Summary

Team #8478
For office use only For office use only
T1 F1
T2 F2
T3 F3
T4 F4
2017

20th Annual High School Mathematical Contest in Modeling (HiIMCM) Summary Sheet
(Please make this the first page of your electronic Solution Paper.)

Team Control Number: 8478
Problem Chosen: A

Please paste or type a summary of your results on this page. Please remember not to include the name
of your school, advisor, or team members on this page.

Within the 36 hours, we constructed a model for an outdoor aerial light show that will
organize 272 drones into the formations of a Ferris wheel, dragon, and a firework display.
By mathematically analyzing the flight path of the drones, and taking external factors such
as regulation, collisions, launch area, and viewer perception into account, we formulated an
efficient model for the light show.

In both the Ferris wheel and the dragon design, we chose to make most of our models by
spacing the drones along lines and curves. The Ferris wheel was a combination of line
segments and concentric circles and the dragon used reference points spaced along a sine
curve. Both used parametric equations to calculate the movement of the drones when
animating the designs. The third design started with drones clustered in the center and
used both defined and randomly-generated angles to create a visually appealing scatter
firework effect with a less complex model.

We also considered launch area, air space, display angle, safety considerations and
regulations alongside the duration of the show to provide an optimum viewing experience
and practicality for the city. We determined that we would require a 333 ft x 333 ft x 30 ft
air space and 920 ft* of launch area. Finally, we considered possible improvements we
could make on our model to reduce the number of assumptions required and more
comprehensively model the show. With these animations as the models of our light show,
we will be able to effectively carry out this event.

Page 1 of 37

Team #8478
PROBLEM A: DRONE CLUSTERS AS LIGHT DISPLAYS
Table of Contents:
Restatement of the Problem 2
Assumptions and Justifications 3
Part I: Models and Solutions 6
Ferris Wheel Model 6
Dragon Model 9
Firework Model 14
Part II: Requirements and Considerations 17
Strengths and Weaknesses 20
Letter to the Mayor 21
Appendices 23
Appendix A: Python 23
Appendix B: Desmos 23
Appendix C: Ferris Wheel Model 26
Appendix D: Dragon Model 30
Appendix E: Fireworks Model 34

Works Cited 37

Page 2 of 37
Team #8478

Restatement of the Problem:
The integration of drones for light shows, alongside modes of delivery, have seen soaring

popularity with modernity: both literally and physically. With the employment of drones in
events like the Superbowl, and Intel light shows, drones’ uses have widespread
implications that are quickly gaining momentum. In an order to implement these drones in
light shows, adherence to regulations alongside quantifying and monitoring the path for a

set number of drones is crucial.

For an outdoor aerial light show that will display a Ferris wheel, a dragon, and another
unique image, various factors need to be taken into account including the required

airspace, launch site, safety considerations, and flight path.

Our objective is to mathematically delineate the flight path for the drones and form the
desired figures in the sky. We plan to achieve this goal by quantitatively analyzing the
shape of the displays while calculating their path. By investigating these formations, we
hope to have an efficient model for drone light shows that adhere to the standards and

regulations.

Page 3 of 37
Team #8478

Assumptions and Justifications:
1. Drones act as a point source or single pixels of light.

e Each drone has one light, and all are far enough away from the audience so that only

the light on each drone is visible. In the

Intel video, they used this technique to

model the placement of the drones as

shown in Figure 2.

Figure 1. The allotted distance from the viewer
demonstrates the miniscule nature of the drones
in the sky from a set distance: the drones
resemble points on a plane.

2.No drones lose connection with their operator or lose

battery during the display.

Figure 2. Intel in their “Intel’s e For the purpose of our model, no drones fail
500 Drone Light during the display because our model does not
Show Video,” showcased the account for filling in gaps. Intel drones are equipped

technique of marking with a GPS to return to their starting point if they

the drones as points, or pixels. fail so this assumption would not harm the safety of
the audience if it was incorrect. We also assume that
the drones will remain in range while in the
intended performance area. The drones also return to their starting point if they go

out of range or lose connection.

Page 4 of 37
Team #8478

3. Drones do not veer off course or collide with each other if their paths do not cross.

e For the purpose of our model, drones operate in their intended manner. While we
do take into account their proximity by making sure drones are at minimum 2 feet
apart to account for their size, their proximity does not otherwise affect
performance or course.

e For the 3rd design only, randomly determined directions sometimes cause the
drones to cross. This iteration of our model is not robust enough to account for this
eventuality, so we assume drones do not collide at all in this design only.

4. The audience will be at a location from where they can watch the display as it was meant
to be seen (i.e. viewers will be able to see a 2D display as if watching it on a screen).

e This allows us to simplify our models by calculating 2D positions and paths while
allowing the entire audience to experience the full show.

5. Drones can display any color of light.

e Intel’s drones have an LED that can display 4 billion color combinations. We assume
our drones will have these same features.

6. No obstructions will be made to the drone’s path, including but not limited to airplanes,
trees, wind, or weather.

e Drones are not be permitted in a 5-mile radius from airports and public areas such
as national parks. Our light show will not account for any external factors in the air
including avian wildlife.

e The drones will be placed and moved as if there is no wind or weather interference,
which could disorient the drone. We assume wind and weather (such as climate,
rain, storms, etc.) are not factors. This allows us to focus more clearly on the
problem, because both wind and weather are relatively random natural phenomena
that we cannot accurately predict and implement. Considering its effect would
distract us from creating our models.

7. There is no disturbance to the visibility of the drones during the light show. The show is
performed on a clear night for the optimal viewing experience and the distance of the

drones do not put them out of visible range.

