoke objects using a reference point (75, 75),  angles in  radian increments, and the list4
π  

spokeShift. Secondly, we defined 4 lists outerShiftX, outerShiftY, innerShiftX, innerShiftY for 

the relative locations (see appendix C) of the drones that make up the outer and inner 

circles, respectively. We then initialized an outer wheel and inner wheel Group object using 

the reference point (75, 75) and these lists. Finally, we defined 2 lists legShiftX and 

legShiftY for the relative locations of the drones that make up the legs and feet, and 

initialized a legs object using the reference point (75, 75) and these lists. 

 

Finally, an infinite loop rotates the wheel by calling each spokes’ tick() method every 0.05 

seconds. 

 
Dragon Model: 
Variables: 

(x_o in code): initial x-coordinate in pixels (of each reference point) xo  

(O_o in code): initial phase of sine wave in radians (of each reference point)θo  

(y_o in code): initial y-coordinate in pixels (of each reference point) yo  

i: integer (used to generate starting points) 

t: time (in radians, used for parametric motion) 

: x-coordinate in pixelsx  



 
Page 10 of 37 
Team #8478 

y-coordinate in pixelsy :  

 

Solution: 
We based our dragon design and movement around a parametric sine wave of the general 

form: 

ix = k  

iθ = c  

sin(θ)y = a + b  

For initial positions and 

tx = xo + k  

tθ = θo + c  

sin(θ)y = a + b  

for movement. 

We used i over the range [0, 28) and the constant parameters k, a, b, and c as follows: 

k=10px a=200px b=20px c= radians/4− π  

The constants are in px because the program we used to model our design uses pixels, and 

we decided that each pixel is equal to 0.5 feet in the real world for the purpose of our 

model. 

This created a sine wave with amplitude 20, rest position of 200, and period 80, a 

representation of which is  shown below: 

 



 
Page 11 of 37 
Team #8478 

Figure 5. Sine wave with above parameters. 

The design uses a total of 136 drones. Because we used many more drones in previous 

designs, we decided that we could make 2 dragons using a total of 272 drones. The second 

dragon would fly below the first and use the same equations with a shift in the y-value. We 

calculated 28 initial reference points using the integers from 0 to 27, the coordinates and 

phase of which are included in Appendix item D.2. 

The body of the dragon consists of 97 drones in 27 vertical columns as follows; the columns 

with the least drones will be further back to create a ‘tapered’ effect in the tail. 

Number of 
drones in column 

# of 
Columns 

4 20 

3 4 

2 2 

1 1 

The top point of each body column will serve as a reference point located on the sine curve. 

Their initial phases and positions are determined by the first 27 reference points calculated 

using integer i from 0 to 26. The rest of each column is located directly under the reference 

point, each drone 7 pixels under the one above it. The z-coordinate of each column is 

determined as follows to prevent collisions between columns: 

0 for even i, 1.5 for odd i}z = {   

The head consists of 39 drones. Its reference point is in the neck and its initial location is 

determined by the 28th integer value of i, or 27, to be (270,  ). The coordinates00 02 − 1 √2  

of the other points were determined by sketching the design in MS Paint, then scaling the 

relative coordinates down by a scale of 5. The exact and relative coordinates of each point 

of the head are in Appendix item D.1, and the sketch is included here: 



 
Page 12 of 37 
Team #8478 

 

Figure 6. Sketch of dragon’s head and reference point. Points in red will light up a different color than points 

in black to contrast features. 

 

The movement of each reference point is determined by the following parametric 

equations as stated above ( with k=10, c= , a=200,tx = xo + k tθ = θo + c sin(θ)y = a + b − 4
π  

and b=20).  and  are the initial x-coordinate and phase as determined by the first set ofxo θo  

equations. The new locations of each of the 28 reference points are determined by 

incrementing t by  every 0.05 seconds, and the other points in each group (either aπ
64  

column of drones or the head group) are moved so that they stay in the same positions 

relative to their respective reference points. 

If we had more time, we would determine equations that could make the dragon design 

move in a circle so the animation could continue for an extended period of time without 

having to reverse direction, move backwards, or move excessively slowly. We could also 

include an animation to move the mouth of the dragon or an animation for shooting fire. 

