On a Computer-Aided Decomposition of the Complete Digraph into Orientations of $K_{4}-e$ with a Double Edge

Hanson Hao, Claudia Zhu

Illinois Mathematics and Science Academy
Mentor: Dr. Saad El-Zanati (Illinois State University)
International Student Science Fair, IMSA, June 30, 2018

Graphs and Directed Graphs

- Graphs are objects comprising of a vertex set and an edge set, where the edges connect the vertices.
- In a directed graph, or digraph, the edges (called arcs) are assigned directions and are treated as ordered pairs.
- Each different way to assign directions to the edges is called an orientation.
- The complete digraph on n vertices, denoted K_{n}^{*}, is the digraph with the arcs (a, b) and (b, a) between every pair of vertices a and b.
- The number of arcs in K_{n}^{*} is $n(n-1)$.

Digraph Decompositions

- If D and H are digraphs with D a subgraph of H, then a D-decomposition of H is a partition of the arc set of H into subgraphs isomorphic to D, called D-blocks.
- The spectrum for a digraph D is the set of all n for which a D-decomposition of K_{n}^{*} exists.
- Let $V\left(K_{n}^{*}\right)=\mathbb{Z}_{n}$ and let D be a subgraph of K_{n}^{*}. Define rotating D or clicking D as the isomorphism $i \mapsto i+1$ for each vertex in $V(D)$.
- A D-decomposition of K_{n}^{*} is cyclic if clicking D preserves the D-blocks of the decomposition.

Some Background and Previous Results

Hartman and Mendelsohn (1986) found the spectra for all subgraphs of K_{3}^{*}. ${ }^{1}$

[^0]
Some Background and Previous Results

Bunge et al. (2017)- submitted found spectra for almost all of the below 10 orientations of $K_{4}-e .^{2}$
coses)

[^1]
Our Research Question

- We want to find the spectrum for all D such that D is an orientation of $K_{4}-e$ with a double edge.

- When the graph is oriented, one of the two double edges from w to y must be directed towards w and the other one must be directed towards y.
- The digraphs are named using the conventions in An Atlas of Graphs by Read and Wilson.

Some Useful Observations

The orientation of a digraph D may be reversed by changing the direction of the arrow on each arc. We denote the reverse orientation as $\operatorname{Rev}(D)$.
Observe that if D and H are digraphs, then a D-decomposition of H exists if and only if a $\operatorname{Rev}(D)$-decomposition of $\operatorname{Rev}(H)$ exists. Since $K_{n}^{*} \cong \operatorname{Rev}\left(K_{n}^{*}\right)$, we have:
Observation
If D is a digraph, then D decomposes K_{n}^{*} if and only if $\operatorname{Rev}(D)$ decomposes K_{n}^{*}.

Our Digraphs

After writing out the 16 possible orientations and taking out any digraphs that were isomorphic and/or reverses of each other, we obtained 5 digraphs of interest:

$\mathrm{D} 125[w, x, y, z]$	$\mathrm{D} 110[w, x, y, z]$	$\mathrm{D} 106[w, x, y, z]$	$\mathrm{D} 118[w, x, y, z]$	$\mathrm{D} 135[w, x, y, z]$

Necessary Conditions for Digraph Designs

The following are the necessary conditions for a D-decomposition of K_{n}^{*} to exist.
Order condition: $|V(D)| \leq n$.
Size condition: $|E(D)|$ divides $n(n-1)$.
Degree condition: Both gcd\{outdegree $(v): v \in V(D)\}$ and $\operatorname{gcd}\{\operatorname{indegree}(v): v \in V(D)\}$ divide $n-1$, which is both the indegree and outdegree of every vertex in K_{n}^{*}.

- Need $6 \mid n(n-1)$ by condition 2 . Thus $n \equiv 0,1,3$, or 4 $\bmod 6$.
- Need $n \geq 4$ by condition 1 .

D110-Decomposition of K_{6}^{*}

We now demonstrate some designs for small n which use the aforementioned clicking mechanism.

D110-Decomposition of K_{6}^{*}

We now demonstrate some designs for small n which use the aforementioned clicking mechanism.

D110-Decomposition of K_{6}^{*}

We now demonstrate some designs for small n which use the aforementioned clicking mechanism.

