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Outline 

•  Swarm Definitions 

•  Swarm Design 

•  Designing Ant Swarms 

•  Measuring Shortest Length with Ant Swarms 

•  Designing Locust Swarms 

•  Measuring Density with Locust Swarms 
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An agent is a subset of a system which controls at least one degree of freedom 
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A swarm is a collection of agents that has more abilities than any 
individual agent.  
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How do we mathematically analyse a swarm? 
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Local properties are anything the agent can directly observe or 
interact with. 

A Local Property is 
Relative Position 
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Global properties are well-defined, differentiable functions of the 
local properties. 

A Global Property is 
Width of Swarm 
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Global properties are well-defined, differentiable functions of the 
local properties. 

A Global Property is 
Center of Mass 
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The Global Property space, or the Phase Space, can be drawn. 

Length of Swarm (L) 
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The Phase Space shows clearly the ways in which the swarm must change in 
order to reach the desired end phase. 

initial 

goal 

Length of Swarm (L) 
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The Hamiltonian Method of Swarm Design entails looking at the phase space and determining 
which direction the Global Properties must change. The direction that they must go determines the 

swarm conditions, which must be met in order for the desired outcome to be achieved. 

initial 

goal 

Length of Swarm (L) 
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A swarm decision is a change in attractor in Phase Space. 

initial 

goal 

Length of Swarm (L) 
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How do we make the swarm flexible so it can decide to converge to a closer food 
source if the closer one is made available to the swarm at a much later time than the 

further food source? 
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How do we make the swarm flexible so it can decide to converge to a closer food 
source if the closer one is made available to the swarm at a much later time than the 

further food source? 
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How do we make the swarm flexible so it can decide to converge to a closer food 
source if the closer one is made available to the swarm at a much later time than the 

further food source? 
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400 
300 

= 

A global property is the length of the paths 
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A global property is the number of ants on each path. 

364 
333 

= 
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Swarm Condition: 
  

After some mathematical tricks, it can be seen that the dot product of the two global 
properties needs to be negative in order for the swarm to make the decision. The state 
change can be seen below. 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

A group of grasshoppers is in an enclosed space 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

As they move around, they contact each other 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

Upon contact, the grasshopper’s serotonin level increases 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

Continued collisions further increase the serotonin levels, until… 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

The grasshopper begins its transition into a locust 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

The erratic behavior of locusts lead to many more collisions, increasing the rate of serotonin increase 
for surrounding grasshoppers 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

As a result, more grasshoppers turn into locusts 



Examples・Definitions・Hamiltonian・Decisions・Ants・Locusts・Conclusion 35 of 45      IMSAloquium 2017 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 

Eventually, all of the grasshoppers have transitioned into locusts 
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How can we engineer a swarm that can determine the size of a room by merely 
bumping into each other? 
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The internal state of the agent increases by a constant amount for collisions with other 
agents. This state also decays exponentially over time. After the threshold, the agent is 

triggered. 
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•  Global Property 
 
 
 
•  Desired Behavior 
 

The global property is the sum of each agent’s internal property, and so the swarm 
condition is that the global property must increase over time. 
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•  Swarm condition 
 

Ntrigger = 2 Ntrigger = 20 

The swarm condition can be expressed in terms of parameters that determine the 
dynamics of the internal state. 
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The state change can be seen below. The swarm condition is verified through 
experimental data. 
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1.  ??? 
2.  ??? 
3.  ??? 
4.  Swarm works a priori 

How do we engineer swarms to make decisions provably? 
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1.  Hamiltonian Method of Swarm Design 
2.  Swarm Conditions 
3.  ??? 
4.  Swarm works a priori 
 
What’s a general methodology for the third step? 

The Hamiltonian Method of Swarm Design can be used to generate the swarm 
conditions, but there is no general methodology to go from those conditions to the 

swarm working a priori. 
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Thank you! 


