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Equilibrium and kinetic properties of cyanide and imidazole binding to the heme domains of Sinorhizobium
meliloti and Bradyrhizobium japonicum FixL (SmFixLH and BjFixLH) have been investigated between pH 5 and
11. KD determinations were made at integral pH values, with the strongest binding at pH 9 for both ligands. KD

for the cyanide complexes of BjFixLH and SmFixLH is 0.15 ± 0.09 and 0.50 ± 0.20 μM, respectively, and
0.70 ± 0.01 mM for imido-BjFixLH. The association rate constants are pH dependent with maximum values of
443 ± 8 and 252 ± 61 M−1 s−1 for cyano complexes of BjFixLH and SmFixLH and (5.0 ± 0.3) × 104 and
(7.0 ± 1.4) × 104 M−1 s−1 for the imidazole complexes. The dissociation rate constants are essentially indepen-
dent of pH above pH 5; (1.2 ± 0.3) × 10−4 and (1.7 ± 0.3) × 10−4 s−1 for the cyano complexes of BjFixLH and
SmFixLH, and (73±19) and (77±14) s−1 for the imidazole complexes. Two ionizable groups in FixLH affect the
rate of ligand binding. The more acidic group, identified as the heme 6 propionic acid, has a pKa of 7.6 ± 0.2 in
BjFixLH and 6.8 ± 0.2 in SmFixLH. The second ionization is due to formation of hydroxy-FixLH with pKa values
of 9.64 ± 0.05 for BjFixLH and 9.61 ± 0.05 for SmFixLH. Imidazole binding is limited by the rate of heme pocket
opening with maximum observed values of 680 and 1270 s−1 for BjFixLH and SmFixLH, respectively.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Studies of ligand binding to heme proteins provide crucial informa-
tion concerning the structural basis for heme protein activity [1]. The
heme iron exists in a number of redox states that bind distinctly
different ligands. Among the Fe(II) heme ligands, O2, CO, and NO are
most important, while Fe(III) heme ligands include cyanide, azide,
fluoride, and imidazole. The Fe(III) heme ligands tend to be weak
acids or bases and the binding of these ligands are often pH dependent,
providing information on the discrimination between neutral and
charged forms of the ligand, as well as being sensitive reporters of the
acid/base chemistry, the electrostatic environment, and the accessibility
of the heme.

An important class of heme proteins is the heme-based sensor pro-
teins that function by detecting the presence of such small diatomic
molecules as O2, CO, and NO [2]. This class includes the FixL protein in
the nitrogen-fixing bacteria Rhizobia. FixL is an oxygen sensing protein
that works in tandem with the regulator protein FixJ as part of a classic
itrogen-fixing bacteria; FixLH,
e domain; BjFixL, FixL from

zobium japonicum; SmFixL, FixL
obium meliloti; CcP, cytochrome
acid at heme position 6; HP7,
bacterial two-component regulatory system [3,4]. In the presence of O2,

these two proteins ultimately inhibit transcription of the nitrogen-
fixing genes nifA and fixK [5].

FixL from Sinorhizobium meliloti (formerly Rhizobium meliloti),
SmFixL, contains three functional domains, an N-terminal transmem-
brane domain, a central heme-sensor domain, and a C-terminal histi-
dine kinase domain [6,7]. The FixL from Bradyrhizobium japonicum
(BjFixL) is soluble, lacking the transmembrane domain [8]. The activity
of the kinase domain responds to the spin-state of the heme iron in
the sensor domain [9]. In the unligated Fe(II) and Fe(III) forms of FixL,
the kinase activity is maximal, while binding a strong-field ligand such
as O2 to the Fe(II) heme or cyanide to the Fe(III) state inactivates the ki-
nase activity. Ligand binding induces a conformational change in the
hemedomain that is relayed to the kinase domain causing the transition
between active and inactive states. Currently, twenty-one structures of
the heme domains of BjFixL and SmFixL have been deposited in the
protein data bank including those of the unligated Fe(II) and Fe(III)
states as well as those of the O2, CO, NO, CN−, imidazole, and 1-
methylimidazole complexes documenting the conformational changes
associated with ligand binding in these proteins [10–18].

The rates of ligand binding to the heme domains of both BjFixL and
SmFixL have been determined for O2 and CO to the Fe(II) state and for
NO, azide, cyanide, fluoride, imidazole, and 4-methylimidazole to the
Fe(III) state, generally in the pH region 7 to 8 [14,16,19–27]. Both O2

and CO bind to the FixLs at a slower rate than they bind to deoxy-
myoglobin. Cyanide binding to the Fe(III) state of the FixLs is slower
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than binding to metmyoglobin but both NO and imidazole bind to FixL
at a faster rate than to metmyoglobin. Winkler et al. [21] found that
the affinities of the basic ligands for metFixL correlated with the ligand
pKa values and that the association rate constants following the reverse
trend. The observation that bulky ligands such as imidazole and
4-methylimidazole bound faster that the smaller cyanide and fluoride
ions suggested that steric factors were not rate-limiting but rather
that the rates of bond formation and deprotonation of the ligand
within the apolar heme pocket were the dominant factors in complex
formation.

Ligand binding to the Fe(III) state of the heme sensors is relatively
uncharacterized compared to representatives of other major classes of
heme proteins. FixL has a novel heme-binding fold, an apolar heme
pocket, and undergoes significant structural change upon ligand bind-
ing [10]. The primary goal of this study is to investigate the pH depen-
dence of cyanide and imidazole to the heme domain of FixL (FixLH)
and compare the mechanism of ligand binding to FixLH with binding
to the other major classes of heme proteins. Due to the coupling of
significant conformational changes with ligand binding, the FixLH
studies may provide additional, unique, insight into how protein
structure can modulate the chemical reactivity of the heme group.

2. Materials and methods

2.1. Cloning, expression, and purification of the FixL heme domains

The heme domain of BjFixL was cloned by amplifying codons
140–270 of the FixL gene using genomic DNA from B. japonicum as the
template for PCR. An NdeI recognition site was introduced at the 5′
end and an EcoRI site introduced at the 3′ end. NdeI/EcoRI digests
were ligated into the Novagene vector pET-24b(+) under the control
of the T7 promoter to produce the expression construct named
pET-24b(+)/BjFixLH.

Escherichia coli strain TG1 with the plasmid pEM130 coding for
ampicillin resistance and for the S. meliloti FixLN and FixJ proteins
was provided by Andrew Hansen of Northern Illinois University. The
heme domain of SmFixL was amplified by PCR using primers that in-
troduced NdeI and BamHI restriction sites at the 5′ and 3′ ends of the
DNA. The amplified fragments were ligated into pJES307 to produce
an expression vector named pJES307/SmFixLH. DNA sequencing indi-
cated that the cloned SmFixLH corresponded to residues 123 to 260 of
SmFixL.

The plasmid pET-24b(+)/BjFixLHwas transformed into E. coli strain
BL21(DE3) and liter cultures grown at 37 °C in TB medium containing
50 μg/mL ampicillin. Expressionwas induced by 1mM IPTG atOD600 be-
tween 1.0 and 1.2. The induced culture was grown overnight at 28 °C.
Cells were harvested and lysed in a French Press. The supernatant con-
taining BjFixLH was applied to a gel-filtration column, Sephadex G-75,
and eluted with a buffer containing 20 mM potassium phosphate,
100 mM NaCl, pH 7.5. Fractions containing the protein were pooled
and applied to a DEAE-Sepharose (FastFlow) column equilibrated with
a 20 mM potassium phosphate buffer pH 8.0 and eluted with a
50–500 mM NaCl gradient over 200 mL. Purity of BjFixLH was
determined by SDS-PAGE and UV–vis spectroscopy.

The plasmid pJES307/SmFixLH was transformed into E. coli strain
BL21(DE3) and liter cultures grown at 37 °C in LB medium containing
50 μg/mL ampicillin. Expression was induced by 1 mM IPTG at OD600

between 0.5 and 0.7. The induced culture was grown for a further 4–
5 h for optimum protein expression. SmFixLH expresses predominantly
in the insoluble fraction, and hence had to be isolated and purified by
denaturation of inclusion bodieswith 8Murea and subsequent refolding
of the protein. Cells were lysed by sonication and the insoluble protein
was solubilized in 15 mL of Buffer A (20 mM Tris, 10 mM NaCl, 5%
glycerol, 10 mM β-mercaptoethanol and 1 mM phenylmethylsulfonyl
fluoride, pH 8.0) containing 8 M urea and 0.75 mM hemin. The
solubilized mixture was dialyzed against two changes of Buffer A
containing hemin but no urea, followed by a third change against Buffer
A without hemin. The dialysate was applied directly to a DEAE-
Sepharose (FastFlow) column pre-equilibrated with Buffer A and eluted
with a 10–300 mM NaCl gradient over 200 mL. Fractions containing
SmFixLH were pooled and further purified by gel filtration on Sephadex
G-75. Purity of SmFixLH was determined by SDS-PAGE and UV–vis
spectroscopy.

MALDI-TOF mass spectrometry of the purified proteins indicated
that the N-terminal methionine was removed from BjFixLH but that
SmFixLH retained the N-terminal methionine.

2.2. Buffers

Between pH 4.0 and 5.5, buffers were 0.010M acetatewith sufficient
KH2PO4 to adjust the ionic strength to 0.100M. Between pH 5.5 and 8.0,
the buffers were mixtures of KH2PO4 and K2HPO4 with a total ionic
strength of 0.100 M. Between pH 8.5 and 10.5, the buffers were
0.010 M glycine with added K2HPO4 to adjust the ionic strength to
0.100 M. Between pH 11.0 and 11.5, the buffers were mixtures of
K2HPO4 and K3PO4 with a total ionic strength of 0.100 M.

2.3. Spectroscopic measurements and protein concentration determination

Electronic absorption spectra of protein solutions were determined
using either a Varian/Cary Model 3E or a Hewlett Packard Model
8452A spectrophotometer. The extinction coefficients of BjFixLH and
SmFixLHwere determined using the pyridine hemochromogenmethod
of Berry and Trumpower [28].

2.4. Equilibrium constant determinations

Spectroscopic changes associated with formation of the cyanide and
imidazole complexes enabled monitoring of complex formation. Deter-
mination of the equilibrium constants was done by titrating ~10 μM
protein with increasing concentrations of buffered ligand solution
until saturation was reached. The solutions were generally incubated
overnight to assure equilibrium had been attained. Equilibrium studies
were carried out at integral pH intervals between 4 and 11 for cyanide
and between pH 6 and 11 for imidazole, 25 °C.

2.5. Transient-state kinetic measurements

The rates of cyanide and imidazole binding were determined using
an Applied Photophysics Ltd. stopped-flow instrument. The reactions
were monitored at the wavelength of maximum difference between
the ligand-free and ligand-bound states, 426 nm for cyanide binding
and 418 nm for imidazole binding. Reactions were carried out under
pseudo-first order conditionswith excess ligand. Protein concentrations
were typically ~1 μM. Observed rate constants were determined at a
minimum of five different ligand concentrations at each pH with the
ligand concentration varying by at least a factor of five for each experi-
ment. A minimum of 10 individual traces of absorbance change versus
time were acquired at each ligand concentration allowing the mean
value of the observed rate constant and its standard deviation to be de-
termined. Kinetic studies were carried out at every half pH between
pH 5 and 11 at 0.10 M ionic strength, 25 °C.