D110-Decomposition of K_{6}^{*}

We now demonstrate some designs for small n which use the aforementioned clicking mechanism.

D110-Decomposition of K_{6}^{*}

We now demonstrate some designs for small n which use the aforementioned clicking mechanism.

D135-Decomposition of K_{7}^{*}

Main Idea

- Not all decompositions need to be cyclic; some can be manual. Finding these manual decompositions was aided by a computer.
- A digraph D may be considered numerically as a set of ordered pairs (Indegree, Outdegree) for each vertex.
- K_{6}^{*} may be represented as $\{(5,5),(5,5),(5,5),(5,5),(5,5),(5,5)\}$.
- D135, which is below, may be represented as $[w, x, y, z] \rightarrow\{(2,2),(1,1),(2,2),(1,1)\}$.

Main Idea

" Decompositions can be considered similarly by "adding" the set of ordered pairs corresponding to each D-block to create the graph we wish to decompose.

- The set can be "permuted" in any way.
- To decompose K_{6}^{*} with D135, start with $\{(0,0),(0,0),(0,0),(0,0),(0,0),(0,0)\}$.
- Permute the set: $w \rightarrow 5, x \rightarrow 3, y \rightarrow 6, z \rightarrow 4$.
- Add the permutation to the graph, which then becomes $\{(0,0),(0,0),(1,1),(1,1),(2,2),(2,2)\}$.

Manual D135-Decomposition of K_{6}^{*}

- $\{(0,0),(0,0),(0,0),(0,0),(0,0),(0,0)\}$
- $\{(0,0),(0,0),(1,1),(1,1),(2,2),(2,2)\}$
- $\{(2,2),(1,1),(1,1),(1,1),(4,4),(3,3)\}$
- $\{(3,3),(1,1),(3,3),(1,1),(5,5),(5,5)\}$
- $\{(4,4),(3,3),(4,4),(3,3),(5,5),(5,5)\}$
- $\{(5,5),(5,5),(5,5),(5,5),(5,5),(5,5)\}$

Code Algorithm

- The code does the above process backwards: it starts at the end product (i.e. $\{(5,5),(5,5),(5,5),(5,5),(5,5),(5,5)\})$ and subtracts set permutations until we reach $\{(0,0),(0,0),(0,0),(0,0),(0,0),(0,0)\}$.
- The code also uses a memoization technique in order to reduce runtime.
- In the memoization technique, the code stores previous failed runs so it does not have to recompute the same negative result again in the future.
- Many important building blocks were found using the code.

Impossibility Results

- There does not exist a D106- decomposition of $K_{6 p}^{*}$ or $K_{6 q+3}^{*}$ for any $p \geq 1, q \geq 1$.
- There does not exist a D118- decomposition of $K_{6 p}^{*}$ or $K_{6 q+4}^{*}$ for any $p \geq 1, q \geq 1$.

Impossibility Results-Example Proof

- There does not exist a D118- decomposition of $K_{6 p}^{*}$ or $K_{6 q+4}^{*}$ for any $p \geq 1, q \geq 1$.
- Apply necessary condition C, which is:
- Both gcd $\{$ outdegree $(v): v \in V(D)\}$ and $\operatorname{gcd}\{\operatorname{indegree}(v): v \in V(D)\}$ divide $n-1$.
- $\operatorname{gcd}\{$ outdegree $(v): v \in V(\mathrm{D} 118)\}=\operatorname{gcd}(2,2,2,0)=2$. By condition C, if a D118- decomposition of K_{n}^{*} existed, then we must have $2 \mid(n-1)$. Thus, $(n-1) \equiv 0 \bmod 2$. However, $(6 p-1) \equiv(6 q+3) \equiv 1 \bmod 2 \not \equiv 0 \bmod 2$, so the necessary condition fails and thus there does not exist a D118decomposition of $K_{6 p}^{*}$ or $K_{6 q+4}^{*}$ for any $p \geq 1, q \geq 1$.