 

If we were to make the dragon design move in a circle, we could write equations for the 

polar coordinates  of each reference point, similar to the following:r, θ)(   

tθ = k  

sin(ct)r = a + b  



 
Page 13 of 37 
Team #8478 

K is a constant, representing a constant rotational speed in  A is a constant representing.θ  

the circular equilibrium state of the wave, b is a constant representing amplitude, and c is a 

constant affecting the period of the wave. We could convert these equations to cartesian 

form as  if we wanted to continue using graphics.py. However, this wouldrcos(θ), rsin(θ))(   

require us to calculate the new coordinates of each point of the dragon’s head individually 

which would require much more complex code or careful consideration to simplify. The 

body segments could be calculated in a similar method if the non-reference points 

decreased in r instead of y. Circular motion of our design would likely be easier using a 

graphics system that allows rotational transformations.  

 

Algorithm: 

We used the code in Appendix C to test this design.  and  are represented as x_o,, y ,xo  o θo  

y_o, and O_o respectively in the program. The algorithm for the code is as follows: 

1. Define functions x and y to return x and y coordinates at time t using above equations for 

motion (given the parameters  and  ).xo yo  

2. Define class (named ‘group’) with the parameters  ,  ,  , xshift, and yshift. Eachxo yo θo  

instance of this class represents a group of drones that stay in the same position relative to 

each other. Xshift and yshift represent the x and y coordinates of the drones relative to the 

reference point. 

● When initialized: Start counter t at 0, convert initial coordinates and lists of relative 

coordinates into a list of points, display points, store first point as reference point 

rPoint (with shift value 0 for both x and y, representing no difference from the 

reference). 

● Move method (moves group by incrementing t counter): Increment t by  ,π
32  

calculate new x and y coordinate of the reference point using the x and y functions, 

calculate difference between new coordinates and current coordinates, move all 

points in group using difference as movement vector. 

3. Define lists head_xshift and head_yshift (relative locations of points in head group) using 

data from Appendix item D.1. 



 
Page 14 of 37 
Team #8478 

4. Define lists gen_xshift and gen_yshift as [0,0,0,0] and [0,7,14,28] respectively, 

representing relative locations for up to 4 drones in a column. 

5. Populate lists x_start, O_start, and y_start with values generated from the equations for 

initial position and phase ( ) for integers i from 0 to 27 inclusive.ix = k iθ = c sin(θ)y = a + b  

6. Initialize group objects for each body segment and head and add objects to list. The 

1-drone body segment takes i-value 0, 2-drone body segments take i-values 1-2, 3-drone 

body segments take i-values 3-6, 4-drone body segments take i-values 7-27, and the head 

takes i-value 27. 

7. Use move method on each object in list of group objects, wait 0.05 seconds, repeat. 

 

Figure 7. Initial location of the drones and location after some movement. 

 

Firework Model: 
Variables: 

: initial x-coordinate (center)xo  

: initial y-coordinate (center)yo  

 t: time in pixels 
: angle in radiansθ  

 i: integer (used to generate starting direction) 
 
Solution: 

For our final design, we considered writing the HiMCM logo or our school logo in the sky 

with drones, but, realizing that writing our school logo would be against the rules, we 

ultimately settled on creating a firework design. This model is also in the 2D plane. Because 

we used some random paths in this design, our current model is not robust enough to 

account for avoiding collisions, so we assumed that drones do not collide and collision 

avoidance is an improvement we could make in the future. 

 



 
Page 15 of 37 
Team #8478 

We based the number of drones in this design around the number used in our previous 

designs. We had a maximum of 272 drones in our dragon design, so we used 260 drones for 

this design. All the drones were initially clustered in the center, defined as the point (500, 

500) in a 1000 by 1000 px graphics window. Each drone’s light is off at the beginning of the 

show. The drones will be deployed in 13 waves of 20, each wave consisting of 5 groups of 4 

drones. There are 2 phases of motion, the first of which can be modeled by the following 

equations: 

θ = i * 5
2π  

os(θ)x = t * c  

in(θ)y = t * s  

We used integer i over the range [0, 5) to simulate 5 groups evenly spaced in different 

directions moving away from the center linearly at 1px/t. t is incremented in 0.05 second 

units, so the speed is 20px/s. Each wave turns on a yellow light when it is deployed. Waves 

are deployed every 5 cycles of t, so 4 waves are deployed every second. 