2.6. Data analysis

Data analysiswas performed using SigmaPlot version 12.5. Equilibri-
um constants for both cyanide and imidazole binding were determined
by fitting the change in absorbance to a single-site binding isotherm
using non-linear least squares regression. The standard deviation in KD

was estimated from the fit of the data and averages 13% of KD. The
value of ka for cyanide binding was determined from the slope of linear
plots of kobs versus the cyanide using linear least square regression. The
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standard deviation of ka was calculated from the fit and averages 9% of
ka. The value of kd for cyanide dissociationwas calculated from the prod-
uct ofKD and ka and has an average calculated standard deviation of 16%.
The rate of imidazole binding saturates at high imidazole concentrations
(Section 3.6). The value of kobs was fit to a three parameter empirical
equation using non-linear least squares regressionwith standard devia-
tions of the parameters estimated from thefit. The standard deviation of
P1, the apparent association rate constant, averages 26% and the average
standard deviation for P2, the apparent dissociation rate constant, is
13%. Due to the long extrapolation to saturation, the standard deviation
for P3, the parameter that describes the curvature of the kobs plot,
averages 47%.

3. Results

3.1. Spectroscopic properties of BjFixLH and SmFixLH

The electronic absorption spectra of both BjFixLH and SmFixLH are
pH dependent. Spectra of BjFixLH at pH 7 and 11 are shown in Fig. 1.
The spectrum of SmFixLH is nearly identical to that of BjFixLH and is
shown in Fig. S1 of the Supplementary Data, Appendix A, provided
with this article. Selected spectral parameters for both heme domains
are collected in Table 1.

Plots of the absorbance change at the Soret maxim (395 nm) are
shown as a function of pH in Fig. 2. The data were fit to the titration of
a single ionizable group using non-linear least squares regression.
Best-fit values for the apparent pKas are 9.64 ± 0.05 and 9.61 ± 0.05
for BjFixLH and SmFixLH, respectively. Spectra of the alkaline forms of
the heme domains, attributed to hydroxide ion binding to the heme
iron, were calculated from the pH 7 and 11 spectra using the appropri-
ate pKa values. Selected spectral parameters for BjFixLH-OH and
SmFixLH-OH are collected in Table 1.

3.2. Equilibrium binding of cyanide to BjFixLH and SmFixLH

Addition of buffered cyanide solutions to the FixL heme domains
causes large changes in the absorption spectrum of the protein. Spec-
tral changes associated with cyanide binding to BjFixLH at pH 7.0 are
shown in Fig. 3. The Soret maximum shifts from 395 nm to 423 nm
with a 13% increase in intensity of the Soret band. Spectral changes
associated with cyanide binding to SmFixLH at pH 7.0 are shown in
Fig. S2 (Supplementary Data). Formation of the cyanide complexes
of both FixLHs is essentially complete under the experimental
Fig. 1. The absorption spectra of BjFixLH at pH 7.0 (thin solid line) and at pH 11.0 (thick
solid line).
conditions used to determine the spectra shown in Figs. 3 and S2. Se-
lected spectroscopic parameters of the FixLH cyanide complexes are
included in Table 1.

The spectrum of the cyano complex of BjFixLH is independent of pH
between pH 5 and 11, with only a minor perturbation at pH 4, Fig. S3.
The spectrumof the cyano complex of SmFixLH is independent of pHbe-
tween 7 and 11. Below pH 7, there is a decrease in the intensity of the
Soret band and a shift from 423 nm at pH 7 to 419 nm at pH 4, Fig. S4.
Both SmFixLH and its cyano complex appear to be more susceptible
to acid denaturation than BjFixLH. After overnight incubation, both
SmFixLH and its cyanide complex were slightly turbid suggesting
some denaturation had occurred at pH 4.

Cyanide titrations of the heme domains were monitored using the
change in absorbance at 426 nm, the wavelength of maximum
difference between FixLH and its cyanide complex. Identical aliquots
of the hemedomainwere added to a series of test tubes containing buff-
ered cyanide solutions of increasing ligand concentration. Sampleswere
incubated overnight to assure complete equilibration. Plots ofΔA426 as a
function of the total cyanide concentration are shown for both BjFixLH
and SmFixLH at pH 7 in Fig. 4.

To determine the equilibrium dissociation constant, KD, the data
shown in Fig. 4 were fit to Eq. (1). In Eq. (1), P and L represent the
total protein and total ligand concentrations,

ΔAobs ¼
ΔAmax

2P
B−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2−4PL

p� �
ð1Þ

respectively, and B is equal to (P + L + KD). ΔAmax is the maximum
change in absorbance at infinite ligand concentration. Best-fit values
for KD at pH 7.0 are (5.2 ± 0.5) μM and (10.4 ± 0.9) μM for the
BjFixLH-CN and SmFixLH-CN complexes, respectively.

KD for both the BjFixLH-CN and SmFixLH-CN complexes were deter-
mined at integral pH values between pH 4 and 11. A plot of the negative
logarithm of KD (log KA) as a function of pH is shown in Fig. 5 for both
BjFixLH-CN and SmFixLH-CN. The binding affinity for cyanide is strongest
at pH9whereKD is 0.15±0.09 μMfor BjFixLH-CN and 0.50±0.20 μMfor
SmFixLH-CN, Fig. S5. Values ofKD at all pHvalues are collected in Tables S1
and S2 for BjFixLH-CN and SmFixLH-CN, respectively. The solid lines
through the data in Fig. 5 were calculated from a mechanism to be
discussed below.

3.3. Equilibrium binding of imidazole to BjFixLH

The spectrum of the imidazole complex with BjFixLH at pH 7.0 is
shown in Fig. 3. The Soret maximum shifts from 395 nm in the absence
of imidazole to 415 nm in the presence of imidazole. The spectrum of
the BjFixLH-imidazole complex is independent of pH between pH 6
and 11withα, β, and Soret bands at 563, 534, and 415 nm, respectively,
Table 1.

Equilibrium dissociation constants for the BjFixLH-imidazole
complex were determined by titrating approximately ~8 μM protein
with increasing imidazole concentrations. Absorbance changes were
monitored at 418 nm, the wavelength of maximum difference between
the complex and the free protein. A titration at pH 8.0 is shown in
Fig. S6. The best-fit value of KD for the BjFixLH-imidazole complex at
pH 8.0 is 1.9 ± 0.1 mM, about 3 orders of magnitude weaker than for
the cyanide complex.

The equilibrium dissociation constant for the BjFixLH-imidazole
complex was determined at each half pH unit between pH 6 and 11.
Values of KD are collected in Table S3. Values of − log(KD) = log(KA)
are plotted as a function of pH in Fig. 5. The bell-shaped dependence
of− log(KD) indicates that at least two ionizable groups influence imid-
azole binding to BjFixLH. The data are best fit using the equilibrium as-
sociation constant, KA, rather than KD and were fit to an empirical
equation involving two ionizable groups with pKas designated pKa1



Table 1
Spectroscopic parameters for BjFixLH, SmFixLH, and their hydroxide and cyanide complexes.

Protein Protein λ (ε)b δ band λ (ε)b Soret band λ (ε)b CT2 banda λ (ε)b β band λ (ε)b α band λ (ε)b CT1 banda λ (ε)b

BjFixLH 269 (51) 395 (126) 508 (16.8) 535sh (13.02) 642 (3.8)
SmFixLH 269 (31) 395 (126) 510 (16.0) 536sh (12.8) 642 (3.4)
BjFixLH-OH 269sh (48) 360sh (41) 412 (114) 490sh (10.4) 541 (11.7) 578 (10.3) 605sh (7.5)
SmFixLH-OH 276sh (31) 356sh (40) 410 (110) 488sh (10.8) 539 (10.8) 578 (9.2) 602sh (8.0)
BjFixLH-CN 269 (53) 364 (39) 423 (142) 484sh (11.8) 540 (15.1) 574sh (11.4)
SmFixLH-CN 274 (31) 364 (36) 423 (135) 488sh (10.5) 540 (14.3) 574sh (10.3)
BjFixLH-imid 265 (59) 360sh (34) 415 (145) 485Sh (9.8) 534 (13.8) 563 (12.1)

a CT1 and CT2 represent charge transfer bands. b λ, wavelength in nm. ε, extinction coefficient in mM−1 cm−1; sh follows the value of λ if the band appears as a shoulder.
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and pKa2., Eq. (2). In Eq. (2), the values of KA
acid, KA

neut, and KA
base are the

limiting values of KA at

KA ¼
Kacid
A

Hþ� �
Ka1

þ Kneut
A þ Kbase

A
Ka2

Hþ� �
Hþ� �
Ka1½ þ 1þ Ka2

Hþ� �
 ! ð2Þ

low pH, intermediate pH, and high pH, respectively. Best-fit parameters
are collected in Table S4.

A preliminary interpretation of the data is that KA
acid represents the

binding of the imidazolium ion to BjFixLH, with a value of 39 ± 11M−1,
KA
neut represents the binding of imidazole to BjFixLH with a value of

(1.6 ± 0.3) × 103 M−1, and KA
base represents binding of imidazole to

the alkaline, hydroxyl-ligated form of BjFixLH. KA
base is equal to zero

with an estimated error of±57M−1. Thismechanism is not completely
satisfactory since the best-fit values for the two ionizations are 8.0±0.1
and 10.0 ± 0.2, significantly different from the independently deter-
mined values of 7.04 ± 0.02 [29] and 9.64 ± 0.05, Fig. 2, for the ligand
and protein ionizations, respectively.

3.4. Kinetics of cyanide binding to BjFixLH and SmFixLH

The rate of cyanide binding to the heme domains of FixL was
investigated under pseudo first-order condition using stopped-flow
techniques between pH 5 and 11.5. The reaction is monophasic with
the observed rate constant linearly dependent upon the cyanide
concentration between pH 5 and 9.5, Fig. S7. The data are consistent
Fig. 2. Plot of the absorbance at 395 nm as a function of pH for BjFixLH (solid circles) and
SmFixLH (open circles).
with reversible complex formation, Eq. (3). Under pseudo-first order
conditions, where [L] ≫ [P], the observed rate constant, kobs, will be.

Pþ L ⇄
ka

kd
PL ð3Þ

given by Eq. (4). Values of the association rate constant, ka, and the
dissociation rate constant, kd,

kobs ¼ ka L½ � þ kd ð4Þ

can be determined from the slope and intercept of plots of kobs versus
ligand concentration, Fig. S7. At pH 10 and above, the plots of kobs
versus ligand concentration have a slight upward curvature, Fig. S8,
and kobs was fit to a quadratic function of the ligand concentration.
Values of ka were determined from the limiting slope of the quadratic
plots at low ligand concentration.