Page 5 of 37
Team #8478

e We assume that the launch site will be far enough away from other lights to prevent

them from obstructing the display. This is so that the formation of drones that we
account for will not be hindered in any way by other external lights, which would

detract from our show.

8. There is already available land for viewing of the show

In order to have an accurate estimation for the amount of land that will be used for

the launch site, we will assume that there will be ample land to view the drone light
show. While we will factor the viewing site into the viewer's perspective of the light
show, the amount of land for the attendees will be presumed to be sufficient and

apart from the drone launch area.

9. FAA clearance is obtained

As Intel obtained special permission from the Federal Aviation Administration to
launch the drone swarm, we have assumed that we can attain this same clearance
because we use fewer drones in our display. Our embodiment should not be
hindered by the inability to attain this, and would distract from the implementation

of our drones for the light show.

10. We get permission to use the land

An additional assumption is that we would have attained permission to use the land
for the drone show. As we would need a large open space, for both the viewers and
the launch, we would want to ensure that we have procured access to this space. In
order for everything to run according to plan, a non-disrupted area to initiate the

show is an utmost requirement.

Page 6 of 37
Team #8478

Part I: Models and Solutions

Using our assumption that drones act as point sources or single pixels, we created our
models by defining and transforming the coordinate location of each drone. We assumed
that drones operate exactly as intended with no external interference, so we only
accounted for the size of the drones when determining the scale and distance between the
drones for the first 2 models. We assumed that all viewers would be at a location where
they could view the show as if projected on a screen (i.e. would be properly located to view
a 2D display). We assumed that drones could display any color, so the colors in our third
design could be arbitrarily chosen.

We simulated each of our models using the graphics.py module in Python. For the purposes
of our model, each pixel is equal to 0.5 feet for all designs. All angles are in radians. The
coordinate system of graphics.py places the point (0,0) in the top left corner with x

increasing towards the right and y increasing downwards.

Ferris Wheel Model:
Variables:
X, (X_oin code): initial x-value in pixels (of each unit)

v, (y_oin code): initial y-value in pixels (of each unit)

For each spoke:
0, (O_o in code): initial angle in radians (of each spoke)

t: time in radians (used for parametric equations)

Solution:

In the code, we used the center of the concentric circles as the reference point. However,
when designing the model, we used the end of the left leg of the Ferris wheel as the origin.
Initially we planned our model in Desmos, and this draft can be seen in the Figure 3. The
Ferris wheel composed of 2 circles, 8 spokes, 2 legs, and 8 carriages. The circles were

represented on Desmos with an equation of (x — 25)* + - 44)* = 484 and

Page 7 of 37
Team #8478

(x—25)* + (y — 44)* = 9. The “legs” of the Ferris wheel were represented by two line
segments. The line segments of our model have a linear equation of y = 2x with a domain
of [0,22] and a linear equation of y =— 2x + 100 with a domain of [28,50]. The 8 spokes
consist of 4 line segments total. These segments all intercept the center of the circles and
the endpoints of the segments all intersect the larger circle. The equations for these line
segments are: y = 44 with a domain of [3,47], x = 25 with a range of [22,66], y =x + 19
with a domain of [25 — 5—%, V242 +25], and y = x + 69 with a domain of [25 — 5—%, 242 +25]
. We then used this draft to create our Ferris wheel model which can be seen in Figure 4.
The z coordinate for each drone is as follows: 1.5 for the drones that make up the inner and
outer circles, 0 for the drones that make up the spokes, and -1.5 for the drones that make
up the legs and feet. This is to prevent possible drone collisions at points of intersection

between the spokes, circles, and legs.

60 = P
.. %5 %
40 = 5 . =
3 =

20

Figure 4. The model we created using Figure 3 as a plan.

Figure 3. Our rough model of the ferris wheel model.

The two circles are concentric and have a radii of approximately 253.96 feet and 34.63 feet.
There are a total of 64 drones in the larger circle and 18 drones in the smaller circle. Since

the circumference of the circles would be 44 © and 6 &, the drones for the circles were

Page 8 of 37
Team #8478

spaced accordingly in our model since there must be an integer amount of drones. There
are 8 spokes consisting of 8 drones each connecting the smaller and larger circles. Then,
there are two legs on the Ferris wheel with “feet” at the end. The “feet” are each 4 drones
long. The legs are each 8 drones long. Finally, there are 8 carriages on the Ferris wheel
which move around in a circular fashion. These carriages consist of 6 drones. In total, we

used 219 drones including a drone added in the center to create this model.

Algorithm:
variables: same as above

parameters: t_int = 7/32 - interval between successive ‘frames’ of the animation, arbitrarily

chosen for smoothness

The code we used to test our model and equations is included in Appendix item C3, and the
algorithm is explained here. We used python and the graphics module to display and

animate our design.

We used the same base class, or python object, called Group for each group of drones,
initialized with the parameters x_o, y_o, xshift, and yshift. Respectively, these are the initial
x and y coordinate of the reference point, and the x and y coordinates of the drones relative
to the reference point. Each spoke on the Ferris wheel uses a subclass called Spoke that
inherits from Group, initialized with the parameters x_o, y_o, O_o, and shift.

A variable tis created to represent time in radians and the current angle of the spoke. Since
the spokes follow a circular motion, we used polar coordinates to represent the locations of
the drones: shift contains the r coordinates and t is the 6 coordinate of the locations of the
drones relative to the reference point. Each spoke has a corresponding carriage object,

which used the Group class. The carriage uses the spoke’s last point as its reference point.