 

The second phase of motion starts once each group reaches a distance of 60 px from the 

center (t=60). The 4 drones in each cluster break off in random directions (chosen by 

picking a random number between 0 and 2π) and begin flashing randomly between pink, 

blue, and green. The equations of motion are the same as those for the first part, but the  θ

value for each individual drone is a randomly-chosen number. 

The drones continue flying until they reach the edge of the performance area, then return 

to their launchpad. To program this, we can set the range of the drones as the area of the 

performance area, and once they reach the edge, drones that go out of range are 

programmed to return to their home point, or launchpad.  



 
Page 16 of 37 
Team #8478 

 

Figure 8. The groups of drones start out moving away from the center like spokes of a wheel, split off in 

random directions, then disperse. Background is black so different colors are visible. 

Algorithm: 

x: x-component of movement vector 

y: y-component of movement vector 

 

The code we used to test this model is in Appendix E.2. We altered the equations to 

calculate movement recursively to simplify the program. The algorithm is as follows: 

 

1. Define a list of directions dirs for the first movement (before the groups split) using the 

equation   for integer i from 0 to 4.5
2π * i  

2. Define class (named ‘wave’) to represent each wave of drones 

● When initialized: draw 20 points representing drones clustered at the center point 

(500, 500), randomly populate list dirs2 with 20 values between 0 and 2 π

(directions for each drone after splitting from group), set t = 0 (counter variable for 

object), set color of points to yellow. 

● Move1 method (first phase of movement): For each of 5 groups: fetch direction from 

list dirs, calculate x and y using cosine and sine of direction, move all drones in 

group using movement vector, increment t counter 

● Move2 method (second phase of movement): Define list colors including hot pink, 

deep sky blue, and green. For each drone: set color of point to random color from 

colors, fetch direction from list dirs2, calculate movement vector using cosine and 



 
Page 17 of 37 
Team #8478 

sine of direction, move drone using movement vector (repeat for all 20 in wave 

using different directions). T is no longer incremented because it is only used to 

determine when to switch from phase 1 to phase 2. 

3. Create empty list initList of initialized wave objects. 

4. Initialize wave object, add to list 

5. For all objects in initList, use either move1 method (t of object <= 60) or move2 method 

(t of object > 60) to move all drones 5 times with 0.05 second delay between moves. 

6. Repeat 4 and 5 until 13 waves are initialized. No more waves are initialized after this. 

7. Use move1 or move2 methods (same logic as above) on all objects in initList, wait 0.05 

seconds, repeat. 

 

Part II: Requirements and Considerations: 
In order for the 3-display light show to perform optimally, we had to address a variety of 

conditions including the amount of drones we would implement, the launch area, the 

amount of air space, the duration of the light show, and important safety considerations.  

 

For the best viewer experience, we needed to tilt our displays so that they can best be seen 

from the ground. Because all of our designs are modeled as mainly 2D displays with only 

some variation in the third dimension, they can be treated for this purpose as 2D planes. 

The FAA regulations prohibit drones from flying over 400 up and our displays are 333 ft 

high, so the middle of the display has to be somewhere from around 170 ft to 230 ft high. 

We chose to use 200 ft for our purposes. We calculated display angles with vertical as 90 

degrees for various viewer distances so that the viewer's’ line of sight to the middle of the 

display would be perpendicular to the display angle as follows: 

(90 - arctan(200/dist)) 

Viewer Distance (ft) Display Angle (°) 

50 14° 

100 27° 

150 37° 



 
Page 18 of 37 
Team #8478 

200 45° 

250 51° 

300 56° 

 

For the amount of drones used for the show, we took two main factors into account, 

including current regulations on quantities of drones, along with the required drones to 

have an accurate depiction of a dragon, a Ferris wheel, and a firework display. Seeing as 

Intel required specialized clearance in an order to implement their designs for their 500 

drones light show, it would not be feasible for us to utilize an amount of drones that has 

never been tested before. We simply would not have the resources/time to be able to 

negotiate this value.  

 

Furthermore, our designs of a dragon, a Ferris wheel, and a fireworks display utilized a 

maximum of 272 drones for the body of the figures. With this amount of drones having 

been utilized in previous light shows, it is not hard to imagine that this number can be used 

in our circumstance: this magnitude of drones is far from Intel’s, and pales in comparison 

to drone light shows that have been displayed internationally (almost 1,000 drones at 

once). Additionally, this number of drones is more economically feasible as this equipment 

can cost up to thousands of dollars, and can be rented to accommodate for this fact. 