While the values of ka determined from the slope of plots such as
those shown in Figs. S7 and S8 were very precise, with a standard devi-
ation of about 9%, the kd values determined from the intercepts are small
and highly variable. The intercepts are very close to the origin and some
of the intercept valueswere negative. It was decided to evaluate the dis-
sociation rate constant by calculating kd from the relationship, kd =
kaKD. Values of ka and kd, are given in Tables S1 and S2 for BjFixLH and
SmFixLH, respectively. Plots of the logarithm of ka and kd as functions
of the pH are shown in Fig. 6 for BjFixLH and in Fig. S9 for SmFixLH.

A previous study of cyanide binding to two truncated versions of
SmFixL reported ka values of 27 and 31 M−1 s−1 for the heme domain
(RmFixLH) and for the combined heme/kinase domains (RmFixLT) at
pH 8, 20 mM Tris–HCl buffer [21]. In this study, we find a ka value of
62 ± 5 M−1 s−1 for our preparation of SmFixLH at pH 8.0 in a 0.100 M
Fig. 3. The absorption spectra of penta-coordinate met-BjFixLH (thin solid line), cyano-
BjFixLH (thick solid line), and the imidazole complex of BjFixLH (dashed line) at pH 7.0.



Fig. 4. Titration of 4.78 μM BjFixLH (solid circles) and 5.85 μM SmFixLH (open circles) with
cyanide at pH 7.0.

Fig. 6. pH dependence of the association (solid circles) and dissociation (open circles) rate
constants for cyanide binding to BjFixLH.
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ionic strength potassium phosphate buffer, Table S2. The factor of 2 dif-
ferences between the two studies may be due to differences in ionic
strength. At pH 8.0, a 20 mM Tris–HCl buffer has an ionic strength of
~0.011 M compared to 0.10 M in our study. We also observe that the
heme domain of BjFixL binds cyanide about 65% faster than SmFixLH
at pH 8.0, with an observed rate constant of 102± 1M−1 s−1, Table S1.

3.5. pH dependence of the association and dissociation rate constants for
the BjFixLH and SmFixLH cyanide complexes

The value of ka is a bell-shaped function of the pH with a maximum
near pH 9.5 indicating that at least two ionizable groups in the reactants
affect the rate of cyanide binding, Figs. 6 and S9. The most obvious ion-
izations are those of the ligand, HCN, with a pKa of 9.04 at 0.10 M ionic
strength [30], and the alkaline transition in the heme domains of the
FixLs, Fig. 2, with pKas of 9.64 ± 0.05 and 9.61 ± 0.05 for BjFixLH and
SmFixLH, respectively. The data in Figs. 6 and S9 were initially fit to an
empirical equation involving two ionizable groups. The best-fit values
for the two pKas were 8.53 ± 0.07 and 10.03 ± 0.13 for the BjFixLH
data and 8.55 ± 0.12 and 9.94 ± 0.16 for the SmFixLH data. The fitted
pKa values do not correspond to either the pKas for the alkaline transi-
tion in the heme domains or the pKa for ionization of HCN.
Fig. 5. pH dependence of the equilibrium constants for cyanide binding to BjFixLH (solid
circles), cyanide binding to SmFixLH (open circles), and imidazole binding to BjFixLH
(solid triangles).
A more detailed analysis of the pH dependence of ka suggests that a
second ionizable group in the heme domains affects cyanide binding. If
we fit the ka data by fixing the pKa values to 9.04 for the ligand and ei-
ther 9.64 for BjFixLH or 9.61 for SmFixLH, and then fitting the peak
position and the values of ka at the pH extremeswe generate the dashed
lines shown in Figs. 6 and S9. The fit is excellent above pH8.5 but under-
estimates the value of ka between pH 6 and 8.5. We propose that a
second ionizable group in the heme domain affects binding of cyanide
below pH 8.5 and include the second group in a mechanism to be
discussed below.

The dissociation rate constant is essentially independent of pH
between 5 and 11 but appears to increase slightly at pH 4, Figs. 6 and
S9. The average value of kd between pH 5 and 11 is (1.4 ± 0.7) ×
10−4 s−1 for BjFixLH and (2.1 ± 1.0) × 10−4 s−1 for SmFixLH.

3.6. Kinetics of imidazole binding to BjFixLH

Kinetic studies of the binding of imidazole to BjFixLH were carried
out under pseudo-first order conditions using a stopped-flow instru-
ment. The reaction was monitored at 418 nm after 1:1 mixing of the
protein and imidazole solutions. The reaction was monophasic and fit
to a single exponential equation to obtain the observed rate constants,
kobs. The reaction was studied as a function of imidazole concentration
over the pH range 5.0 to 11.0. A typical plot of the concentration
dependence of kobs is shown in Fig. S10.

The rate of imidazole binding saturates at high imidazole concentra-
tions and was fit to the empirical equation shown in Eq. (5). The
interpretation of the three parameters, P1, P2, and P3

kobs ¼
P1 L½ � þ P2
P3 L½ � þ 1

ð5Þ

depends upon the mechanism of ligand binding and will be discussed
below. P1 and P2 can be thought of as apparent association and dissoci-
ation rate constants, respectively, and the ratio P1/P3 gives the maxi-
mum value of kobs at very high ligand concentrations. Values of P1, P2,
and P3 were determined between pH 5 and 11 and are collected in
Table S3.

The values of all three parameters are pH dependent. The logarithm
of each of the three parameters is plotted in Fig. 7. Each of the parame-
ters appears to depend upon two ionizations over the pH range investi-
gated and each was fit to an equation similar to Eq. (2). The best-fit
values for the pKas and the low, intermediate, and high pH limits for
each of the three kinetic parameters are collected in Table S5.



Fig. 7. pH dependence of P1 (solid circles), P2 (solid triangles), and P3 (open circles) for
the binding of imidazole to BjFixLH.
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3.7. Kinetics of imidazole binding to SmFixLH

Imidazole binding to SmFixLH is very similar to that of BjFixLH.
Values of the three kinetic parameters P1, P2, and P3 were determined
over the pH range 5 to 11 and are collected in Table S6. Plots of P1, P2,
and P3 as a function of pH are shown in Fig. S11. Each of the parameters
were fit to an empirical equation similar to that of Eq. (2) and best-fit
values for the pKas and the low, intermediate, and high pH limits for
each of the parameters are collected in Table S7.

3.8. Kinetics of imidazole binding to SmFixLH(Y197F)

Tyrosine 197 ionizes in a similar pH region as that for formation of
the alkaline form of SmFixLH and may influence ligand binding at high
pH [31]. The rate of imidazole binding to the Y197F mutant of SmFixLH
was determined between pH 5 and 11 and is similar to that for imidaz-
ole binding to SmFixLH. Values of the three kinetic parameters P1, P2,
and P3 are collected in Table S8. Plots of P1, P2, and P3 for the imidaz-
ole-SmFixLH(Y197F) reaction as a function of pH are shown in
Fig. S12. Each of the parameterswere fit to an empirical equation similar
to that of Eq. (2) and best-fit values for the pKas and the low, interme-
diate, and high pH limits for each of the parameters are collected in
Table S9.

3.9. Kinetics of 4-nitroimidazole binding to SmFixLH

The nitro group in 4-nitroimidazole significantly increases the acidity
of the imidazole group. The pKa for ionization of the 4-nitroimidazolium
ion is less than 0 while the pKa for the 4-nitroimidazole to 4-
nitroimidazolate ionization is 8.96 ± 0.09 at 0.10 M ionic strength [32].
As a consequence, the 4-nitroimidazole ligand will be primarily neutral
between pH 5 and 9 in this study and predominantly negatively charged
between pH 9 and 11. 4-Nitroimidazole is relatively insoluble in water
and the ligand binding studies were limited to 4-nitroimidazole
concentrations of less than 6mMafter 1:1mixing in the stopped-flow in-
strument. Under these conditions the observed rate constant for 4-
nitroimidazole binding to SmFixLH is linearly dependent upon the ligand
concentration and only the parameters P1 and P2 can be determined.
Values of P1 and P2 are collected in Table S10. Plots of the logarithm of
P1 and P2 as a function of pH are shown in Fig. S13.

The logarithm of P1 has a bell-shaped dependence on pH indicating
that it is influenced by aminimum of two ionizable groups. P1was fit to
an empirical equation analogous to Eq. (2) and the best-fit values for the
kinetic parameters are collected in Table S11. Interestingly, in the
absence of constraints, the best-fit value of pKa1 is larger than the
value of pKa2 and non-linear least-squares regression gives very high es-
timated errors for the kinetic parameters. If pKa1 is constrained to be less
than or equal to pKa2, the two values converge of a value of 9.2±1.0 and
the estimated errors of the fitted parameters are reduced significantly.

The value of P2 is independent of pH between pH 8 and 11, with an
average value of 1.1± 0.1 s−1 and increases by about a factor of 3 as the
pH is lowered from 8 to 7.

4. Discussion

4.1. Mechanism of cyanide binding to BjFixLH and SmFixLH

The binding of cyanide to FixLH appears to be a simple, monophasic
ligand binding reaction characterized by association and dissociation
rate constants consistent with the equilibrium dissociation constants,
Eq. (3). Cyanide is small enough to diffuse into the distal heme pocket
of FixL, bind to the heme iron and convert the heme from a penta-
coordinate high-spin species to a six-coordinate low-spin species.
Conformational adjustments in the heme domain associated with cya-
nide binding occur on a time scale much faster than the rate of ligand
binding. Under the conditions of our experiments, the maximum
value of kobs for cyanide binding is less than 10 s−1, Figs. S7 and S8.

The pH dependence of the association rate constant indicate a min-
imumof two ionizable groupswithin the hemedomain of FixL influence
cyanide binding to the heme domain of FixL (Section 3.5). A minimal
mechanism to explain the pH dependence of cyanide binding to the
heme domain of FixL is shown in Scheme 1.

Scheme 1 postulates that three different protonated forms of the
protein affect cyanide binding, HP, P, and POH, and these forms are
related by pKp1 and pKp2. The group with pKp1 is attributed to the
propionic acid group at heme position 6, HP6, (for reasons to be
discussed in Section 4.5) while pKp2 is due to formation of the
hydroxy-FixLH, Figs. 1 and 2. Scheme 1 allows for diffusion of both
HCN and the cyanide anion (CN−) into the distal hemepocket and bind-
ing to the heme iron in each of the three different protonated forms of
the protein. When HCN binds to either HP or P, the ligand proton is re-
leased into solution. When HCN binds to POH, the HCN proton is trans-
ferred to the departing OH− and released as water. When CN− binds to
POH, there is anion exchange and the hydroxide ion is released into
solution.