When initialized, the class would display each drone as a black point in the specified

location. The drones that make up the circles and legs are stationary (they use the Group

Page 9 of 37
Team #8478

class), while the drones that make up the spokes and carriages follow a circular motion
(they use the Spoke class). The Spoke class includes a method called tick to move itself and
its corresponding carriage. This method increments t by & radians, then calculates the
polar coordinates of each drone using r coordinates from the initial shift list. The reference
point (the center of the wheel) doesn’t move, so calculating the new coordinates uses a
very similar process as calculating the initial coordinates. The method then converts each
coordinate to rectangular, calculates the difference between the new and current

coordinates, and moves each point to their new location.

In our code, we defined a list spokeShift with incremental values (see appendix C) to be
used as relative r coordinates for each drone that make up each spoke. We initialized 8
Spoke objects using a reference point (75, 75), angles in % radian increments, and the list
spokeShift. Secondly, we defined 4 lists outerShiftX, outerShiftY, innerShiftX, innerShiftY for
the relative locations (see appendix C) of the drones that make up the outer and inner
circles, respectively. We then initialized an outer wheel and inner wheel Group object using
the reference point (75, 75) and these lists. Finally, we defined 2 lists legShiftX and
legShiftY for the relative locations of the drones that make up the legs and feet, and

initialized a legs object using the reference point (75, 75) and these lists.

Finally, an infinite loop rotates the wheel by calling each spokes’ tick() method every 0.05

seconds.

Dragon Model:
Variables:
X, (x_oin code): initial x-coordinate in pixels (of each reference point)

0, (O_o in code): initial phase of sine wave in radians (of each reference point)
v, (y_oin code): initial y-coordinate in pixels (of each reference point)

i: integer (used to generate starting points)
t: time (in radians, used for parametric motion)

x : x-coordinate in pixels

Page 10 of 37
Team #8478

y :y-coordinate in pixels

Solution:
We based our dragon design and movement around a parametric sine wave of the general

form:
x=ki x=x,+kt
0=ci 0=0,+ct
y =a+ bsin(0) y = a+ bsin(0)
For initial positions and for movement.

We used i over the range [0, 28) and the constant parameters k, a, b, and c as follows:

k=10px a=200px b=20px c=—n/4 radians
The constants are in px because the program we used to model our design uses pixels, and
we decided that each pixel is equal to 0.5 feet in the real world for the purpose of our
model.
This created a sine wave with amplitude 20, rest position of 200, and period 80, a

representation of which is shown below:

250

200

150

0t + -+ ! | S [T

50

0 50 100 150 200 250 300

Page 11 of 37
Team #8478

Figure 5. Sine wave with above parameters.

The design uses a total of 136 drones. Because we used many more drones in previous
designs, we decided that we could make 2 dragons using a total of 272 drones. The second
dragon would fly below the first and use the same equations with a shift in the y-value. We
calculated 28 initial reference points using the integers from 0 to 27, the coordinates and
phase of which are included in Appendix item D.2.

The body of the dragon consists of 97 drones in 27 vertical columns as follows; the columns

with the least drones will be further back to create a ‘tapered’ effect in the tail.

Number of # of
drones in column | Columns
4 20

3 4

2 2

1 1

The top point of each body column will serve as a reference point located on the sine curve.
Their initial phases and positions are determined by the first 27 reference points calculated
using integer i from 0 to 26. The rest of each column is located directly under the reference
point, each drone 7 pixels under the one above it. The z-coordinate of each column is
determined as follows to prevent collisions between columns:

z={0foreveni, 1.5 for odd i}

The head consists of 39 drones. Its reference point is in the neck and its initial location is
determined by the 28th integer value of i, or 27, to be (270, 200 — 10V2). The coordinates
of the other points were determined by sketching the design in MS Paint, then scaling the
relative coordinates down by a scale of 5. The exact and relative coordinates of each point

of the head are in Appendix item D.1, and the sketch is included here:

Page 12 of 37
Team #8478

Figure 6. Sketch of dragon’s head and reference point. Points in red will light up a different color than points

in black to contrast features.

The movement of each reference point is determined by the following parametric
equations as stated above (x =x, +kt 6 =0, + ct y = a + bsin(6) with k=10, c=— £, a=200,
and b=20). x, and 0, are the initial x-coordinate and phase as determined by the first set of
equations. The new locations of each of the 28 reference points are determined by
incrementing t by % every 0.05 seconds, and the other points in each group (either a
column of drones or the head group) are moved so that they stay in the same positions
relative to their respective reference points.

If we had more time, we would determine equations that could make the dragon design
move in a circle so the animation could continue for an extended period of time without
having to reverse direction, move backwards, or move excessively slowly. We could also

include an animation to move the mouth of the dragon or an animation for shooting fire.

If we were to make the dragon design move in a circle, we could write equations for the

polar coordinates (r, 0) of each reference point, similar to the following:
0 =kt

r = a+ bsin(ct)

Page 13 of 37
Team #8478

K is a constant, representing a constant rotational speed in 0. A is a constant representing
the circular equilibrium state of the wave, b is a constant representing amplitude, and cis a
constant affecting the period of the wave. We could convert these equations to cartesian
form as (rcos(0), rsin(0)) if we wanted to continue using graphics.py. However, this would
require us to calculate the new coordinates of each point of the dragon’s head individually
which would require much more complex code or careful consideration to simplify. The
body segments could be calculated in a similar method if the non-reference points
decreased in r instead of y. Circular motion of our design would likely be easier using a

graphics system that allows rotational transformations.

Algorithm:

We used the code in Appendix C to test this design. x,, y,,and 0, are represented as x_o,
y_o, and O_o respectively in the program. The algorithm for the code is as follows:

1. Define functions x and y to return x and y coordinates at time t using above equations for
motion (given the parameters x, and y,).