 

To launch all of our drones we would need an open, level space that is at least 

approximately 0.021077891355 acres, or 918.1529 square feet large, according to the 

average size of a drone (560mm by 560mm). As the drones would need to be monitored 

on-site with a pair of individuals - per FAA regulations - an additional launching space to 

observe the drones and initiate them would be required. These are the bare necessities 

alongside the drones that we would need to have for the light show. 

 



 
Page 19 of 37 
Team #8478 

Our required air space will be scaled from the animation window (1000, 1000). Since each 

drone is approximately 1.8 ft in length, we decided that drones on the same plane (same 

coordinate in the z-direction) must be at least 2 feet apart to prevent collision. 

 

There are several safety considerations that must be put in place to ensure the light show 

runs smoothly. Firstly, our embodiment ensures that the drones will not have any technical 

faults while in-air, however, it is still vital that we pay attention to the proximity between 

the drones. To address this, we scaled the pixels in our simulated models so that the drones 

are approximately 3 feet apart and some of them are closer or further back in the 

z-direction. In the dragon design, we scaled so that each pixel is equal to 0.33 feet.  

 

When considering the air space requirement, we used the NRG Stadium as a maximum size 

because it has hosted a similar show in the past (Super Bowl 2017). In that show, the 

drones were flying above the stadium, so we used the stadium floor area to estimate the air 

space used in that show. According to the NRG Park website, the stadium floor is about 

90,000 square feet. After multiplying our 1000 px window by our conversion factor, we get 

an air space of about 333 ft by 333 ft. Because most of our display is on a 2D plane or 

intended to be viewed as 2D with a third dimension only to keep drones from getting too 

close, we only need 30 ft in the third dimension to encompass our launchpad and extra 

buffer space. 

 

The duration of the drone light show was 3 minutes and 33 seconds, not accounting for 

animation transitions. As the light show will be relatively short, we may be able to 

manipulate the delay between frames of our animation which can lengthen or shorten out 

the duration of the show. The time frames of the light shows are utilized as variables in the 

Ferris wheel, dragon, and firework code to manipulate the smoothness and duration of the 

animation. We could also repeat each model’s animation multiple times to lengthen the 

show. 

 



 
Page 20 of 37 
Team #8478 

Strengths and Weaknesses of Our Models:  

Strengths: 

● Our model accurately perceives where each drone is as one pixel in a coordinate 

grid represents one drone, and the location of the drones as oriented in the sky, is 

scaled accordingly. 

● Our model only requires a number of drones (272) that is within a range that has 

already been permitted by the FAA. This would alleviate the legal clearance process 

for our light show. 

● We optimized the amount of drones needed to create our model to reduce the cost 

of renting the drones. Given that drones are highly expensive, with Intel drones 

costing around 35,000 dollars, this number allows us to still have an enjoyable yet 

cost-effective show. 

Weaknesses:  

● Our model did not factor the viewer's angle of the drone show, however, this is an 

embodiment that could readily be addressed in the future with the rotation of the 

plane according to the height of the drones above the ground, and their distance 

from viewers. 

● The model fails to account for weather and other extraneous factors that could 

affect drone flight, which is not entirely accurate as there will inevitably be 

meterological conditions that could impact the flight and course of the drones. 

● The model additionally is limited by its 2-D infrastructure, which can be problematic 

in terms of potential collisions between the drones, however, we mediated this by 

assuming the drones would be pre-programmed to avoid this course of nature. 

● We didn’t account for the drones returning to their launchpad, which will be 

required for the closing of the show; however this does not have a direct impact on 

the outcome of our animation. 

● Our model does not address the transition between successive animations, however 

this can be readily implemented by having them mapped to the points of the next 

display. 



 
Page 21 of 37 
Team #8478 

A Letter to the Mayor of our Findings: 

Dear Mayor, 

 

Thank you for giving us the opportunity to design an outdoor aerial light show for our great 

city. We have come up with three possible sky displays, a dragon, a Ferris wheel, and a 

firework display which utilize a total of 272 drones: this display will last approximately 3 

minutes and 33 seconds not accounting for transitions. By displaying traditional designs 

using modern technology, and finishing with a design that emulates traditional fireworks, 

we wanted to highlight the transition from past to future that is rapidly gaining 

momentum.  