4.2. pH dependence of the cyanide association rate constant

The pH dependence of ka, derived from Scheme 1 is given by Eq. (6).
In Eq. (6), pKp1 and pKp2 are the pKa values of two groups in the heme
domain that affect cyanide binding and pKL is

ka ¼
ka1

Hþ� �2
KLKp1

þ ka2
Kp1

KL
þ ka4

� �
Hþ� �
Kp1

þ ka3
Kp2

KL
þ ka5

� �
þ ka6

Kp2

Hþ� �
Hþ� �
Kp1

þ 1þ Kp2

Hþ� �
 !

1þ Hþ� �
KL

� �

ð6Þ

the pKa for the ligand, HCN. In fitting the data, we fixed pKL at 9.04 and
pKp2 at 9.64 and 9.61 for the alkaline transitions of BjFixLH and SmFixLH,
respectively. There are five adjustable parameters and these are defined
in Table 2 along with the best-fit values for both the BjFixLH and
SmFixLH data. The solid lines through the ka data in Figs. 6 and S9
were calculated using Eq. (6). The fit is excellent and Scheme 1 is suffi-
cient to account for the pH dependence of cyanide binding to the heme
domains of FixL.

Allowing both HCN and CN− to bind to FixLH in Scheme 1 perhaps
obscures the general picture of cyanide binding. In the Supplementary
Data (Section 4.2) we discuss the analysis of the pH dependence of



Scheme 1. Mechanism for cyanide binding to FixLH.
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the association rate constant in detail. Here we present a simplified
overview of cyanide binding to FixLH. The maximum rate of cyanide
binding to BjFixLH occurs at pH 9.5 with an observed rate constant, ka,
Table 2
Kinetic parameters for cyanide binding to BjFixLH and SmFixLH.a

Parameter BjFixLH SmFixLH

ka1 (M−1 s−1) 1.5 ± 0.1 1.5 ± 0.2�
ka2

Kp1
KL

þ ka4
�
(M−1 s−1) (2.1 ± 0.8) 103 (2.6 ± 0.8) 103�

ka3
Kp2
KL

þ ka5
�
(M−1 s−1) 960 ± 40 640 ± 30

ka6 (M−1 s−1) 30 ± 3 0.4 ± 0.9
pKp1 7.6 ± 0.2 6.8 ± 0.2
pKp2

b 9.64 9.61
pKL

b 9.04 9.04
ðkd2Kc1þkd4Þ

Kc1
(M−1 s−1) 2.9 ± 2.2 7.9 ± 4.5

(kd3 + kd5) (s−1) (1.2 ± 0.3) × 10−4 (1.7 ± 0.3) × 10−4

pKc1 b5 b5

a Parameters defined in Scheme 1 of the text.
b pKL and pKp2 were fixed at independently determined values.
of 443 ± 8M−1 s−1 (Table S1). The maximum observed rate is primar-
ily due to the binding of CN− to protein form P in Scheme 1, the ka5
pathway, which is the dominant pathway for cyanide binding between
pH 8 and 11. Above pH 11, the ka6 pathway in Scheme 1, CN− binding to
POH, makes a significant contribution to the observed rate constant, ka.
In the neutral pH region, between about pH 6 to 8, the dominant path-
way is the binding of CN− to HP (ka4). The binding of HCN only becomes
significant belowpH 6,where the concentration of CN− is less than 0.1%
of the total cyanide concentration in solution. The binding of HCN toHP,
with a rate constant ka1 of 1.5 M−1 s−1 is responsible for the low pH
limit of the observed association rate constant. The cyanide anion is
the reactive form of the ligand and dominates the rate of binding to
FixLH over the pH region 6 to 11.5.

The pH dependence of ka for SmFixLH is very similar to that of
BjFixLH. The observed rate constant is somewhat lower with a maxi-
mum value 252 M−1 s−1 between pH 9 and 9.5 (Table S2). The only
major difference in the fitting parameters between SmFixLH and
BjFixLH is for ka6, Table 2. The fitted value of ka6 is 30 ± 3 M−1 s−1 for
BjFixLH and 0.4 ± 0.9 M−1 s−1 for SmFixLH. Binding of cyanide to the
alkaline form of SmFixLH makes no significant contribution to the ob-
served association rate constant up to pH 11.5, the limit of our study.
On the other hand, the value of ka for BjFixLH appears to reach a finite
asymptote at high pH, Fig. 6, indicating that cyanide does bind to the al-
kaline form of BjFixLH. Cyanide binding to the hexa-coordinate alkaline
form of BjFixLH (ka6 = 30 M−1 s−1) is more than 30-fold slower than
binding to the five-coordinate, neutral form of BjFixLH (ka5 =
960 M−1 s−1).

4.3. pH dependence of cyanide dissociation rate constant

The dissociation rate constant is essentially independent of pH with
a small increase at pH 4, Figs. 6 and S9. There are only two forms of the
complex in Scheme 1, HPL and PL. The two species are related by the
acid dissociation constant, pKc1. Scheme 1 allows for perturbation of
the pKa of the acidic group in the cyanide complex (pKc1) relative to
its value in the ligand-free protein (pKp1). For completeness, Scheme 1
includes the proton-assisted ligand dissociation pathways, with rate
constants kd1 and kd2, at low pH and the hydroxide ion-assisted path-
way, kd6, at high pH. The pH dependence of kd derived from Scheme 1
is given by Eq. (7). All of the

kd ¼
kd1

Hþ� �2
Kc1

þ kd2Kc1 þ kd4ð Þ Hþ� �
Kc1

þ kd3 þ kd5ð Þ þ kd6 OH−½ �
Hþ� �
Kc1

þ 1
� � ð7Þ

parameters included in Eq. (7) are not required to fit the data. First,
there is no indication that the values of kd increase with increasing
hydroxide ion concentration as suggested by the kd6[OH−] term in the
numerator and this term can be eliminated. The dissociation rate is es-
sentially constant between pH 5 and 11 indicating that the (kd3 + kd5)
term is dominant over most of the pH range. Finally, the small increase
in kd at pH 4 suggests that the second term in the numerator of Eq. (7) is
just beginning to make a contribution to the dissociation rate and that
the first term in the numerator is negligible. The data suggest that we
have not attained low enough pH to significantly protonate PL, which
means that the [H+] / Kc1 term in the denominator is negligible and
that pKc1 b 5. Using these considerations, Eq. (7) simplifies to Eq. (8).

kd ¼ kd2Kc1 þ kd4
Kc1

� �
Hþ� �þ kd3 þ kd5ð Þ ð8Þ

The dissociation rate constants were fit to Eq. (8) using non-linear
least squares regression and the best-fit values for the parameters are
included in Table 2. The lines through the data in Figs. 6 and S9were cal-
culated using Eq. (8). In the complex, pKc1 is less than 5, which means
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that PL is the dominant species over the entire pH range between 5 and
11. Cyanide dissociates from PL with a rate (kd3 + kd5) = (1.2 ±
0.3) × 10−4 and (1.7 ± 0.3) × 10−4 s−1 for cyano-BjFixLH and cyano-
SmFixLH, respectively. The dissociation rate agrees quite well with
two previous values determined at pH 8, 1.0 × 10−4 s−1 for RmFixLH
and 1.5 × 10−4 s−1 for RmFixLT [21].

4.4. pH dependence of KD for the cyanide complexes of FixLH

The pH dependence of KD, Fig. 5, is given by the ratio kd/ka as de-
scribed by Eqs. (6) and (8). The solid lines for the BjFixLH and SmFixLH
data in Fig. 5 were calculated from the ratio of Eqs. (8) to (6) and the
parameter values listed in Table 2. The value of KD determined from
the kinetic constants is essentially identical to that determined from
the static equilibrium studies over the entire pH range of this study.
This observation supports the conclusion that cyanide binding to
FixLH is a simple ligand association reaction and that any conformation-
al changes associatedwith ligand binding influence both the kinetic and
equilibrium properties in an identical fashion. The behavior of the
cyanide-FixLH system is in contrast with that of imidazole binding to
FixLH, where it is found that the KD values calculated from the kinetic
parameters do not agree with the static determination of KD above 9,
Section 4.6.

4.5. Identification of acidic group influencing cyanide binding to BjFixLH
and SmFixLH

One of the intriguing questions raised by this study is the identity of
the acidic group affecting the rate and affinity of cyanide binding to the
heme domains of FixL. According to our interpretation of the data, the
acidic group has apparent pKa values of 7.6 in BjFixLH and b5 in the cy-
anide complex. We have used the crystal structures of BjFixLH and its
cyano complex to determine if any of the acidic groups within the pro-
tein undergo significant environmental changes upon cyanide binding
that could account for the shift in pKa [10,13]. After consideration of
the six acidic groups within 10 Å of the heme iron in the ligand-free
state: heme propionic acids 6 (HP6) and 7 (HP7), Asp-196, Asp-201,
Tyr-203, and Arg-220, we conclude that the ionizable group with pKa

7.6 in BjFixLH is most likely HP6. (See Section 4.5 of the Supplementary
Data for details.)

4.6. Mechanism of imidazole binding to FixLH

Another intriguing question addressed by this study concerns the
early observation that the imidazole binding to FixLHwas about two or-
ders of magnitude faster than binding to metMb, suggesting initially
that the FixLH distal heme pocket was freely accessible to large ligands
[21,23]. However, the crystal structure of BjFixLH shows that the distal
heme pocket in BjFixLH is quite crowded and cannot accommodate a
bulky ligand such as imidazole without significant rearrangement of
the distal pocket residues [10,11,13]. A comparison of the crystal
structures of BjFixLH and of the BjFixLH-imidazole complex shows
large movements of Ile-215 and Ile-238 to accommodate the bound
imidazole.

Two plausible mechanisms for imidazole binding to FixLH that
incorporate saturation of the binding rate at high imidazole concentra-
tions, are shown in Eqs. (9) and (10). In the

FixLH ⇄
ko

kb
FixLH� ⇄

ka L½ �

kd
FixLH � L ð9Þ

FixLH ⇄
ka L½ �

kb
FixLH � Lf g ⇄

ko

kd
FixLH � L ð10Þ

“conformational gating”mechanism shown in Eq. (9), the hemedomain
exists as an equilibrium mixture of closed (FixLH) and open (FixLH⁎)
conformations, with the closed conformation predominating in the ab-
sence of ligand. The heme pocket opens with a rate constant ko and
closes in a back reaction with rate constant kb, where kb ≫ ko. Imidazole
binds to the heme iron when the protein is in the open conformation
with an association rate constant ka and dissociates from the heme
iron with a rate constant kd. The conformational equilibrium lies very
far to the left and the equilibrium concentration of FixLH⁎ is very
small and can be considered to be in a steady-state throughout the
ligand binding reaction. Using the steady-state assumption, the concen-
tration dependence of the observed rate constants is given by Eq. (5)
where P1 = kako/kb, P2 = kd, and P3 = ka/kb.