2. Define class (named ‘group’) with the parameters x,, y,, 0,, xshift, and yshift. Each
instance of this class represents a group of drones that stay in the same position relative to
each other. Xshift and yshift represent the x and y coordinates of the drones relative to the
reference point.

e When initialized: Start counter t at 0, convert initial coordinates and lists of relative
coordinates into a list of points, display points, store first point as reference point
rPoint (with shift value 0 for both x and y, representing no difference from the
reference).

e Move method (moves group by incrementing t counter): Increment t by 35,
calculate new x and y coordinate of the reference point using the x and y functions,
calculate difference between new coordinates and current coordinates, move all
points in group using difference as movement vector.

3. Define lists head_xshift and head_yshift (relative locations of points in head group) using

data from Appendix item D.1.

Page 14 of 37
Team #8478

4. Define lists gen_xshift and gen_yshift as [0,0,0,0] and [0,7,14,28] respectively,
representing relative locations for up to 4 drones in a column.

5. Populate lists x_start, O_start, and y_start with values generated from the equations for
initial position and phase (x = ki 0 = c¢i y = a + bsin(0)) for integers i from 0 to 27 inclusive.
6. Initialize group objects for each body segment and head and add objects to list. The
1-drone body segment takes i-value 0, 2-drone body segments take i-values 1-2, 3-drone
body segments take i-values 3-6, 4-drone body segments take i-values 7-27, and the head
takes i-value 27.

7. Use move method on each object in list of group objects, wait 0.05 seconds, repeat.

Figure 7. Initial location of the drones and location after some movement.

Firework Model:

Variables:

X, : initial x-coordinate (center)
v, : initial y-coordinate (center)
t: time in pixels

0 : angle in radians

i: integer (used to generate starting direction)

Solution:

For our final design, we considered writing the HIMCM logo or our school logo in the sky
with drones, but, realizing that writing our school logo would be against the rules, we
ultimately settled on creating a firework design. This model is also in the 2D plane. Because
we used some random paths in this design, our current model is not robust enough to
account for avoiding collisions, so we assumed that drones do not collide and collision

avoidance is an improvement we could make in the future.

Page 15 of 37
Team #8478

We based the number of drones in this design around the number used in our previous
designs. We had a maximum of 272 drones in our dragon design, so we used 260 drones for
this design. All the drones were initially clustered in the center, defined as the point (500,
500) in a 1000 by 1000 px graphics window. Each drone’s light is off at the beginning of the
show. The drones will be deployed in 13 waves of 20, each wave consisting of 5 groups of 4
drones. There are 2 phases of motion, the first of which can be modeled by the following
equations:

0=ix

x =t * cos(0)

y = tx*sin(0)

We used integer i over the range [0, 5) to simulate 5 groups evenly spaced in different
directions moving away from the center linearly at 1px/t. tis incremented in 0.05 second
units, so the speed is 20px/s. Each wave turns on a yellow light when it is deployed. Waves

are deployed every 5 cycles of t, so 4 waves are deployed every second.

The second phase of motion starts once each group reaches a distance of 60 px from the
center (t=60). The 4 drones in each cluster break off in random directions (chosen by
picking a random number between 0 and 2 77) and begin flashing randomly between pink,
blue, and green. The equations of motion are the same as those for the first part, but the 0
value for each individual drone is a randomly-chosen number.

The drones continue flying until they reach the edge of the performance area, then return
to their launchpad. To program this, we can set the range of the drones as the area of the
performance area, and once they reach the edge, drones that go out of range are

programmed to return to their home point, or launchpad.

Page 16 of 37
Team #8478

Figure 8. The groups of drones start out moving away from the center like spokes of a wheel, split off in

random directions, then disperse. Background is black so different colors are visible.
Algorithm:
X: X-component of movement vector

y: y-component of movement vector

The code we used to test this model is in Appendix E.2. We altered the equations to

calculate movement recursively to simplify the program. The algorithm is as follows:

1. Define a list of directions dirs for the first movement (before the groups split) using the

equation 2?“ x 1 for integer i from O to 4.

2. Define class (named ‘wave’) to represent each wave of drones

e When initialized: draw 20 points representing drones clustered at the center point
(500, 500), randomly populate list dirs2 with 20 values between 0 and 2 &
(directions for each drone after splitting from group), set t = 0 (counter variable for
object), set color of points to yellow.

e Movel method (first phase of movement): For each of 5 groups: fetch direction from
list dirs, calculate x and y using cosine and sine of direction, move all drones in
group using movement vector, increment t counter

e Move2 method (second phase of movement): Define list colors including hot pink,
deep sky blue, and green. For each drone: set color of point to random color from

colors, fetch direction from list dirs2, calculate movement vector using cosine and

Page 17 of 37
Team #8478

sine of direction, move drone using movement vector (repeat for all 20 in wave
using different directions). T is no longer incremented because it is only used to
determine when to switch from phase 1 to phase 2.

3. Create empty list initList of initialized wave objects.

4. Initialize wave object, add to list

5. For all objects in initList, use either movel method (t of object <= 60) or move2 method

(t of object > 60) to move all drones 5 times with 0.05 second delay between moves.

6. Repeat 4 and 5 until 13 waves are initialized. No more waves are initialized after this.

7.Use movel or move2 methods (same logic as above) on all objects in initList, wait 0.05

seconds, repeat.

Part II: Requirements and Considerations:
In order for the 3-display light show to perform optimally, we had to address a variety of

conditions including the amount of drones we would implement, the launch area, the

amount of air space, the duration of the light show, and important safety considerations.

