BUILDING A MICROBIAL FUEL CELL

PETER CLANCY, PH.D. JOE GOLAB, PH.D. PATRICK YOUNG

March 2, 2018

Galvanic or Voltaic Cell

- An electrochemical cell produces electrical energy from spontaneous oxidation-reduction (redox) reactions
- The cell consists of two different solid metals in the metal's salt solution connected by a salt bridge
- A redox reaction is a chemical reaction that transfers electrons between two species
- Reduction is the gain of electrons and Oxidation is the loss of electrons by a molecule, atom, or ion

Galvanic Cells

- $\Box \text{ Zn} \rightarrow \text{Zn}^{2+} + 2e^{-} \text{ (Anode)}$
- $\Box C U^{2+} + 2e^{-} \rightarrow C U \text{ (Cathode)}$
- One ½ cell reaction occurs in each container
- A salt bridge allows for charge neutrality in the solutions
- Current will not flow without the salt bridge to shuttle ions

Build One – Materials

 \square 0.1 M ZnCl₂ solution \square 0.1 M CuSO₄ solution 0.1 M NaCl solution (for salt bridge) At least 3 dixie cups \Box Copper wire (14G +) Galvanized (zinc-coated) nail Filter paper (for salt bridge) Voltmeter with alligator leads

Build One – Procedure

- Pour ~ 20ml of ZnCl₂ solution in a dixie cup and add the galvanized nail so its head sticks out of the cup
- Pour ~ 20ml of CuSO₄ solution in a dixie cup and add the copper wire so its end sticks out of the cup
- Clip one voltmeter lead to the nail and the other lead to the wire Is there a voltage?
- Soak filter paper in NaCl solution and then roll the soaked paper into a tube shape
- Place one end of the NaCl soaked filter paper tube in the ZnCl₂ solution and the other end in the CuSO₄ solution – Is there a voltage?

Summary

The theoretical voltage generated by the Zn/Cu galvanic cell is +1.1V under standard conditions, i.e.

- $\Box T = 25^{\circ}C$ and P = 1 bar for gases,
- Solids and liquids are pure, and
- Solutions are 1 M in all species.
- Real voltage will vary
 - Has equilibrium been reached & maintained
 - Concentrations change over time
 - Temperature dependence

Microbial Fuel Cell

IMSA

Taken from "Advanced Intro to MFC's", keegotech.com (2011)

Microbial Fuel Cell—Alternate Anode

Taken from "Advanced Intro to MFC's", keegotech.com (2011)

Theoretical Voltages

Double-Biofilm Cell

Anode:	$CH_3COOH + 2H_2O \rightarrow 2CO_2 + 8H^+ + 8e^-$	E ^o = -0.097 V
Cathode:	$2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O^-$	E ^o = +1.33
NET:	$CH_3COOH + 2O_2 + \rightarrow 2CO_2 + 2H_2O$	$E^{o} = +1.23 V$

Steel Wool at Anode

Anode:	$Fe \rightarrow Fe^{2+} + 2e^{-}$	E^{o} = -0.44 V
Cathode:	$2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O$	$E^{o} = +1.33$
NET:	$CH_{3}COOH + 2O_{2} + \rightarrow 2CO_{2} + 2H_{2}O$	$\underline{E^o} = +1.77 \text{ V}$

Potential MFC Construction Pitfalls

- Moisture content of soil
 - Maintain moisture with lid
- Electrical circuit considerations
 - Ensure top cathode contact with soil
 - Avoid short circuits between electrodes
 - Optimal load resistance

- Sugary foods drinks can increase voltage, but beware of noxious-smelling byproducts
- Maintaining anoxic and oxygen-rich zones Avoid air pockets during assembly Iron (steel wool/nails) is good oxygen scavenger

Power vs Load Resistance

History

- In 1780, Luigi Galvani contracts frog leg muscles with two different metals
- In 1799, Alessandro Volta invents a non-biological cell similar to the galvanic cell
- Later, Carlo Matteucci constructs a battery entirely out of biological material
- These discoveries paved the way for electrical batteries and Volta's cell is an IEEE Milestone (1999)

L'EIMS

Practical Applications of MFC's

UN Sustainable Development Goals

)ABLE AND

Wastewater Treatment

MFC's used in wastewater treatment can effectively remove organic waste generate electrical power □ 1.5% of electricity produced in US is used for wastewater treatment (15 GW) Successful pilot programs treated municipal wastewater in Bottrop, Germany

Harbin, China

Recharging portable devices in the developing world

MFC's built with local materials costing 10 to 20 US dollars have the demonstrated ability to

- Power LED lamps
- Recharge cell phones