An alternative mechanism is the “encounter complex” mechanism
shown in Eq. (10). Initially, imidazole binds to the closed conformation
of FixLH to form an encounter complex, {FixLH·L}, inwhich the ligand is
associated with the protein but not bound to the heme iron. Conforma-
tional fluctuations within the encounter complex cause opening of the
distal heme pocket with a rate constant ko, allowing the ligand to
move into the heme pocket and bind to the heme iron. The rate of dis-
sociation of the ligand from the heme iron is designated kd, but this
leads to reformation of the encounter complex rather than dissociation
into solution. The rate of ligand dissociation from the encounter
complex into solution is designated kb. Assuming that the encounter
complex is in a steady-state during the ligand binding reaction, the ob-
served rate constant is again given by Eq. (5) but the definitions of the
parameters are altered compared to the conformational gating mecha-
nism. For the encounter complex mechanism, Eq. (10), P1 = kako /
(kb + ko), P2 = kdkb / (kb + ko), and P3 = ka / (kb + ko).

The two mechanisms for imidazole binding to FixLH shown in
Eqs. (9) and (10) provide a rationale for the larger apparent association
rate constant for imidazole binding to FixLH compared to imidazole
binding tometMb. In bothmechanisms, the limiting rate at low imidaz-
ole concentrations is not the association rate constant for binding of im-
idazole to the stable, sterically-crowded heme pocket of FixLH, but an
apparent rate constant. For the conformational gating mechanism, the
apparent rate constant is for imidazole binding to an “open” form of
the heme pocket, multiplied by the equilibrium constant between the
open and closed conformations of FixLH, ko/kb. The ratio ko/kb has to
be significantly smaller than one, and the actual association rate
constant for binding to the open form of FixLH must be significantly
larger than the observed values of P1 for BjFixLH and SmFixLH, which
vary between 1.9 × 103 M−1 s−1 to 7.0 × 104 M−1 s−1, Tables S3 and
S5. This is actually quite reasonable. Ligand binding to the heme in
metMb is blocked by the distal histidine and access to the heme requires
the movement of the distal histidine to open the heme pocket. This
movement is fast enough in metMb so that saturation of ligand binding
rates is not typically observed.Mansy et al. [23] have shown that replac-
ing the distal histidine in metMb by an alanine residue increase the
imidazole association rate constant almost four orders of magnitude
from 1.6 × 102 M−1 s−1 to 1.0 × 106 M−1 s−1. Rate constants of the
order of 106 M−1 s−1 or larger could well be expected for a completely
open, uninhibited conformation of FixLH.

In the encounter complex mechanism, the apparent association rate
constant, P1, is for formation of the encounter complex, modified by the
rates of heme pocket opening and dissociation of the imidazole from the
encounter complex, kako/(kb + ko). Formation of encounter complexes
can be diffusion controlled and the value of ka could be as large as
109 M−1 s−1. The ratio of ko/(kb + ko) is necessarily less than unity,
decreasing the apparent association rate constant to the values shown
by P1 in Tables S3 and S5 for BjFixLH and SmFixLH, respectively.

For reasons to be discussed in Section 4.9, the encounter complex
mechanism provides a simpler interpretation for the pH dependence
of the kinetic parameters than the conformational gating mechanism.
Because of this, we analyze the details of imidazole binding to FixLH
using the encounter complex mechanism. Additional comments on
the conformational gating mechanism can be found in Section 4.6 of
the Supplementary Data.



Fig. 8. Plots of the logarithm of P1/P3 = ko as a function of pH for imidazole binding to
FixLH. Panel A. BjFixLH. Panel B. SmFixLH. Panel C. SmFixLH(Y197F).
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In terms of the encounter complexmechanism, P1 is an apparent as-
sociation rate constant and provides a lower-limit to the true associa-
tion rate constant for encounter complex formation. P2 is an apparent
dissociation rate, again giving a lower limit to the true rate of imidazole
dissociation from the heme. P3 has the units of an equilibrium associa-
tion constant and determines the curvature in the plots of kobs as a
function of the imidazole concentration, Fig. S10.

Two combinations of the kinetic parameters provide useful informa-
tion. P1/P2 = kako/kdkb = KA, where KA is the equilibrium association
constant for binding of imidazole to FixLH. Also, the ratio P1/P3 = ko
gives the rate of hemepocket opening. The latter is an important param-
eter providing information on the dynamics of the conformational
changes in FixL.

A comparison of the value of P1/P2 with that of the independently
determined value of KA for BjFixLH is shown in Fig. S14 of the Supple-
mentary Data. There is good agreement between the values of P1/P2
and KA below pH 9, but KA is significantly larger than P1/P2 at pH ≥ 9.
This indicates that the encounter complex mechanism is consistent
with imidazole binding to the acidic form of BjFixLH, but is inadequate
to explain imidazole binding above pH 9 where the alkaline form of
BjFixLH is dominant in solution. We postulate that the initial
imidazole-FixLH complex observed at the end of the reaction detected
with the stopped-flow instrument is stabilized by a second, slower
reaction above pH 9, which may occur over the period of hours. KA

was determined from overnight incubations of FixLH and imidazole.
The ratio P1/P3 gives the rate of heme pocket opening, ko. The rate of

hemepocket opening limits the rate of imidazole binding to the heme in
FixLH giving the hyperbolic plots of kobs as a function of the imidazole
concentration, Fig. S10. Values of P1/P3 are plotted as a function of pH
in Fig. 8 for BjFixLH, SmFixLH, and SmFixLH(Y197F). Experimental
values of ko vary between a maximum of 1450 s−1 for the
SmFixLH(Y197F) reaction at pH 5 to a minimum value 100 s−1 for the
SmFixLH reaction at pH 11. The crystallographic data suggest that open-
ing of the heme pocket to allow imidazole binding involves significant
movement of Ile-215 and Arg-220 [10,11]. Gong et al. find that in
order to accommodate a heme-bound imidazole, the sidechain of Ile-
238 rotates away from the heme iron but that the majority of the
space needed to accommodate imidazole is due to a 2.2 Å movement
of the Ile-215 side chain, which is associated with the shift of the FG
loop away from thehemepocket [11]. In addition Arg-220 breaks its hy-
drogen bond with HP7 and rotates toward the surface of FixLH. The
large scale movements of Ile-215 and Arg-220 could be associated
with rates in the 100 to 1450 s−1 range as observed for ko.

4.7. pH dependence of the kinetic parameters for imidazole binding to FixLH

The pH dependence of the three kinetic parameters P1, P2, and P3
can be explained by Scheme2, an expanded formof the encounter com-
plex mechanism that includes the involvement of different protonated
forms of the protein and ligand. Scheme 2 is also an expanded version
of Scheme1, themechanismused to interpret the pH dependence of cy-
anide binding to FixLH.

The initial reactionmanifold is the same in Schemes 1 and 2. Howev-
er, the initial ligand binding steps in Scheme 2 form an encounter com-
plex while in Scheme 1, the initial ligand binding steps give the final
product. Scheme 2 includes the additional reaction steps necessary for
conversion of the encounter complex into the stable complex, the
steps that are responsible for limiting the observed rate of imidazole
binding to FixLH.

The empirical fits of P1, P2, and P3 to Eq. (2) indicate that two ioni-
zations influence the kinetics of imidazole binding to BjFixLH, Table S5.
The more acidic group has an apparent pKa in the range of 7 to 8, while
the second group has an apparent pKa in the range of 9.2 to 10. These
values are consistent with cyanide binding to BjFixLH, which is influ-
enced by two protein ionizations with pKa values of 7.6 ± 0.2 and
9.64 ± 0.05, Table 2. In the case of cyanide binding, the more acidic
group is attributed to HP6 and themore alkaline transition is due to for-
mation of the alkaline, hydroxy-ligated BjFixLH (Section 4.5).

Scheme 2 allows binding of both imidazole (L) and the imidazolium
ion (HL+) to the protein to form the encounter complex giving rise to
six different protonated forms of the encounter complex. Scheme 2 al-
lows for the perturbation of the protein pKa values in the encounter
complex, and designates their encounter complex values as pKp1

⁎ and
pKp2

⁎ . While it is possible that binding of the ligand to the protein
could alter the apparent pKa of the ligand, this is explicitly excluded
from the mechanism. Any perturbation of pKL upon encounter complex
formation will contribute to the observed values of pKp1

⁎ and pKp2
⁎ . As

will be seen latter the perturbation of the apparent pKa values for the pro-
tein ionizations upon encounter complex formation are quite small. The
pH dependencies of ka, kd, ko, and kb are given by Eqs. (11)–(14), below
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Scheme 2.Mechanism for imidazole binding to FixLH.
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4.8. pH dependence of the rate of heme pocket opening, ko = P1/P3

The only individual rate constant that can be determined from the
experimental kinetic parameters is ko, which equals P1/P3 in both the
conformational gating and encounter complex mechanisms. Fitting
P1/P3 to Eq. (13), gives the best-fit values for pKp1⁎, pKp2⁎, ko1, ko2, and
ko3 that are tabulated in Table 3. The data suggest the pKas of the two
protein groups do not change (within experimental error) upon forma-
tion of the encounter complex, pKp1 is 7.6± 0.2 in BjFixLH and 7.8± 0.4
in the encounter complexwhile pKp2 is 9.64±0.05 in BjFixLH and 9.5±
0.3 in the encounter complex. The rate of heme pocket opening in the
encounter complex varies from 140 s−1 at high pH to 730 s−1 at inter-
mediate pH. The solid line in Fig. 8 through the P1/P3 data for BjFixLH
was calculated according to Eq. (13).

Table 3 also contains the best-fit parameters for SmFixLH and
SmFixLH(Y197F). For SmFixLH, pKp1 is unperturbed between the ligand
free protein and the encounter complex, with a value of 6.8 ± 0.2 in
both cases, Table 3, while pKp2 goes from 9.61 ± 0.05 in ligand-free
SmFixLH, Fig. 2, to 8.8 ± 0.2 in the encounter complex. The more acidic
groupwith pKp1 does not affect heme pocket opening in the Y197Fmu-
tant of SmFixLH, Table 3, while pKp2

⁎ in themutant encounter complex is
essentially the same as in the SmFixLH encounter complex, 8.9 ± 0.2
and 8.8 ± 0.2, respectively. In terms of Scheme 2, the maximum rate
of heme pocket opening is given by ko2 with values of 730 ± 140,
1270 ± 290, and 1240 ± 160 s−1 for BjFixLH, SmFixLH, and
SmFixLH(Y197F), respectively.

4.9. pH dependence of the apparent dissociation rate constant, P2

The pH dependence of P2 is the basis for choosing between the con-
formational gating and encounter complexmechanisms. The pHdepen-
dence of P2 for the three FixLH heme domains under study is not large
(Figs. 7, S11, and S12), but it is statistically significant. In the case of the



Table 3
Kinetic parameters derived from Scheme 2 for imidazole binding to FixLH.