For the best viewer experience, we needed to tilt our displays so that they can best be seen
from the ground. Because all of our designs are modeled as mainly 2D displays with only
some variation in the third dimension, they can be treated for this purpose as 2D planes.
The FAA regulations prohibit drones from flying over 400 up and our displays are 333 ft
high, so the middle of the display has to be somewhere from around 170 ft to 230 ft high.
We chose to use 200 ft for our purposes. We calculated display angles with vertical as 90
degrees for various viewer distances so that the viewer's’ line of sight to the middle of the
display would be perpendicular to the display angle as follows:

(90 - arctan(200/dist))

Viewer Distance (ft) Display Angle (°)
50 14°
100 27°

150 37°

Page 18 of 37

Team #8478
200 45°
250 51°
300 56°

For the amount of drones used for the show, we took two main factors into account,
including current regulations on quantities of drones, along with the required drones to
have an accurate depiction of a dragon, a Ferris wheel, and a firework display. Seeing as
Intel required specialized clearance in an order to implement their designs for their 500
drones light show, it would not be feasible for us to utilize an amount of drones that has
never been tested before. We simply would not have the resources/time to be able to

negotiate this value.

Furthermore, our designs of a dragon, a Ferris wheel, and a fireworks display utilized a
maximum of 272 drones for the body of the figures. With this amount of drones having
been utilized in previous light shows, it is not hard to imagine that this number can be used
in our circumstance: this magnitude of drones is far from Intel’s, and pales in comparison
to drone light shows that have been displayed internationally (almost 1,000 drones at
once). Additionally, this number of drones is more economically feasible as this equipment

can cost up to thousands of dollars, and can be rented to accommodate for this fact.

To launch all of our drones we would need an open, level space that is at least
approximately 0.021077891355 acres, or 918.1529 square feet large, according to the
average size of a drone (560mm by 560mm). As the drones would need to be monitored
on-site with a pair of individuals - per FAA regulations - an additional launching space to
observe the drones and initiate them would be required. These are the bare necessities

alongside the drones that we would need to have for the light show.

Page 19 of 37
Team #8478

Our required air space will be scaled from the animation window (1000, 1000). Since each
drone is approximately 1.8 ft in length, we decided that drones on the same plane (same

coordinate in the z-direction) must be at least 2 feet apart to prevent collision.

There are several safety considerations that must be put in place to ensure the light show
runs smoothly. Firstly, our embodiment ensures that the drones will not have any technical
faults while in-air, however, it is still vital that we pay attention to the proximity between
the drones. To address this, we scaled the pixels in our simulated models so that the drones
are approximately 3 feet apart and some of them are closer or further back in the

z-direction. In the dragon design, we scaled so that each pixel is equal to 0.33 feet.

When considering the air space requirement, we used the NRG Stadium as a maximum size
because it has hosted a similar show in the past (Super Bowl 2017). In that show, the
drones were flying above the stadium, so we used the stadium floor area to estimate the air
space used in that show. According to the NRG Park website, the stadium floor is about
90,000 square feet. After multiplying our 1000 px window by our conversion factor, we get
an air space of about 333 ft by 333 ft. Because most of our display is on a 2D plane or
intended to be viewed as 2D with a third dimension only to keep drones from getting too
close, we only need 30 ft in the third dimension to encompass our launchpad and extra

buffer space.

The duration of the drone light show was 3 minutes and 33 seconds, not accounting for
animation transitions. As the light show will be relatively short, we may be able to
manipulate the delay between frames of our animation which can lengthen or shorten out
the duration of the show. The time frames of the light shows are utilized as variables in the
Ferris wheel, dragon, and firework code to manipulate the smoothness and duration of the
animation. We could also repeat each model’s animation multiple times to lengthen the

show.

Page 20 of 37
Team #8478

Strengths and Weaknesses of Our Models:
Strengths:

Our model accurately perceives where each drone is as one pixel in a coordinate
grid represents one drone, and the location of the drones as oriented in the sky, is
scaled accordingly.

Our model only requires a number of drones (272) that is within a range that has
already been permitted by the FAA. This would alleviate the legal clearance process
for our light show.

We optimized the amount of drones needed to create our model to reduce the cost
of renting the drones. Given that drones are highly expensive, with Intel drones
costing around 35,000 dollars, this number allows us to still have an enjoyable yet

cost-effective show.

Weaknesses:

Our model did not factor the viewer's angle of the drone show, however, this is an
embodiment that could readily be addressed in the future with the rotation of the
plane according to the height of the drones above the ground, and their distance
from viewers.

The model fails to account for weather and other extraneous factors that could
affect drone flight, which is not entirely accurate as there will inevitably be
meterological conditions that could impact the flight and course of the drones.

The model additionally is limited by its 2-D infrastructure, which can be problematic
in terms of potential collisions between the drones, however, we mediated this by
assuming the drones would be pre-programmed to avoid this course of nature.

We didn’t account for the drones returning to their launchpad, which will be
required for the closing of the show; however this does not have a direct impact on
the outcome of our animation.

Our model does not address the transition between successive animations, however
this can be readily implemented by having them mapped to the points of the next

display.

Page 21 of 37
Team #8478

A Letter to the Mayor of our Findings:

Dear Mayor,

Thank you for giving us the opportunity to design an outdoor aerial light show for our great
city. We have come up with three possible sky displays, a dragon, a Ferris wheel, and a
firework display which utilize a total of 272 drones: this display will last approximately 3
minutes and 33 seconds not accounting for transitions. By displaying traditional designs
using modern technology, and finishing with a design that emulates traditional fireworks,
we wanted to highlight the transition from past to future that is rapidly gaining

momentum.