 

In order to make this display a success, we will require a sizeable launch area . To ensure 

the safety of the civilian onlookers, we require at least 920 square feet of land as a launch 

area.  It would be practical to have some more than this minimum amount of space, as per 

FAA regulations there will need to be multiple people operating the course of the drones. 

This land is a requirement additional to the viewing area, which will be separated from this 

part of the launch area. This calculation was derived with the an approximate size of a 

drone, which is around 560 mm by 560 mm. Just like fireworks, our display must consider 

the safety of the viewers. 

 

We also require a certain amount of air space to safely display our show. By looking at 

previous shows, we decided that our 2D designs would use a 333 x 333 foot area. We also 

need 30 feet in the third dimension as a safety buffer and to encompass our launch area. 

Our designs are scaled so that each pixel is 0.33 feet.  

 

Our display is careful to take into account the safety of civilians. Though current FAA 

regulations do not allow us to fly drones over an audience despite the exceptions that allow 

us to fly multiple drones with one pilot at night, we addressed the proximity between the 

drones to further prevent collisions that could potentially be harmful to the viewers. 



 
Page 22 of 37 
Team #8478 

Although our model assumes the drones will not have any technical faults in the air, we 

took into account the proximity of each drone. In our models, we designed our models so 

each drone would be 3 feet apart and some drones were placed closer or further back in 

the z-dimension.  

 

We believe this display is feasible both economically and logistically. Previously, Intel has 

performed a light show utilizing 500 drones, the most done in the US. Since we only use a 

maximum of 272 drones, we will be able to obtain clearance from the FAA because we are 

using an amount of drones that is under the amount that has been used before and we have 

taken safety into account. In addition, the lowered amount of drones allows us to reduce 

cost because currently, the cheapest drones on the market sell for around $50 dollars. 

Though we will likely rent the drones instead of buying them for this performance, this 

number of drones will allow us to put on a stunning performance without taxing the budget 

of this city. 

 

As of now the light show, again without transitions, amounts to 3 minutes and 33 seconds. 

However, if there is a need to lengthen or decrease the time of the show this can be readily 

done and modeled. We would do this by manipulating the time frames for the Ferris wheel, 

dragon, and firework models.  

 

While traditional fireworks shows are a classic on special occasions and greatly 

entertaining to an audience, high-tech alternatives are becoming more and more numerous 

and feasible to perform every day. We think that performing a drone light show will be an 

excellent opportunity to showcase this city taking a step into the future and symbolize 

technological growth in this modern age. 

 

Sincerely, 

Team #8478 

  



 
Page 23 of 37 
Team #8478 

Appendix A: 
Python:  

Our models were created through Python.  
IMPORTANT:  

- All code must be kept in the same folder with the Graphics.py library in a folder 
called “graphics”.  

- All programs were written on Windows machines and some seem to work 
incorrectly on Apple Macs. 

 
Item A.1: Graphics.py 
We used a python library known as Graphics.py to visualize our models. Documentation 
and installation for Graphics.py can be found here: 
http://mcsp.wartburg.edu/zelle/python/ 
 

Appendix B:  
Desmos: 

We used the Desmos online graphing calculator to draft the Ferris wheel design.  
 
Item B.1: Ferris Wheel Model 

 
 
Item B.2: Equations of Circles on Ferris Wheel 



 
Page 24 of 37 
Team #8478 

Item B.3: Coordinates of Endpoints of Spokes on Ferris Wheel 



 
Page 25 of 37 
Team #8478 

 
Item B.4: Coordinates  of Endpoints of Legs on Ferris Wheel 



 
Page 26 of 37 
Team #8478 

 
 

Appendix C:  
Ferris Wheel Model: 

Item C.1: Relative and Exact Coordinates of Drones in Spokes and Wheels 
 

Reference Point: (75, 75) 

In these coordinates, the positive y axis extends downwards. 

    

r coordinates for spokes: [10, 15, 20, 25, 30, 35, 40, 45] 

theta coordinates for 
spokes: [i*pi/4 | i is an integer, 0 <= i <= 7] 

A drone is placed at (75 + r*cos(theta), 75 + r*sin(theta)) for every r 
and theta from these sets. 