Parameter BjFixLH SmFixLH SmFixLH(Y197F)

pKp1 7.6 ± 0.2 6.8 ± 0.2 7.2 ± 0.7
pKp1

⁎ 7.8 ± 0.4 6.8 ± 0.3 6.8 ± 0.3
pKc1 b5 b5 b5
pKp2 9.64 ± 0.05 9.61 ± 0.05 8.9 ± 0.3
pKp2

⁎ 9.5 ± 0.3 8.8 ± 0.2 8.9 ± 0.2
pKL 7.04 ± 0.08 7.04 ± 0.08 7.04 ± 0.08
ko1 (s−1) 280 ± 20 200 ± 50 1240 ± 160
ko2 (s−1) 730 ± 140 1270 ± 290 1240 ± 160
ko3 (s−1) 140 ± 30 90 ± 20 140 ± 40

Contingent parameters BjFixLH SmFixLH SmFixLH(Y197F)

(kd3 + kd5) (s−1) a [220] [184] [326]
kb1 (s−1) b 510 ± 50 (2.3 ± 2.1)104 (2.0 ± 1.0)103

kb2 (s−1) b 300 ± 120 (6.1 ± 1.3)103 (2.8 ± 1.4)103

kb3 (s−1) b (3.0 ± 0.7)103 70 ± 28 74 ± 110
ka1 (M−1 s−1) b (5.6 ± 1.2)103 (1.4 ± 0.4)106 (7.1 ± 5.8)103

ðka2 þ ka4
KL
Kp1

Þ(M−1 s−1) b (5.8 ± 3.9)104 (2.9 ± 6.2)105 (1.7 ± 1.2)105

ðka3 þ ka5 KL
Kp2

Þ(M−1 s−1) b (3.8 ± 0.7)107 (1.5 ± 0.4)108 (4.0 ± 0.8)107

ka6 (M−1 s−1) b (1.5 ± 0.3)105 (4.1 ± 2.4)104 0

a The value of (kd3+ kd5)was set equal to twice themaximumvalueof P2 for eachprotein.
b The value of the parameter depends upon the value of (kd3 + kd5).
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BjFixLH imidazole reaction, P2 averages 73 ± 19 s−1 over the pH range
5 to 11, varying between 48± 10 s−1 at pH 8 to 110±1 s−1 at pH 10.5,
Table S3.

In the conformational gating mechanism, P2 = kd while in encoun-
ter complex mechanism, P2 = kd(kb/(kb + ko)). The empirical fit of
the pH dependence of P2 for the BjFixLH imidazole reaction indicates
that two ionizations influence this parameter with apparent pKas of
7.0 ± 0.3 and 9.2± 0.2, Fig. 7 and Table S5. If the conformational gating
mechanism were correct, two ionizable groups with pKas of 7.0 and 9.2
would have to be postulated to affect ligand dissociation from the
BjFixLH-imidazole complex. While one of these groups could be the
same group as the pKp1 group in the ligand-free protein, the complex
does not have the equivalent of the alkaline transition in the ligand-
free protein, pKp2. A distinct third acidic group in the protein would
have to be postulated to accommodate the pH dependence of P2 for
the conformational gatingmechanism. In the encounter complexmech-
anism, kd can be independent of pH and the small pH dependence of P2
can be attributed to the kb/(kb + ko) term. There is no need to postulate
the existence of a third acidic group with a pKa of 9.2 in the imidazole
complex. The encounter complex mechanism provides a simpler expla-
nation for the pH dependence of the kinetic parameters for imidazole
binding to FixLH and will be used in the following discussion.

P2 is relatively independent of pH for the four imidazole systems
investigated in this study, imidazole binding to BjFixLH (Fig. 7),
SmFixLH (Fig. S11), and SmFixLH(Y197F) (Fig. S12), as well as for
4-nitroimidazole binding to SmFixLH (Fig. S13). P2 is the only kinetic
parameter that depends upon the rate of imidazole dissociation from
the heme iron, kd. For the encounter complex mechanism, P2 = kd
(kb/(kb + ko)). Although ko is dependent upon pH, Fig. 8, the pH depen-
dence of the ratio kb/(kb + ko) will be muted, since both kb and ko de-
pend upon the same ionizations in the encounter complex, pKp1

⁎ and
pKp2

⁎. The pH dependence of the ratio kb/(kb + ko) could actually disap-
pear if kb ≫ ko. The preponderance of evidence suggests that the pH
dependence of kb/(kb + ko) is small, leading to the conclusion that kd
is also essentially independent of pH. This is consistentwith thefindings
for dissociation of cyanide from FixLH, Fig. 6 and Section 4.3.

Assuming that pKc1 is less than 5 in the FixLH-imidazole complex, as
it is in the cyanide complex, kd for both imidazole and cyanide dissocia-
tion will be independent of pH over the pH range 5 to 11 and given by
kd = kd3 + kd5 in terms of the parameters defined in Schemes 1 and 2.
Using these simplifications, the pH dependence of P2 is given by
Eq. (15).

P2 ¼
kd3 þ kd5ð Þ kb1

Hþ� �
K�
p1

þ kb2 þ kb3
K�
p2

Hþ� �
 !

kb1 þ ko1ð Þ Hþ� �
K�
p1

þ kb2 þ ko2ð Þ þ kb3 þ ko3ð Þ K�
p2

Hþ� �
 ! ð15Þ

Unfortunately, a unique set of parameters cannot be found in fitting
the pH dependence of P2 to Eq. (15), even though the values of pKp1

⁎ ,
pKp2

⁎ , ko1, ko2, and ko3 are known from fitting P1/P3 and the problem re-
duces to finding a set of values for four variables: kd = (kd3 + kd5), kb1,
kb2, and kb3. The problem is that the values of kd and kb are interdepen-
dent with changes in kd compensated by reciprocal changes in kb.

Since P2 = kd(kb/(kb + ko)) and the ratio kb/(kb + ko) must be less
than unity, P2 gives a lower-limit for kd at each pH. Assuming that kd
is independent of pH as argued above, its minimum value must be at
least equal to the largest value of P2 over the pH range 5 to 11. Themin-
imum values of kd for the BjFixLH, SmFixLH, and SmFixLH(Y197F) imid-
azole reactions are 110 ± 1 s−1 at pH 10.5, 92 ± 10 s−1 at pH 5, and
163 ± 17 s−1 at pH 7, respectively, Tables S3, S6, and S8. These mini-
mum values for kd are actually quite large, among the largest reported
for dissociation of imidazole from heme protein-imidazole complexes
(see Section 4.12) and we suspect that the true rate of imidazole
dissociation will not be much larger than these minimum values.

The effect of increasing the value of kd above its minimum value on
the pH dependence of kb is explored in the Section 4.9 of the Supple-
mentary Data. For reasons discussed in the Supplementary Data, a
more realistic set of values for (kd3 + kd5) is twice the maximum
value of P2 for each of the three proteins, i.e., 220, 184, and 326 s−1

for the BjFixLH, SmFixLH, and SmFixLH(Y197F) imidazole reactions,
respectively. These values for (kd3 + kd5) are included in Table 3 and
this choice affects the best-fit values of kb1, kb2, and kb3 as well as the
best-fit values for ka1, (ka2 + ka4KL/Kp1), (ka3 + ka5KL/Kp2), and ka6
determined from fitting the pH dependence of P1, Section 4.10.

Table 3 is divided into two sections. The first nine parameters in the
table can be uniquely determined by fitting the spectroscopic, equilibri-
um, and kinetic data for imidazole binding to FixLH. The last eight pa-
rameters, beginning with (kd3 + kd5), cannot be uniquely determined.
We define these as contingent parameters, with their values dependent
upon the choicemade for (kd3+ kd5). Although Table 3 does not provide
a unique set of values for all parameters, it provides a self-consistent set
that helps in understanding the mechanism of imidazole binding to
FixLH.

With the values of pKp1
⁎ , pKp2

⁎ , ko1, ko2, and ko3 known from fitting
P1/P3 and fixing the value of kd = (kd3 + kd5) at twice its minimum
value, fitting P2 to Eq. (15) reduces to a problem of finding three adjust-
able parameters, kb1, kb2, and kb3. Best-fit values for kb1, kb2, and kb3 are
collected in Table 3 for the imidazole complexes of BjFixLH, SmFixLH,
and SmFixLH(Y197F). For the BjFixLH imidazole encounter complex, kb
varies between 300 and 3000 s−1 depending upon the pH, Table 3.
For the SmFixLH imidazole encounter complex, the maximum value of
kb varies between 70 and 23,000 s−1 and for the SmFixLH(Y197F) imid-
azole encounter complex, kb varies between 74 and 2800 s−1. Plots of
the pH dependence of kb, calculated from Eq. (12), are shown in
Figs. S18–S20. The effect of changing the value of kd = (kd3 + kd5) on
the pH dependence of kb is explored in the Supplementary Data.

4.10. pH dependence of the apparent association rate constant, P1

P1 is the only kinetic parameter that depends upon the association
rate constant, ka. In the encounter complex mechanism, P1 = kako/
(kb + ko) and value of ka, as well as its pH dependence depends upon
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the values of P1, ko and kb. Since k0=P1/P3, the value of ka can be found
from the experimental values of P1, P3, and the calculated values of kb,
to Eq. (16).

ka ¼ P1þ P3 � kb ð16Þ

The value of kb is not unique but depends upon the choice of value
used for the dissociation rate constant, kd= kd3+ kd5. As a consequence,
the calculated value of ka will also depend upon the choice for kd. A
self-consistent, although not unique, set of parameters to explain the
pH dependence of ka is obtained by fitting the calculated values of ka
to Eq. (11). The best-fit values for ka1, (ka2 + ka4KL/Kp1), (ka3 + ka5KL/
Kp2), and ka6 for the BjFixLH, SmFixLH and SmFixLH(Y197F) imidazole
reactions are collected in Table 3. Plots of the logarithm of ka versus
pH for the three FixLHs are shown in Figs. S21–S23.

As seen in Table 3, the dominant term in fitting the pH dependence
of ka is the (ka3 + ka5KL/Kp2), with values on the order of 107 to
108 M−1 s−1 for all three proteins. The effect of varying the value of kd
above its estimated minimum value on the pH dependence of kb and
subsequently, its effect in calculating ka is explored in the Section 4.10
of the Supplementary Data. It is shown in the Supplementary Data
that the (ka3 + ka5KL/Kp2) term is not very sensitive to the value of kd.
For the BjFixLH imidazole reaction, the (ka3+ ka5KL/Kp2) term decreases
by less than a factor of 2 as the value of kd increases from its minimum
value to ten times itsminimumvalue. This analysis supports the conclu-
sion that formation of the FixLH imidazole encounter complex is very
fast, approaching the rates of a diffusion-controlled reaction.

4.11. Comparison of cyanide binding to FixLH with other heme proteins

Cyanide binding to heme proteins has been extensively studied and
Table S18 collects representative data from all major classes of heme
proteins near pH 7. Observed association rate constants vary by
more than 9 orders of magnitude, from 2.3 × 10−3 M−1 s−1 to
2.5 × 106 M−1 s−1 and observed dissociation rate constants vary by
about 7 orders of magnitude, from 1.4 × 10−6 s−1 to 22 s−1. The KD

values vary from 0.26 μM to 58mM, over 5 orders ofmagnitude.Within
this wide spectrum of values, the cyanide binding properties of the FixL
heme domains are not unusual. The two FixL heme domains under
study are among those proteins with intermediate affinities for cyanide
at pH 7, with KD values of 5.2 and 10.4 μM for BjFixLH and SmFixLH,
respectively. The values of ka are toward the slow end of those listed
in Table S18. The ka values are 18 and 14 M−1 s−1 for formation of
the BjFixLH and SmFixLH cyanide complexes, respectively, at pH 7,
some 5 orders of magnitude slower than the fastest cyanide binders in
Table S18.