In order to make this display a success, we will require a sizeable launch area . To ensure
the safety of the civilian onlookers, we require at least 920 square feet of land as a launch
area. It would be practical to have some more than this minimum amount of space, as per
FAA regulations there will need to be multiple people operating the course of the drones.
This land is a requirement additional to the viewing area, which will be separated from this
part of the launch area. This calculation was derived with the an approximate size of a
drone, which is around 560 mm by 560 mm. Just like fireworks, our display must consider

the safety of the viewers.

We also require a certain amount of air space to safely display our show. By looking at
previous shows, we decided that our 2D designs would use a 333 x 333 foot area. We also
need 30 feet in the third dimension as a safety buffer and to encompass our launch area.

Our designs are scaled so that each pixel is 0.33 feet.

Our display is careful to take into account the safety of civilians. Though current FAA
regulations do not allow us to fly drones over an audience despite the exceptions that allow
us to fly multiple drones with one pilot at night, we addressed the proximity between the

drones to further prevent collisions that could potentially be harmful to the viewers.

Page 22 of 37
Team #8478

Although our model assumes the drones will not have any technical faults in the air, we
took into account the proximity of each drone. In our models, we designed our models so
each drone would be 3 feet apart and some drones were placed closer or further back in

the z-dimension.

We believe this display is feasible both economically and logistically. Previously, Intel has
performed a light show utilizing 500 drones, the most done in the US. Since we only use a
maximum of 272 drones, we will be able to obtain clearance from the FAA because we are
using an amount of drones that is under the amount that has been used before and we have
taken safety into account. In addition, the lowered amount of drones allows us to reduce
cost because currently, the cheapest drones on the market sell for around $50 dollars.
Though we will likely rent the drones instead of buying them for this performance, this
number of drones will allow us to put on a stunning performance without taxing the budget

of this city.

As of now the light show, again without transitions, amounts to 3 minutes and 33 seconds.
However, if there is a need to lengthen or decrease the time of the show this can be readily
done and modeled. We would do this by manipulating the time frames for the Ferris wheel,

dragon, and firework models.

While traditional fireworks shows are a classic on special occasions and greatly
entertaining to an audience, high-tech alternatives are becoming more and more numerous
and feasible to perform every day. We think that performing a drone light show will be an
excellent opportunity to showcase this city taking a step into the future and symbolize

technological growth in this modern age.

Sincerely,

Team #8478

Page 23 of 37
Team #8478

Appendix A:
Python:
Our models were created through Python.
IMPORTANT:
- All code must be kept in the same folder with the Graphics.py library in a folder
called “graphics”.
- All programs were written on Windows machines and some seem to work
incorrectly on Apple Macs.

Item A.1: Graphics.py

We used a python library known as Graphics.py to visualize our models. Documentation
and installation for Graphics.py can be found here:
http://mcsp.wartburg.edu/zelle/python/

Appendix B:

Desmos:
We used the Desmos online graphing calculator to draft the Ferris wheel design.

Item B.1: Ferris Wheel Model

20-

0 50

Item B.2: Equations of Circles on Ferris Wheel

Page 24 of 37
Team #8478

20

0 5|0

Item B.3: Coordinates of Endpoints of Spokes on Ferris Wheel

Page 25 of 37
Team #8478

X Q Ve X; Q Vs

25 22

25 66 47

® ®
95 — 22 44 — 2 mges 20 44+ 2
T v D Vv 2 v 2
V2211 + 25 V2211 +4 V2211 + 25 44—+/22-1
50
0 50

Item B.4: Coordinates of Endpoints of Legs on Ferris Wheel

Page 26 of 37

Team #8478
A

s |N@P)s

28 44 50

50 0
. ..

X 1 ':‘.‘k;_.:-’-"l'-l 1
0 0

0 50
22 44
Appendix C:

Ferris Wheel Model:
Item C.1: Relative and Exact Coordinates of Drones in Spokes and Wheels

Reference Point: (75, 75)

In these coordinates, the positive y axis extends downwards.

r coordinates for spokes: [10, 15, 20, 25, 30, 35, 40, 45]

theta coordinates for
spokes:
A drone is placed at (75 + r*cos(theta), 75 + r*sin(theta)) for every r
and theta from these sets.

[i(*pi/4 | iis an integer, 0 <=1i<=7]

theta coordinates f
el [*pi/32|iis an integer, 0 <= i <= 63]

A drone is placed at (75 + 50*cos(theta), 75 + 50*sin(theta)) for every
theta from this set.

theta coordinates for

inner wheel:

A drone is placed at (75 + 5*cos(theta), 75 + 5*sin(theta)) for every
theta from this set.

Item C.2: Relative and Exact Coordinates of Drones in Legs and Feet

X (relative)

5
10
15
20
25
30
35
40
45
54
52
48
46
-5
-10
-15
-20
-25
-30

[i*pi/9 | iis an integer, 0 <=i<=17]

Legs & Feet
X (absolute) Y (absolute)

Y (relative)

0
10
20
30
40
50
60
70
80
90
90
90
90

0
10
20
30
40
50

80
85
90
95
100
105
110
115
120
129
127
123
121
70
65
60
55
50
45

75
85
95
105
115
125
135
145
155
165
165
165
165
75
85
95
105
115
125

Page 27 of 37
Team #8478

-35 60
-40 70
-45 80
-54 90
-52 90
-48 90
-46 90

Item C.3: Code for Ferris Wheel Model:
from graphics import *

from math import sin, cos, pi

import time

#python does math in radians

def main():

class Group:

def _init__(self, x_o, y_o, xshift, yshift, win):

selfx o=xo0
selfy o=y_o

40
35
30
21
23
27
29

135
145
155
165
165
165
165

Page 28 of 37
Team #8478

self.points = [Point(x_o + xshift[i], y_o + yshift[i]) for i in range(len(xshift))]

for p in self.points:
p.draw(win)

def move(self, dx, dy):
for p in self.points:

p.move(dx, dy)

class Spoke(Group):

def _init__(self, x_o, y_o, O_o, shift, win):
Group._init_ (self, x_o, y_o, [shift[i]*cos(0_o) for i in range(len(shift))],