    

theta coordinates for 
outer wheel: 

[i*pi/32 | i is an integer, 0 <= i <= 63] 



 
Page 27 of 37 
Team #8478 

A drone is placed at (75 + 50*cos(theta), 75 + 50*sin(theta)) for every 
theta from this set. 

    

theta coordinates for 
inner wheel: 

[i*pi/9 | i is an integer, 0 <= i <= 17] 

A drone is placed at (75 + 5*cos(theta), 75 + 5*sin(theta)) for every 
theta from this set. 

 

Item C.2: Relative and Exact Coordinates of Drones in Legs and Feet 

Legs & Feet 

X (relative) Y (relative) X (absolute) Y (absolute) 

5 0 80 75 

10 10 85 85 

15 20 90 95 

20 30 95 105 

25 40 100 115 

30 50 105 125 

35 60 110 135 

40 70 115 145 

45 80 120 155 

54 90 129 165 

52 90 127 165 

48 90 123 165 

46 90 121 165 

-5 0 70 75 

-10 10 65 85 

-15 20 60 95 

-20 30 55 105 

-25 40 50 115 

-30 50 45 125 



 
Page 28 of 37 
Team #8478 

-35 60 40 135 

-40 70 35 145 

-45 80 30 155 

-54 90 21 165 

-52 90 23 165 

-48 90 27 165 

-46 90 29 165 

 

Item C.3: Code for Ferris Wheel Model:  

from graphics import * 
from math import sin, cos, pi 
import time 
#python does math in radians 
 
def main(): 
    class Group: 
        def __init__(self, x_o, y_o, xshift, yshift, win): 
            self.x_o = x_o 
            self.y_o = y_o 
 
            self.points = [Point(x_o + xshift[i], y_o + yshift[i]) for i in range(len(xshift))] 
 
            for p in self.points: 
                p.draw(win) 
 
        def move(self, dx, dy): 
            for p in self.points: 
                p.move(dx, dy) 
  
    class Spoke(Group): 
        def __init__(self, x_o, y_o, O_o, shift, win): 
            Group.__init__(self, x_o, y_o, [shift[i]*cos(O_o) for i in range(len(shift))], 
                           [shift[i]*sin(O_o) for i in range(len(shift))], win) #converting polar to x-y 
 
            carriageX = [0, 0, 2, 2, 4, 4] 
            carriageY = [0, 4, 0, 4, 0, 4] 



 
Page 29 of 37 
Team #8478 

 
            self.carriage = Group(self.points[len(self.points)-1].getX(), 
self.points[len(self.points)-1].getY(), 
                                  carriageX, carriageY, win) 
            self.t = O_o 
            self.shift = shift 
  
        def tick(self): 
            self.t += pi/32 
            self.draw(self.t) 
   
        def draw(self,t): 
            points = [Point(self.x_o + self.shift[i]*cos(t), self.y_o + self.shift[i]*sin(t)) for i in 
range(len(self.shift))] #first point no shift from x_o, y_o 
  
            for i in range(len(points)): 
                dx = points[i].getX() - self.points[i].getX() 
                dy = points[i].getY() - self.points[i].getY() 
  
                self.points[i].move(dx,dy) 
                if (i == len(points) - 1): 
                    self.carriage.move(dx,dy) 
 
    win = GraphWin('woo wheel', 150, 200) 
 
    spokeShift = [5*i for i in range(11)] 
    spokes = [Spoke(75, 75, i*(pi/4), spokeShift, win) for i in range(8)] 
 
    outerShiftX = [50*cos(i*pi/32) for i in range(64)] 
    outerShiftY = [50*sin(i*pi/32) for i in range(64)] 
    outer = Group(75, 75, outerShiftX, outerShiftY, win) 
 
    innerShiftX = [5*cos(i*pi/32) for i in range(64)] 
    innerShiftY = [5*sin(i*pi/32) for i in range(64)] 
    inner = Group(75, 75, innerShiftX, innerShiftY, win) 
  
    legShiftX = [5, -5, 10, -10, 15, -15, 20, -20, 25, -25, 30, -30, 35, -35, 40, -40, 45, -45, 
                 55, 52, 48, 45, -55, -52, -48, -45] 
    legShiftY = [0, 0, 10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 60, 70, 70, 80, 80, 90, 90, 