A major reason for the slow cyanide binding rate to FixLH is that the
heme pocket is apolar. The pH studies show that the cyanide anion,
rather than HCN, is preferentially bound by the heme domain of FixL
(this work), as well as bymost cytochromes, by EcDOSH, and by several
hemoglobins that lack the distal histidine, Table S18. Looking at the data
in Table S18, one is struck by the observation that the heme proteins
with the smallest ka values preferentially bind the anion while those
with the largest ka values preferentially bind HCN. Discrimination be-
tween the binding of HCN and CN− is determined by the ability of
HCN to ionize within the heme binding pocket [33,34]. For heme pro-
teins with apolar heme pockets, it is faster for CN− to diffuse into the
hemepocket and bind to the iron than for HCN to diffuse into the pocket
and undergo ionization prior to binding to the heme iron. Brancaccio
et al. [33] have investigated the structural factors governing azide and
cyanide binding to metMb and found that deprotonation of HCN was
the major kinetic barrier to cyanide binding. The very rapid binding of
HCN to yeast CcP, and the other peroxidases, is due to base catalysis of
HCN ionization by a histidine residue in the distal heme pocket. The dis-
tal histidine in CcP is a critical residue in the catalyticmechanism, essen-
tial for activation of H2O2. The distal histidine facilitates binding of the
peroxide anion to the heme iron through base catalysis. Mutagenesis
studies show that there is a strong correlation between the rate of
H2O2 activation and HCN binding and that these rates can be decreased
by up to six orders of magnitude depending upon amino acid residues
forming the heme pocket [35,36].

4.12. Comparison of imidazole binding to FixLH with other heme proteins

In general, imidazole binding to the heme proteins is more complex
than that of cyanide, with conformational equilibria often involved in
the binding as observed in FixLH. Table S19 presents an extensive com-
pilation of KD values for the imidazole complexes of heme proteins near
pH 7. The KD values range from 1.8 μM for a M96N mutant of
Rhodobacter capsulatus cytochrome c2 to no detectable binding for cata-
lase and CooA, a range of at least 6 orders of magnitude. The apparent ka
range over five orders of magnitude, from 1.0 × 106 M−1 s−1 for the
H64A mutant of sperm whale metMb to ~15 M−1 s−1 for horse cyto-
chrome c. The apparent kd values range over four orders of magnitude,
from 1.2 × 102 s−1 for Rhodobacter sphaeroides cytochrome c1 to
1.2 × 10−2 s−1 for sperm whale metMb(H64V). In many instances,
the values of KD do not equal kd/ka due to conformational equilibria,
which are coupled to ligand binding.

The most extensive studies of imidazole binding have been to the
globins and the c-type cytochromes. Mansy et al. [23] investigated the
effects of mutating His-64, the distal histidine, and Leu-29 in sperm
whale metMb on the binding of imidazole. They looked at 10 metMb
mutants, four of which are included in Table S19, and found that they
could alter the binding affinity by over 4 orders of magnitude, with KD

values ranging from 17 μM for the H64A mutant to 0.37 M for the
L29F mutant at pH 7. The apparent ka values also ranged over four or-
ders of magnitude, from 1.0 × 106 M−1 s−1 for the H64A mutant to
1.2 × 102 M−1 s−1 for the L29F mutant. The apparent kd values varied
over 2 orders of magnitude, from 120 s−1 for H64V to 0.9 s−1 for
H64Q. Mansy and colleagues concluded that the association rate con-
stantwas largely controlled by steric hindrance in the distal hemepock-
et while the dissociation rate constant was decreased significantly by
distal site residues that could stabilize the heme-bound imidazole
through hydrogen bonding.

The peroxidases, as a class, have very low affinity for imidazole [37].
Binding of imidazole to the heme in CcP is limited by conformational
gating, precluding determination of the ka and kd for the imidazole
complex [37]. The heme sensors, EcDosH and CooA, also have very
low affinity for imidazole. A lower limit of 1 M has been established
for KD of the EcDOSH-imidazole complex [38,39].

Compared to EcDosH (an oxygen sensor) and CooA (a CO sensor),
the binding of imidazole by FixLH is unusually strong with KD values
of ~4 mM. This most likely reflects the fact that EcDosH and CooA
have hexa-coordinate hemes in their met forms and imidazole binding
must displace the intrinsic heme ligand upon binding. In the context
of all heme proteins, the imidazole affinity of FixLH is intermediate,
some 3 orders of magnitude weaker than the strongest imidazole
binders and some 3 orders of magnitude stronger that the weakest im-
idazole binders, Table S19. The intermediate imidazole affinity of FixLH
is due to the large rate of binding, since the dissociation rates for the
imidazole-FixLH complexes are among the fastest observed, with ap-
parent rates of 51 and 91 s−1 for the BjFixLH and SmFixLH, respectively.
The only complex listed in Table S19with a faster dissociation rate is that
of the H64V mutant of sperm whale metMb, which has a kd of 120 s−1.

The pHdependence of imidazole binding to FixLH is similar to that of
metMb, with two ionizable groups in the protein affecting imidazole
binding in both cases. In horsemetMb, the groupwith lower pKa is iden-
tified as His-97 while in FixLHwe have assigned this group to HP6. Both
metMb and FixLH form hydroxy-ligated hemes at high pH and these al-
kaline forms react very slowly, if at all, with imidazole. Protonation of
imidazole has a relatively small effect on the rate of imidazole binding
to metMb [40,41] and a somewhat larger effect in FixLH (this work).
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4.13. Ligand binding to FixLH and signal transduction

The primary function of the heme domain is to sense the presence of
O2 and transmit this information to the kinase domain,whichultimately
leads to inhibition of transcription of the nitrogen-fixing genes, nifA and
fixK [5]. The mechanism of signal transduction in the heme sensor pro-
teins has been the subject of intense investigation over the last two de-
cades. X-ray structures of ligand-free and ligated FixLH have provided
structures of the initial andfinal states in the signal transduction process
[10–18], while kinetic studies have provided information about the dy-
namics of conversion between the two states. Due to the photo-lability
of the ferrous O2, CO, and NO complexes, flash photolysis studies have
provided a wealth of information on the early stages of ligand dissocia-
tion and rebinding. These results have recently been reviewed [42].

The major structural differences between deoxy-BjFixLH and oxy-
BjFixLH [13] include movement of the heme iron into the plane of the
porphyrin ring upon O2 binding resulting in flattening of the heme,
and movement of HP6 and HP7 relative to the heme plane. The latter
movement changes the interaction between the heme propionates
and residues in the Fα helix, the Gβ strand, and the FG loop (residues
211 to 216). In the deoxy structure, HP6 is hydrogen bonded to the
amide nitrogens of His-214 and Ile-215 (FG loop), while in the oxy
structure HP6 interacts with His-214 (FG loop) and Arg-206 (Fα
helix). HP7 hydrogens bonds to both His-214 and Arg-220 (Gβ strand)
in deoxy-FixLH, while in the oxy structure, HP7 only interacts with
His-214. The changes in interaction of the heme propionates are associ-
atedwith a large scalemovement of the FG loop away from the heme in
oxy-FixLH. In the distal heme pocket, Leu-236 and Ile-238 shift to ac-
commodate the bound oxygen, and Arg-220, upon losing its interaction
with HP7, rotates into the heme pocket and hydrogen bonds with the
bound O2. Binding of CO and NO cause significantly smaller structural
changes [11,13,15] and also lower levels of inhibition of the catalytic ac-
tivity of the kinase domain [42].

The proposed mechanism for signal transduction involving move-
ment of the FG loop away from the heme involves changes in the inter-
actions of both HP6 and HP7. The current study on the pH dependence
of ligand binding to FixLH is consistent with the idea that changes in the
protonation state of HP6 affects the rate and stability of both cyanide
and imidazole binding to FixLH. In addition, deprotonation of HP6 in-
creases the rate of heme pocket opening, allowing faster access to
bulky ligands such as imidazole. The faster rate of heme pocket opening
on going from low pH to neutral pH is consistent with weakening of the
hydrogen bonding interactions between HP6 and the main chain
amides of His-214 and Ile-215.

Time-resolved crystallographic studies of FixLH following CO
photolysis of heme-bound CO showed that only two conformational
states of the protein existed over the time frame of 1 μs to 10 ms, the
ligand-bound state and the fully relaxed ligand-free state [17]. Upon
photo-dissociation of bound CO, the protein structure went from the
ligand-bound conformation to the fully relaxed ligand-free conforma-
tion within 1 μs. A 1.4 ms transient was also detected in this study, a
transient due to CO rebinding and return to the ligand-bound protein
conformation [17]. The structural differences between CO-bound and
deoxy-BjFixLH are much smaller than those between oxy- and deoxy-
BjFixLH and are concentrated in two regions of the protein [15]. The
most prominent differences are associated with the movement of the
Leu-236 side chain from its position directly over the heme iron in the
deoxy state to accommodate bound CO. This results in an ~0.25 Å shift
of the main chain atoms of Leu-236, also shifting the main chain
atoms of Phe-252 and Val-253 to which Leu-236 hydrogen bonds.
There are also small changes in the FG loop between Ile-215 and
Gly-217. The backbone atoms of Ile-215 move about 0.3 Å relative to
the deoxy structure and a hydrogen bond appears to be formed be-
tween HP6 and the backbone amide of Ile-216. There are no changes
in the region of HP7 andArg-220 indicating that the salt bridge between
Arg-220 and HP7 remains intact in CO-FixLH.
Limited structural information is available from time resolved UV
resonance Raman (UVRR) spectroscopy following photolysis of CO and
O2 [43]. Intensity changes in a band at 345 cm−1 attributed to formation
of the salt bridge between HP7 and Arg-214 in SmFixL (Arg-220 in
BjFixLH) decayed with time constants of 0.3 μs and 1 μs in FixLH and
full length FixL, respectively. A second band at 380 cm−1, involving
heme propionate methylene deformation and whose intensity is sensi-
tive to surrounding residues, decayed with time constants of about 1 μs
and 3 μs in the heme domain and full length FixL, respectively. This step
was attributed to changes in the interaction between HP6 and the FG
loop residues, Ile-209 and Ile-210 (Ile-215 and Ile-216 in BjFixLH) and
movement of Ile-209 into the space vacated by the departing O2. If
these interpretations of the intensity changes are correct, the UVRR
data suggest that movement of the FG loop and residues in the distal
pocket occur on the μs time scale following dissociation of the ligand.
In the photo-dissociation studies, transients in the ms time frame
were also observed and attributed to ligand rebinding. In a more recent
study [44], a Raman band attributed to Tyr-201 in SmFixL (Tyr-207 in
BjFixLH) increased in amplitudewith a time constant of 0.1 μs following
O2 photolysis and was associated with changes in the Fα helix prior to
movement of the FG loop.

