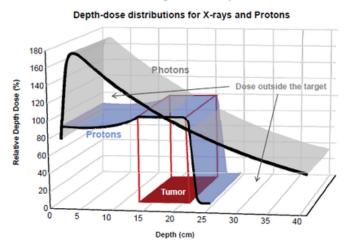

Classification of Intensity-Modulated Proton Therapy Plans

Alice Liu & Louise Lima

Overview

1.What is Proton Radiotherapy?



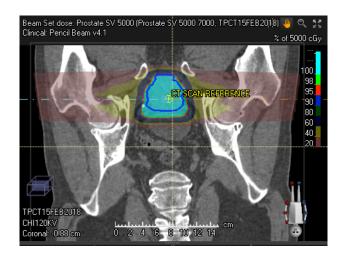
Radiation Treatment

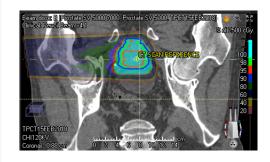
- **Energized Particles**
- **Cell Damage**
- Amount covered vs Risk

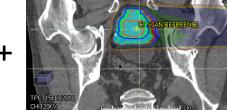
The Physics of Protons

X-rays deliver a much greater dose outside the target for the same dose within the target volume as protons

Protons vs

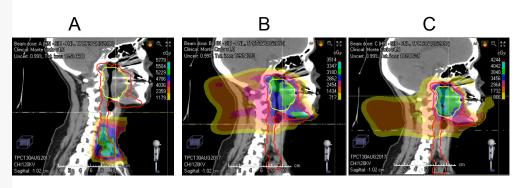

- Phastons
- Charge
- Bragg Peak
 - Extended Bragg Peak
- Organs at Risk (OAR) & Accuracy

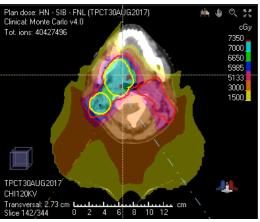

Source: Thomas DeLaney and Hanne Kooy Proton and Charged Particle Radiotherapy

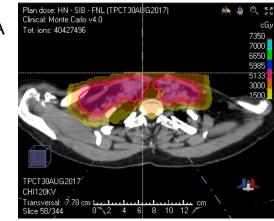

2.
IMPT: SFUD vs
MFO

Single-Field Uniform Dose (SFUD)

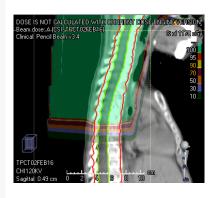
- Homogeneous dose
- Dosage distributed evenly across beams
- Beams optimized individually

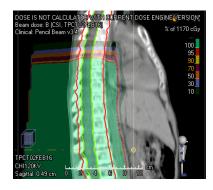


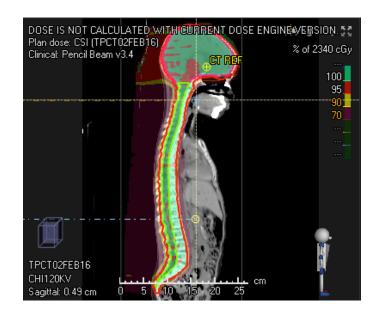



Multi-Field Optimization (MFO)

- Single-field restriction removed
- All beams optimized simultaneously
- Better avoids specific areas



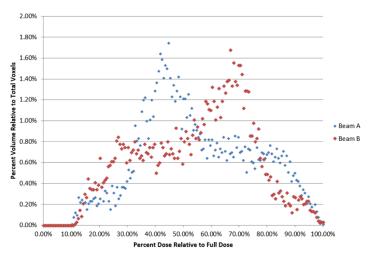

B+C



SFUD/MFO Matching

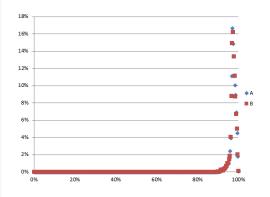
- Combines SFUD and MFO methods
- Usually done by hand

3. Research Focus

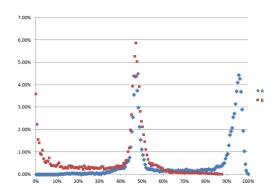

How can we evaluate proton treatment plans based on the degree of their optimization?

4. Approach and Process

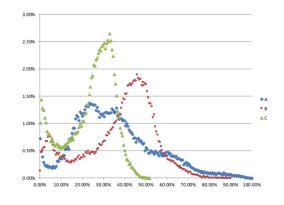
Differential Dose-13 Volume Histogram (DVH)


Graphical presentation of volume given specific amounts of dosage

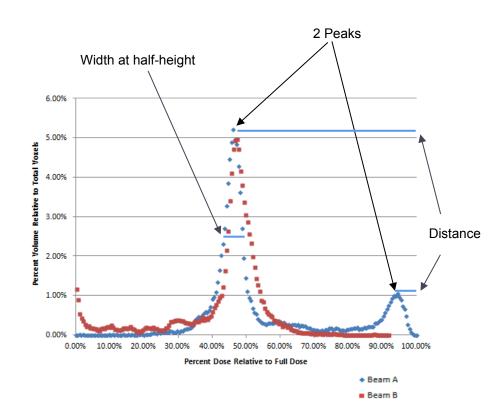
Typical Traits


SFUD

- Identical Beams
- Single peak/beam
- Tall peak at end of graph


MFO-Matching

- Beams may match
- Peaks in front or closer to the middle


MFO

- Beams don't match
- Usually 2+ peaks/ beam

Important Factors

- Number of "peaks"
- Distance to end of beam
- Absolute difference
- Width at half-height
- Slope