[shift[i]*sin(O_o) for i in range(len(shift))], win) #converting polar to x-y

carriageX = [0, 0, 2, 2, 4, 4]
carriageY = [0, 4,0, 4, 0, 4]

Page 29 of 37
Team #8478

self.carriage = Group(self.points[len(self.points)-1].getX(),
self.points[len(self.points)-1].getY(),
carriageX, carriageY, win)
selft=0 o0
self.shift = shift

def tick(self):
self.t +=pi/32
self.draw(self.t)

def draw(selft):
points = [Point(self.x_o + self.shift[i]*cos(t), self.y_o + self.shift[i]*sin(t)) foriin
range(len(self.shift))] #first point no shift from x_o, y_o

foriin range(len(points)):
dx = points[i].getX() - self.points[i].getX()
dy = points[i].getY() - self.points[i].getY()

self.points[i].move(dx,dy)
if (i == len(points) - 1):
self.carriage.move(dx,dy)

win = GraphWin('woo wheel’, 150, 200)

spokeShift = [5*i for i in range(11)]
spokes = [Spoke(75, 75, i*(pi/4), spokeShift, win) for i in range(8)]

outerShiftX = [50*cos(i*pi/32) for i in range(64)]
outerShiftY = [50*sin(i*pi/32) for i in range(64)]
outer = Group(75, 75, outerShiftX, outerShiftY, win)

innerShiftX = [5*cos(i*pi/32) for i in range(64)]
innerShiftY = [5*sin(i*pi/32) for i in range(64)]
inner = Group(75, 75, innerShiftX, innerShiftY, win)

legShiftX = [5, -5, 10, -10, 15, -15, 20, -20, 25, -25, 30, -30, 35, -35, 40, -40, 45, -45,
55,52, 48, 45,-55,-52, -48, -45]
legShiftY = [0, 0, 10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 60, 70, 70, 80, 80, 90, 90,

90,90, 90,90, 90,90, 90,90]
legs = Group(75, 75, legShiftX, legShiftY, win)

while True:
for s in spokes:
s.tick()
time.sleep(0.05)
main()

Appendix D:
Dragon Model:

Item D.1: Relative and Exact Coordinates of Drones in the Head:

X

197
197
197
230
230
230

60
144
154
251
238
281
281
333
308
370
348
474
529
587
626
573
514
480
427
378
405
429
407
465
459
507
526
494
033
360
3
374
347

Y

304
340
375
280
325
360
116
185

80
135
225
109
343
186
3
202
392
398
407
411
390
374
359
340
261
414
382
399
458
436
483
456
497

465
258
272
268
262

Xdif

33
32
33
-137
-53

54

41

84

84
136
111
173
151
277
332
380
4329
376
317
283
230
181
208
232
210
268
262
310
329
297
336
163
160
177
150

Ydif

36
71
-24
21
56
-188
-119
-224
-169
-79
-185
39
-118
3
-102
88
94
103
107
86
70
55
36

110
78
95

154

132

179

152

193

140

161

-32
-36

Xscale
0
0
0
6.6
6.6
6.6
-27.4
-10.6
-8.6
10.8
8.2
16.8
16.8
272
22.2
34.6
30.2
55.4
66.4
78
85.8
75.2
63.4
56.6
46
36.2
41.6
46.4

Yscale
0
T2
14.2
-4.8
4.2
11.2
-37.6
-23.8
-44.8
-33.8
-15.8
-39
7.8
-23.6
14.6
-20.4
17.6
18.8
20.6
21.4
17.2
14
11
T2
-8.6
22
15.6
19
30.8
26.4
35.8
30.4
38.6
28
32.2
-9.2
-6.4
-7.2
-8.4

Page 30 of 37
Team #8478

Item D.2: Coordinates of Initial Locations of Reference Points:

i X theta y
(phase)
0 0 0 200 1 drone
1 10 0.785398 214.1421 | 2 drones
2 20 1.570796 220
3 30 2.356194 214.1421 3 drones
4 40 3.141593 200
5 50 3.926991 185.8579
6 60 4.712389 180
7 70 5.497787 185.8579 | 4 drones
8 80 6.283185 200
9 90 7.068583 214.1421
10 100 7.853982 220
11 110 8.63938 214.1421
12 120 9.424778 200
13 130 10.21018 185.8579
14 140 10.99557 180
15 150 11.78097 185.8579
16 160 12.56637 200
17 170 13.35177 214.1421
18 180 14.13717 220
19 190 14.92257 214.1421
20 200 15.70796 200
21 210 16.49336 185.8579
22 220 17.27876 180

Page 31 of 37
Team #8478

23 | 230 18.06416 185.8579

24 | 240 18.84956 200

25 | 250 19.63495 214.1421

26 | 260 20.42035 220

27 | 270 21.20575 214.1421 head

Item D.3: Code for the Dragon Model
from graphics import *

from math import sin, pi

import time

#parametric x and y functions

def x(t, x_o):

return x_o + 10*t

defy(t, O_o):
return 200 + 20*sin(0_o - t*pi/4)

def main():
win = GraphWin('Kawaii Dragon’, 1000, 1000)

class group: #class used to draw and move group of points

Page 32 of 37
Team #8478

def __init__(self, x_o, y_o, O_o, xshift, yshift): #parameters initial x, y, phase of reference

point, list of point coordinates relative to reference point including reference point