The flash photolysis studies show that the conformational changes
in FixLH can occur in less than 1 μs following CO and O2 dissociation
and that in the forward direction, conformational changes occur simul-
taneously with ligand binding, i.e., there is no conformational impedi-
ment to CO or O2 binding under the typical experimental conditions.

Binding of both cyanide and imidazole convert FixL from the
catalytically-active five-coordinate, high-spin met conformation to the
inactive ligand-bound, six-coordinate, low-spin conformation [9–11,
13,42]. Although the structures of the cyanide and imidazole complexes
are not identical [13], they both share in themovement of FG loop away
from the heme. The only potential barrier to cyanide binding to the
heme iron would be the movement of the three hydrophobic residues
in the distal heme pocket, primarily Ile-238, away from the heme iron.
The time-resolved x-ray and UVRR studies show that this type of move-
ment can occur in less than 1 μs, over two orders of magnitude faster
than the fastest rate of cyanide binding we observed in this study,
Figs. S7 and S8. As a consequence of the very fast conformational chang-
es, the binding of cyanide appears as a simple monophasic ligand bind-
ing reaction.

Imidazole binding is muchmore interesting due to saturation of the
observed rate constant at high imidazole concentrations, Fig. S10. The
limiting rate is almost certainly due to themovement of amino acid res-
idues blocking access to the heme iron. In both the conformational gat-
ing and encounter complex mechanisms, Section 4.6, the limiting rate
constant is defined as ko, the rate of heme pocket opening. At neutral
pH, this rate is 460 s−1 for BjFixLH and 1270 s−1 for SmFixLH, character-
istic times of 2.2 ms and 0.79 ms, respectively. Rates in the ms region
have been observed in the flash photolysis studies of CO- andO2-ligated
FixLH and these have been attributed to ligand rebinding [17,43].

The major barrier to binding imidazole to the heme iron is the loca-
tion of Ile-215, Leu-236, and Ile-238 in the distal heme pocket. The side
chain of Ile-238 appears to rotate out of the way of the imidazole and
there is a 2.2 Å displacement of Ile-215 out of the heme pocket. The car-
bonyl of Ile-215 hydrogen bonds to a water molecule, which in turn hy-
drogen bonds to the imidazole ring. In addition, the salt bridge between
Arg-220 and HP7 in the metFixLH structure is disrupted. The Arg-220
side chain does not hydrogen bond to the bound ligand in the imidazole
complex but rotates to the surface of the molecule extending into solu-
tion. The orientation of the main chain atoms in the FG loop of the
imidazole-BjFixLH complex is similar to the orientation of the FG loops
in oxy- and cyanomet-BjFixLH. Since the largest differences between
the imidazole complex and the oxy- and cyanomet-FixLH complexes
are in the Ile-215 and Arg-220 side chain positions, a reasonable hy-
pothesis is that the rate limiting step in imidazole binding is associated
with movement of these two residues.
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For binding of small diatomicmolecules such asO2, CO, and CN−, the
conformational changes in the protein occur simultaneouslywith ligand
binding indicating that the protein dynamics are sufficiently fast to ac-
commodate the ligand. In the case of bulky ligands such as imidazole,
the protein conformation must change before the ligand can bind and
these conformational changes can become rate limiting. Finally, it
should be noted that the rate of any protein conformation change
associated with ligand binding need not occur on the same time scale
as the rate of protein relaxation following ligand dissociation.

5. Conclusions

5.1. Cyanide binding to FixLH

The apolar heme pocket of FixLH discriminates between HCN and
CN−, with the binding of CN− more than three orders of magnitude
faster than that of HCN. Two ionizable groups in FixLH influence binding
of CN−. The more acidic group has been identified as HP6, which is
hydrogen-bonded to the amide nitrogens of both His-214 and Ile-215,
and coupled to the conformational shift in the FG loop. The pKa of HP6
is 7.6 in ligand-free FixLH and ionization of HP6 reduces the rate of cy-
anide binding two-fold due to electrostatic repulsion between the
negatively-charged carboxylate and the cyanide anion. The second ion-
ization is due to the formation of hydroxy-FixLH with a pKa near 9.6 in
both BjFixLH and SmFixLH. Hydroxy-FixLH is at least 30-fold less reac-
tive toward CN− than FixLH. The maximum observed values for the as-
sociation rate constant are (443 ± 8) M−1 s−1 for BjFixLH and (252 ±
61)M−1 s−1 for SmFixLH, both at pH 9.5, occurring approximatelymid-
way between the pKas for ionization of HCN and formation of hydroxy-
FixLH. Binding of cyanide is so slow that conformational dynamics do
not limit the rate of cyanide binding.

There is only one reactive form of cyano-FixLH between pH 5 and 11
and the rate of cyanide dissociation from the complex is independent of
pH, with observed dissociation rate constants of (1.2 ± 0.3) × 10−4 s−1

and (1.7 ± 0.3) × 10−4 s−1 for the BjFixLH and SmFixLH complexes,
respectively. The dissociation rate constant increases below pH 5 due
to the protonation of HP6. The pKa of HP6 is less than 5 in the cyano
complex.

Experimental values of KD were determined at integral pH values.
The strongest binding occurred at pH 9, with KD values of 0.15 ±
0.09 μM and 0.50 ± 0.20 μM for the cyano complexes of BjFixLH and
SmFixLH, respectively.

5.2. Imidazole binding to FixLH

The picture that emerges from this study of imidazole binding to
FixLH is that imidazole binds rapidly to form an encounter complex,
with imidazole associated with the protein but not bound to the
heme. Conformational changes within the encounter complex open
the distal heme pocket with rates of 460 s−1 for the BjFixLH complex
and 1270 s−1 for the SmFixLH complex at pH 7 allowing imidazole to
bind to the heme iron. We attribute the rates of heme pocket opening
with the movements of the side-chains of Ile-215 (FG loop) and
Arg-220 (Gβ strand) away from the heme, converting FixLH from its cat-
alytically active conformation [10] to an inactive conformation [11]. In
the imidazole complex, the conformational changes associatedwith im-
idazole binding are considerably slower than the rates of FG loopmove-
ment during the photolysis of O2 [43]. However, the movement of the
Ile-215 and Arg-220 side-chains is much larger between met-FixLH
and the imidazole complex than between deoxy- and oxy-FixLH [13]
and could result in a slower rate of reorientation.

Due to the coupling of the conformational changes with imidazole
binding, only apparent association and dissociation rate constants for
the imidazole-FixLH complex can be determined, which in both cases
areminimum values. The apparent association rate constant for imidaz-
ole binding to BjFixLH varies from (2.0 ± 0.9) × 103 M−1 s−1 at pH 5 to
(5.0 ± 0.3) × 104 M−1 s−1 at pH 8.5, decreasing to (7.4 ±
2.7) × 103 M−1 s−1 at pH 11. The pH dependence indicates that FixLH
discriminates between the protonated and unprotonated forms of imid-
azole, binding neutral imidazole some 25 times faster than the
imidazolium cation to BjFixLH and 4 times faster to SmFixLH. Hydroxyl-
ation of FixLH does not have as large an impact on the binding of
imidazole as it does on the binding of cyanide. The binding of imidazole
to hydroxy-FixLH is only 2-times slower than binding to the penta-
coordinate met form of SmFixLH and 7-times slower than to met-
BjFixLH.

The apparent dissociation rate constant for the imidazole-FixLH
complex is essentially independent of pH just as for the cyanide com-
plex, with an average value of 73 ± 19 s−1 between pH 5 and 11 for
the BjFixL complex and 77 ± 14 s−1 for the SmFixLH complex. The
very small pH dependence seen for BjFixLH imidazole complex can be
accounted for based on the coupling of the conformational changes
with imidazole dissociation.

The rate of heme pocket opening is pH dependent and appears to be
affected by both the ionization of HP6 and formation of hydroxy-FixLH.
The maximum rate of heme pocket opening for BjFixLH is 680 s−1 at
pH 9, decreasing to 270 s−1 at pH 5 and 170 s−1 at pH 11. For SmFixLH,
themaximum rate of hemepocket opening is 1270 s−1 at pH7, decreas-
ing to 290 s−1 at pH 5 and 100 s−1 at pH 11.

5.3. Effect of the Y197F mutation on imidazole binding to SmFixLH

The Y197Fmutation of SmFixLH affects the kinetic parameters for im-
idazole binding to some extent although the changes are not large. The
apparent association rate constant for imidazole binding to
SmFixLH(Y197F) varies from (3.4 ± 2.1) × 103 M−1 s−1 at pH 5 to
(1.8 ± 0.5) × 105 M−1 s−1 at pH 9.0, decreasing to (2.5 ± 2.2) ×
103 M−1 s−1 at pH 11. Between pH 6 and 10, the apparent imidazole as-
sociation rate constant (P1) for the Y197F mutant averages about 50%
faster than that of SmFixLH. The apparent dissociation rate constant for
the Y197F mutant is 95 ± 24 s−1 over the pH range 5 to 11 compared
to 77 ± 14 s−1 for SmFixLH.

The biggest effect of the Y197Fmutation is on the rate of hemepock-
et opening, providing support for the idea of protein destabilization in
the Y197F mutant. The rate of heme pocket opening is faster for the
Y197Fmutant than for SmFixLH over the entire pH range with the larg-
est differences at lowpH rather than at alkaline pH. Tyr-197 is located in
the Fα helix, three residues from the proximal heme ligandHis-194. The
phenolic group of Tyr-197 is hydrogen bonded to the carboxylate group
of Asp-190, also located in the Fα helix. Disruption of this hydrogen
bond could destabilized the Fα helix to some extent and allow the side
chains of both Phe-197 and Asp-190 to adopt alternative orientations,
perhaps destabilizing the FG loop.

5.4. Binding of 4-nitroimidazole to SmFixLH

Adding the electron-withdrawing nitro group to imidazole substan-
tially increases the acidity of both nitrogens in the ring. The apparent
pKas for the imidazolium/imidazole and the imidazole/imidazolate ion-
izations are −0.05 and 8.96, respectively [32]. This means that the li-
gand will be predominantly neutral between pH 5 and 8.96 and
predominantly negatively charged between pH 8.96 and 11 in contrast
with imidazole, which is positively charged below pH 7 and neutral
above pH 7. Unfortunately, the limited solubility of 4-nitroimidazole
did not allow studies at high enough concentration to observe satura-
tion of the binding rate. We were only able to obtain values for the ap-
parent association and dissociation rate constants. Both apparent rate
constants average about 40-fold smaller for 4-nitroimidazole binding
to SmFixLH than for imidazole binding. Interestingly, at pH 9, the
apparent equilibrium dissociation constants for imidazole and 4-
nitroimidazole complexes are essentially the same, 0.26 mM and
0.23 mM, respectively.
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