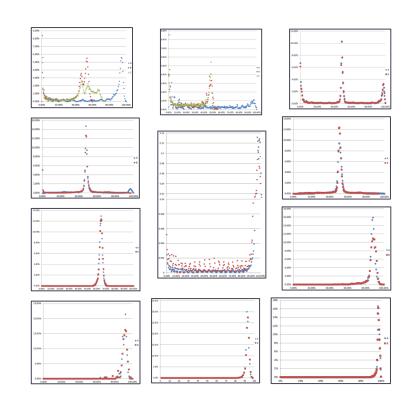
Scaling

Plan starts at 100% SFUD

Increase

Slope

Decrease


- Number of peaks
- Distance
- Midwidth
- Difference

```
ranking = 100.0
if (avgBeamPeak > 1):
    ranking = ranking - (25*(1-.5**(avgBeamPeak-1))/.5)
print("ranking after peak count: " + str(ranking))
if(avgDist >= 40):
    ranking = ranking - 40
else:
    ranking = ranking - avgDist
print("ranking after distance: " + str(ranking))
ranking = ranking - avgMidWidth
print("ranking after midwidth: " + str(ranking))
if (avgAbsDiff >= 1):
    ranking = ranking - 25
else:
    ranking = ranking - avgAbsDiff*25
print("ranking after diff:" + str(ranking))
ranking = ranking - avgSlope/2
print("ranking after slope: " + str(ranking))
if (ranking > 100):
    ranking = 100
if (ranking < 0):
    ranking = 0
```

5. Results and Further Discussion

Data Collection

Patient Number	Rank	Peak	Slope	MW	DtE	Diff
1	0.000%	3	-1.3315	9.096 %	33.93%	88.19%
5	9.517%	3 2/3	-1.7429	2.648	46.45%	57.74%
11	20.07%	3	-1.7848	1.627 %	25.15%	58.91%
21	30.39%	2	-14.34	2.474	36.95%	44.6%
29	42.21%	1.5	-3.6143	3.031	5.128%	21.42%
31	53.49%	1	-1.9974	3.682 %	46.41%	15.3%
32	61.72%	1	-2.8183	3.100	34.77%	6.43%
36	76.40%	1	-2.1068	5.714 %	11.11%	31.31%
				E 740		

Rankings vs Type of Treatment

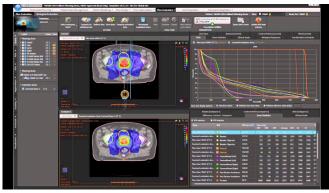
2 Beam Plans

Ranking Range	Treatment Area		
20 - 30%	Breast w Expanders		
40%	Head/Spine		
60 - 80%	Prostate & Nodes		
75 - 90%	Head/Neck		
90-100%	Prostate		

2 Beam Plans 3 Beam Plans

Rankings	Area
12.08296901	Head/Neck
18.58612179	Breast
20.7144611	Prostate + Nodes
22.32948317	Breast
23.63542898	Breast
29.87991872	Breast
34.71687458	Head/Neck
38.57230405	Breast
39.56334782	Head/Spine
42.20279116	Head/Spine
53.490539	Breast
61.7219181	Prostate & Nodes
65.52117101	Prostate & Nodes
76.40080578	Head/Neck
78.36737925	Prostate & Nodes
81.20967554	Head/Neck
84.20014473	Head/Neck
88.23070152	Head/Spine
90.51896025	Head/Neck
90.95355415	Prostate (SV)
92.47610391	Prostate (SV)
92.84639367	Prostate (SV)
93.25882048	Prostate (SV)
95.62937522	Head/Neck
96.25734925	Prostate (SV)
98.56583001	Prostate (SV)

Rankings	Area
0.0000	Head/Neck
5.6318	Head/Neck
7.5559	Head/Neck
7.6585	Head/Neck
8.8974	Head/Neck
9.5168	Head/Neck
13.2522	Head/Neck
16.7241	Head/Neck
20.0745	Head/Neck
21.1583	Head/Neck
21.3435	Head/Neck
23.8172	Head/Neck
23.8305	Head/Neck
26.4678	Head/Neck
27.4411	Head/Neck
30.3951	Head/Neck
31.4848	Head/Neck
35.9254	Head/Neck
37.2278	Head/Neck
38.7692	Head/Neck
43.0717	Head/Neck
65.4122	Head/Neck
66.8226	Head/Neck
88.7753	Head/Neck


Use and Further Research

Planning

- Determining optimal treatment plan
- Minimizing risk factor associated with plan

Clinical

Degree of accuracy in patient/beam positioning

THANK YOU

T\$teve Laub & Adit Panchal

Medical physics team, Northwestern Medicine Chicago Proton Center

Questions?

References

- A Brief History of CT. (May, 2013). Retrieved from http://www.impactscan.org/ CThistory.htm
- Computed Tomography. (Dec. 15, 2017). Retrieved from https://www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115317.htm
- Drzymala, R. E., Mohan, R., Brewster, L., Chu, J., Goitein, M., Harms, W., & Urie, M. (1991). Dose-Volume Histograms. Int. J. Radiation Oncology Biol. Phys, 21, 71-78. Retrieved January 2, 2018.
- Journal Of the ICRU Report 78. International Commission on Radiation Units and Measurements, 7(2), 5-139.
- Liu, W., Zhang, X., Li, Y., Mohan, R., (2012). Robust Optimization of Intensity Modulated Proton Therapy. American Association of Physicists in Medicine, Vol. 39(2), pp. 1079-1091.