#generate list of points by adding shift to reference value

self.t = 0 #initialize time as 0

selfx o=xo0

selfy o=y_o
self.0_o=0_o

self.points = [Point(x_o + xshift[i], y_o + yshift[i]) for i in range(len(xshift))]

#first point in lists of shift coordinates is the reference point, with 0 shift in x and 0 in

self.rPoint = self.points[0] #define reference point for movements

Page 33 of 37
Team #8478

for p in self.points:
p.draw(win) #display all points

def move(self):
self.t += pi/32 #increment time by pi/64
x_new = x(self.t, self.x_o)
y_new = y(self.t, self.0_o)

xincr = x_new - self.rPoint.getX()
yincr = y_new - self.rPoint.getY() #determine movement vectors to reach coordinates
at new time

for p in self.points:
p.move(xincr, yincr)

head_xshift = [0, 0, 0, 6.6, 6.6, 6.6, -27.4,-10.6, -8.6, 10.8, 8.2, 16.8, 16.8, 27.2, 22.2,
34.6,30.2,55.4, 66.4,78,85.8,75.2,63.4, 56.6, 46, 36.2,41.6, 46.4, 42,
53.6,52.4,62,65.8,59.4,67.2,32.6,32, 35.4, 30]

head_yshift=1[0,7.2,14.2,-4.8,4.2,11.2,-37.6,-23.8, -44.8, -33.8, -15.8, -39, 7.8,
-23.6,14.6,-20.4,17.6,18.8,20.6,21.4,17.2,14, 11, 7.2,-8.6, 22, 15.6,

19, 30.8, 26.4, 35.8, 30.4, 38.6, 28, 32.2,-9.2,-6.4, -7.2, -8.4]#coordinates for dragon
head

gen_xshift = [0,0,0,0]

gen_yshift =[0,7,14,21] #general coordinates for body segments: use first n values for

segment of n drones

x_start = [10*i for i in range(28)]

O_start = [-i*pi/4 for i in range(28)]

y_start = [200 + 20*sin(O_start][i]) for i in range(28)] #define list of 28 starting
coordinates and phases on sine curve

dragon = [] #initialize list of group objects

dragon.append(group(x_start[0], y_start[0], O_start[0], gen_xshift[:1], gen_yshift[:1]))
#add 1-drone tail segment
foriinrange(1,3): #add 2 2-drone tail segments
dragon.append(group(x_start[i], y_start[i], O_start[i], gen_xshift[:2], gen_yshift[:2]))
foriinrange(3,7): #add 4 3-drone tail segments
dragon.append(group(x_start[i], y_start[i], O_start[i], gen_xshift[:3], gen_yshift[:3]))

Page 34 of 37
Team #8478

foriinrange(7,27): #add 20 4-drone tail segments
dragon.append(group(x_start[i], y_start[i], O_start[i], gen_xshift, gen_yshift))
dragon.append(group(x_start[27], y_start[27], O_start[27], head_xshift, head_yshift))
#add head

while True:
for d in dragon:
d.move()
time.sleep(0.05)

main()

Appendix E:
Fireworks Model:
Item E.1: Relative and Exact Coordinates of Drones in Fireworks Model:
Item E.2: Code for Fireworks Model:
from graphics import *
from math import cos, sin, pi
import time

from random import randrange, choice

def main():
win = GraphWin(‘Firework (/@2 @)/*:-" <’, 1000, 1000)

win.setBackground('black’)

dirs = [2*i*pi/5 for i in range(5)]

class wave:
def __init__(self):
self.points = [Point(500,500) for i in range(20)]
self.dirs2 = [randrange(0,360)*(pi/180) for i in range(20)]

for p in self.points:

p.draw(win)
selft=0
for i in self.points:

i.setOutline('yellow")

def movel(self): #move in clusters of 5 after initial burst
foriin range(5):
pdir = dirsJi]
x = cos(pdir)
y = sin(pdir)
for p in range(4*i, 4*i+4):
self.points[p].move(x,y)
selft+=1

def move2(self): #clusters split off after initial burst
colors = ['hot pink’, 'deep sky blue’, 'green']
foriin range(20):
self.points][i].setOutline(choice(colors))
pdir = self.dirs2[i]
x = cos(pdir)
y = sin(pdir)

self.points[i].move(x,y)

initList = [] #list of initialized wave objects
for d in range(13):
x = wave()
initList.append(x)
for iin range(5): #5 iterations before new wave

for n in initList:

Page 35 of 37
Team #8478

if n.t <= 60:
n.movel()
else:
n.move2()
time.sleep(0.05)
while True:
for n in initList:
if n.t <= 60:
n.movel()
else:
n.moveZ2()

time.sleep(0.05)

main()

Page 36 of 37
Team #8478

Page 37 of 37
Team #8478

Works Cited

Fly for Fun under the Special Rule for Model Aircraft. (2017, July 31). Retrieved November 18,
2017, from https://www.faa.gov/uas/getting_started/fly for fun/

M. (2017, February 05). Intel's 500 Drone Light Show! Retrieved November 18, 2017, from
https://www.youtube.com/watch?v=jNIAzeU8POQ

“NRG Stadium.” NRG Park, www.nrgpark.com/nrg-park-facilities/nrg-stadium/.

Stephens, Ric. “Typical Drone Sizes.” Flickr, Yahoo!, 22 Mar. 2016,
www.flickr.com/photos/ricstephens/25365498343/in/photostream/.

Zelle, John M. Python programming: An Introduction to Computer Science. Brantford, Ont.: W.
Ross MacDonald School Resources Services Library, 2010.