 
Page 30 of 37 
Team #8478 

                 90, 90, 90, 90, 90, 90, 90, 90] 
    legs = Group(75, 75, legShiftX, legShiftY, win) 
  
    while True: 
        for s in spokes: 
            s.tick() 
        time.sleep(0.05) 
main() 
 

Appendix D: 
Dragon Model: 

Item D.1: Relative and Exact Coordinates of Drones in the Head:  

  



 
Page 31 of 37 
Team #8478 

 
Item D.2: Coordinates of Initial Locations of Reference Points: 

i x theta 
(phase) 

y  

0 0 0 200 1 drone 

1 10 0.785398 214.1421 2 drones 

2 20 1.570796 220  

3 30 2.356194 214.1421 3 drones 

4 40 3.141593 200  

5 50 3.926991 185.8579  

6 60 4.712389 180  

7 70 5.497787 185.8579 4 drones 

8 80 6.283185 200  

9 90 7.068583 214.1421  

10 100 7.853982 220  

11 110 8.63938 214.1421  

12 120 9.424778 200  

13 130 10.21018 185.8579  

14 140 10.99557 180  

15 150 11.78097 185.8579  

16 160 12.56637 200  

17 170 13.35177 214.1421  

18 180 14.13717 220  

19 190 14.92257 214.1421  

20 200 15.70796 200  

21 210 16.49336 185.8579  

22 220 17.27876 180  



 
Page 32 of 37 
Team #8478 

23 230 18.06416 185.8579  

24 240 18.84956 200  

25 250 19.63495 214.1421  

26 260 20.42035 220  

27 270 21.20575 214.1421 head 

 
Item D.3: Code for the Dragon Model 
from graphics import * 
from math import sin, pi 
import time 
 
#parametric x and y functions 
def x(t, x_o): 
    return x_o + 10*t 
 
def y(t, O_o): 
    return 200 + 20*sin(O_o - t*pi/4) 
 
def main(): 
    win = GraphWin('Kawaii Dragon', 1000, 1000) 
 
    class group: #class used to draw and move group of points 
        def __init__(self, x_o, y_o, O_o, xshift, yshift): #parameters initial x, y, phase of reference 
point, list of point coordinates relative to reference point including reference point 
            self.t = 0 #initialize time as 0 
            self.x_o = x_o 
            self.y_o = y_o 
            self.O_o = O_o 
 
            self.points = [Point(x_o + xshift[i], y_o + yshift[i]) for i in range(len(xshift))] 
#generate list of points by adding shift to reference value 
 
            #first point in lists of shift coordinates is the reference point, with 0 shift in x and 0 in 
y 
            self.rPoint = self.points[0] #define reference point for movements 
  



 
Page 33 of 37 
Team #8478 

            for p in self.points: 
                p.draw(win) #display all points 
  
        def move(self): 
            self.t += pi/32 #increment time by pi/64 
            x_new = x(self.t, self.x_o) 
            y_new = y(self.t, self.O_o) 
 
            xincr = x_new - self.rPoint.getX() 
            yincr = y_new - self.rPoint.getY() #determine movement vectors to reach coordinates 
at new time 
 
            for p in self.points: 
                p.move(xincr, yincr) 
 
    head_xshift = [0, 0, 0, 6.6, 6.6, 6.6, -27.4, -10.6, -8.6, 10.8, 8.2, 16.8, 16.8, 27.2, 22.2,  
              34.6, 30.2, 55.4, 66.4, 78, 85.8, 75.2, 63.4, 56.6, 46, 36.2, 41.6, 46.4, 42, 
              53.6, 52.4, 62, 65.8, 59.4, 67.2, 32.6, 32, 35.4, 30] 
    head_yshift = [0, 7.2, 14.2, -4.8, 4.2, 11.2, -37.6, -23.8, -44.8, -33.8, -15.8, -39, 7.8, 
              -23.6, 14.6, -20.4, 17.6, 18.8, 20.6, 21.4, 17.2, 14, 11, 7.2, -8.6, 22, 15.6, 
              19, 30.8, 26.4, 35.8, 30.4, 38.6, 28, 32.2, -9.2, -6.4, -7.2, -8.4]#coordinates for dragon 
head 
    gen_xshift = [0,0,0,0] 
    gen_yshift = [0,7,14,21] #general coordinates for body segments: use first n values for 
segment of n drones 
  