Blow-up Constructions

- In building general constructions from small cases, we utilize the following theorems from previous literature: ${ }^{3}$
- If n is odd, then a $\left\{K_{3}, K_{5}\right\}$-decomposition of K_{n} exists.
- The necessary and sufficient conditions for the existence of a K_{3}-decomposition of $K_{u \times m}$ are
(i) $u \geq 3$,
(ii) $(u-1) m \equiv 0(\bmod 2)$, and
(iii) $u(u-1) m^{2} \equiv 0(\bmod 6)$.
- If $u \geq 3$ and $u \equiv 0(\bmod 3)$, then there exists a K_{3}-decomposition of $K_{u \times 2,4}$.
- Let $m, r, s, t, u_{1}, u_{2}, \ldots, u_{m}$ all be positive integers. If there exists a $\left\{K_{r}, K_{s}\right\}$-decomposition of $K_{u_{1}, u_{2}, \ldots, u_{m}}$, then there also exists a $\left\{K_{r \times t}, K_{s \times t}\right\}$-decomposition of $K_{t u_{1}, t u_{2}, \ldots, t u_{m}}$.

[^2]
Blow-up Constructions

- If $n \equiv 0 \bmod 6$ and $n \geq 6$, then a $\left(K_{n}^{*}, \mathrm{D}\right)$ design exists for $D \in\{\mathrm{D} 135\}$.
- If $n \equiv 1 \bmod 6$ and $n \geq 7$, then a $\left(K_{n}^{*}, \mathrm{D}\right)$ design exists for $D \in\{\mathrm{D} 135\}$.

Conclusions and Future Work

- We were able to make general constructions and impossibility arguments for some of the cases.
- The majority of cases produced partial results.
- Our code could be optimized to reduce runtime and memory usage, as both were impediments when trying to brute-force through larger cases.

Acknowledgements

- We'd like to thank our mentor, Dr. Saad El-Zanati, without whose guidance and support this project would have been impossible.

R．R．J．R．Abel，F．E．Bennett，and M．Greig，＂PBD－Closure，＂in Handbook of Combinatorial Designs，C．J．Colbourn and J．H．Dinitz（Editors），2nd ed．，Chapman \＆Hall／CRC Press， Boca Raton，FL，2007，pp．246－254．

囯 J．－C．Bermond，C．Huang，A．Rosa，and D．Sotteau， Decomposition of complete graphs into isomorphic subgraphs with five vertices，Ars Combin．， 10 （1980），211－254．

围 J．－C．Bermond and J．Schönheim，G－decomposition of K_{n} ， where G has four vertices or less，Discrete Math． 19 （1977）， 113－120．

围 R．C．Bunge，B．D．Darrow Jr．，T．M．Dubczuk，Mentor， Competition Entrant，G．L．Keller，G．A．Newkirk，and D．P．Roberts，On Decomposing the Complete Symmetric Digraph into Orientations of $K_{4}-e$ ，Discussiones Mathematicae－Graph Theory，submitted．

R R. C. Bunge, Mentor, H. J. Fry, K. S. Krauss, D. P. Roberts, C. A. Sullivan, A. A. Unsicker, and N. E. Witt, On the Spectra of Bipartite Directed Subgraphs of K_{4}^{*}, J. Combin. Math. Combin. Comput., 98 (2016), 375-390.
E. C. J. Colbourn and J. H. Dinitz (Editors), Handbook of Combinatorial Designs, 2nd ed., Chapman \& Hall/CRC Press, Boca Raton, FL, 2007.
(R. Ge, "Group divisible designs," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman \& Hall/CRC Press, Boca Raton, FL, 2007, pp. 255-260.
R. G. Ge, S. Hu, E. Kolotoğlu, and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J. Combin. Des. 23 (2015), 233-273.

國 A. Hartman and E. Mendelsohn, The Last of the Triple Systems, Ars Combin. 22 (1986), 25-41.
围 R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford University Press, Oxford, 1998.

[^0]: ${ }^{1}$ A. Hartman and E. Mendelsohn, The Last of the Triple Systems, Ars Combin. 22 (1986), 25-41.

[^1]: ${ }^{2}$ R. C. Bunge, B. D. Darrow Jr., T. M. Dubczuk, Mentor, Competition Entrant, G. L. Keller, G. A. Newkirk, and D. P. Roberts, On Decomposing the Complete Symmetric Digraph into Orientations of K4-e, Discussiones Mathematicae-Graph Theory, submitted.

[^2]: ${ }^{3}$ C. J. Colbourn and J. H Dinitz (Editors), Handbook of Combinatorial Designs, 2nd ed., Chapman \& Hall/CRC Press, Boca Raton, FL, 2007.