    x_start = [10*i for i in range(28)] 
    O_start = [-i*pi/4 for i in range(28)] 
    y_start = [200 + 20*sin(O_start[i]) for i in range(28)] #define list of 28 starting 
coordinates and phases on sine curve 
 
    dragon = [] #initialize list of group objects 
 
    dragon.append(group(x_start[0], y_start[0], O_start[0], gen_xshift[:1], gen_yshift[:1])) 
#add 1-drone tail segment 
    for i in range(1,3): #add 2 2-drone tail segments 
        dragon.append(group(x_start[i], y_start[i], O_start[i], gen_xshift[:2], gen_yshift[:2])) 
    for i in range(3,7): #add 4 3-drone tail segments 
        dragon.append(group(x_start[i], y_start[i], O_start[i], gen_xshift[:3], gen_yshift[:3])) 



 
Page 34 of 37 
Team #8478 

    for i in range(7,27): #add 20 4-drone tail segments 
        dragon.append(group(x_start[i], y_start[i], O_start[i], gen_xshift, gen_yshift))  
    dragon.append(group(x_start[27], y_start[27], O_start[27], head_xshift, head_yshift)) 
#add head 
 
    while True: 
        for d in dragon: 
            d.move() 
        time.sleep(0.05) 
 
main() 
 

Appendix E: 

Fireworks Model: 

Item E.1: Relative and Exact Coordinates of Drones in Fireworks Model:  

Item E.2: Code for Fireworks Model: 

from graphics import * 

from math import cos, sin, pi 

import time 

from random import randrange, choice 

 

def main(): 

    win = GraphWin(‘Firework (ﾉ◕ヮ◕)ﾉ*:･ﾟ✧’, 1000, 1000) 

    win.setBackground('black') 

 

    dirs = [2*i*pi/5 for i in range(5)] 

  

    class wave: 

        def __init__(self): 

            self.points = [Point(500,500) for i in range(20)] 

            self.dirs2 = [randrange(0,360)*(pi/180) for i in range(20)] 

            for p in self.points: 



 
Page 35 of 37 
Team #8478 

                p.draw(win) 

            self.t = 0 

            for i in self.points: 

                i.setOutline('yellow') 

  

        def move1(self): #move in clusters of 5 after initial burst 

            for i in range(5): 

                pdir = dirs[i] 

                x = cos(pdir) 

                y = sin(pdir) 

                for p in range(4*i, 4*i+4): 

                    self.points[p].move(x,y) 

            self.t += 1 

 

        def move2(self): #clusters split off after initial burst 

            colors = ['hot pink', 'deep sky blue', 'green'] 

            for i in range(20): 

                self.points[i].setOutline(choice(colors)) 

                pdir = self.dirs2[i] 

                x = cos(pdir) 

                y = sin(pdir) 

                self.points[i].move(x,y) 

 

    initList = [] #list of initialized wave objects 

    for d in range(13): 

        x = wave() 

        initList.append(x) 

        for i in range(5): #5 iterations before new wave 

            for n in initList: 



 
Page 36 of 37 
Team #8478 

                if n.t <= 60: 

                    n.move1() 

                else: 

                    n.move2() 

            time.sleep(0.05) 

    while True: 

        for n in initList: 

            if n.t <= 60: 

                n.move1() 

            else: 

                n.move2() 

        time.sleep(0.05) 

 

main() 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Page 37 of 37 
Team #8478 

Works Cited 
 
Fly for Fun under the Special Rule for Model Aircraft. (2017, July 31). Retrieved November 18,  

2017, from https://www.faa.gov/uas/getting_started/fly_for_fun/ 
 
M. (2017, February 05). Intel's 500 Drone Light Show! Retrieved November 18, 2017, from 

https://www.youtube.com/watch?v=jNIAzeU8POQ 
 
“NRG Stadium.” NRG Park, www.nrgpark.com/nrg-park-facilities/nrg-stadium/. 
 
Stephens, Ric. “Typical Drone Sizes.” Flickr, Yahoo!, 22 Mar. 2016, 

www.flickr.com/photos/ricstephens/25365498343/in/photostream/. 
 

Zelle, John M. Python programming: An Introduction to Computer Science. Brantford, Ont.: W.  
Ross MacDonald School Resources Services Library, 2010. 


