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Abstract 

Differential tissue sensitivity/responsivity to hormones can explain developmental asynchrony among hormone-

dependent events despite equivalent exposure of each tissue to circulating hormone levels. A dramatic vertebrate 

example is during frog metamorphosis, where transformation of the hind limb, brain, intestine, liver, and tail are 

completely dependent on thyroid hormone (TH) but occurs asynchronously during development. TH transporters 

(THTs) and cytosolic TH binding proteins (CTHBPs) have been proposed to affect the timing of tissue transformation 

based on expression profiles and in vitro studies, but they have not been previously tested in vivo. We used a 

combination of expression pattern, relative expression level, and in vivo functional analysis to evaluate the potential for 

THTs (LAT1, OATP1c1, and MCT8) and CTHBPs (PKM2, CRYM, and ALDH1) to control the timing of TH-

dependent development. Quantitative PCR analysis revealed complex expression profiles of THTs and CTHBPs with 

respect to developmental stage, tissue, and TH receptor β (TRβ) expression. For some tissues, the timing of tissue 

transformation was associated with a peak in the expression of some THTs or CTHBPs. An in vivo overexpression 

assay by tail muscle injection showed LAT1, PKM2, and CRYM increased TH-dependent tail muscle cell 

disappearance. Co-overexpression of MCT8 and CRYM had a synergistic effect on cell disappearance. Our data show 

that each tissue examined has a unique developmental expression profile of THTs and CTHBPs and provide direct in 

vivo evidence that the ones tested are capable of affecting the timing of developmental responses to TH. 

 

1. Introduction 

At some point during post-embryonic development in all vertebrates, a peak in blood levels of thyroid hormone (TH) 

occurs and induces critical TH-dependent developmental events (Buchholz et al., 2006). TH regulates developmental 

events by binding with TH receptors (TRs) in the cell nucleus and changing gene expression, leading to extensive 

morphological and/or functional changes in TH-target tissues (Shi, 1999). Importantly, even though organs and tissues 

are exposed to the same circulating levels of TH, TH-dependent events occur at different time points during 

development, that is, in a tissue asynchronous manner (Brown et al., 2005; Furlow and Neff, 2006). A dramatic 

example of TH-dependent tissue asynchrony is frog metamorphosis, where TH induces (1) hind limb elongation at the 

start of metamorphosis when TH levels are low, (2) tail resorption during metamorphic climax when TH levels peak, 

and (3) TH-dependent remodeling of the other organs when TH levels are intermediate. 

Tissue asynchrony is due to a combination of (1) differential sensitivity to TH, i.e., tissues differ in the blood 

concentration of TH required to initiate TH-dependent gene expression and tissue transformation and (2) differential 

responsivity to TH, i.e., tissues differ in rate of TH-dependent tissue transformation (Shi et al., 1996). Above a 

threshold TH concentration in the blood, a tissue becomes sensitive to transform, and the response to TH (rate of 

transformation) is proportional to the amount of TH signaling and constrained by the inherent tissue-specific rate of 

developmental change. Sensitivity and responsivity are related, because both depend on mechanisms that regulate TH 

entry into the cell from circulation, transport across the plasma membrane, transit through the cytoplasm, and binding 

of TRs in the cell nucleus to regulate gene expression (Buchholz et al., 2011). At least four candidate mechanisms are 

known or hypothesized to affect tissue sensitivity/responsivity, based on expression and activity levels of (1) TR and 
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associated transcription co-factors, (2) TH metabolizing enzymes (deiodinases), (3) TH transport from the blood across 

the plasma membrane, and (4) cytosolic TH binding proteins (Shi et al., 1996). Previous in vivo functional analyses on 

deiodinase type 3 (Huang et al., 1999), TRs (Buchholz et al., 2004; Choi et al., 2015; Hollar et al., 2011; Nakajima et 

al., 2012), and various transcription factors (Matsuda et al., 2009; Paul et al., 2007; Sato et al., 2007) using 

overexpression by transgenesis or tail muscle cell injection showed changes in timing of tissue development, i.e., 

affected tissue sensitivity and responsivity to TH (Hollar et al., 2011). However, the role of TH transporters (THTs) and 

cytosolic TH binding proteins (CTHBPs) that may also impact TH signaling has not been experimentally examined in 

vivo. 

Many THTs have been identified, including monocarboxylate transporters (MCT8, MCT10), L-type amino acid 

transporters (LAT1, LAT2), and organic anion transporting proteins (OATP1c1, OATP1A2 and OATP4A1) (Friesema 

et al., 2008, 2003; Hennemann, 2001; Pizzagalli et al., 2002). Different THTs have different transport efficiencies and 

specificities for TH, where MCT8, MCT10, and OATP1c1 have the highest affinity and specificity for TH transport, 

and LAT1 and 2 serve to transport subsets of amino acids as well as iodothyronines (Heuer and Visser, 2009). In-vitro 

studies have shown that LAT1 enhances TR-mediated gene transcription in a Xenopus oocyte transcription assay 

(Ritchie et al., 2003; Shi et al., 2002). In addition, LAT1 is strongly up-regulated during TH-dependent development, 

suggesting that it may play an important in vivo role in TH signaling (Liang et al., 1997). The strongest evidence for an 

in vivo role of TH transport comes from the association of mutations in MCT8 with severe X-linked mental retardation 

and elevated circulating levels of T3, the active form of TH (Jansen et al., 2008). Most TH transporters are expressed in 

varying patterns in different types of tissues in mammals (Heuer and Visser, 2009) and frogs (Connors et al., 2010). 

However, there has been no direct evidence that THTs play a role in control of developmental asynchrony. 

Cytosolic TH binding proteins (CTHBPs) were first identified as distinct from serum TH binding proteins (Tata, 1958) 

and are now well-established in mammals and amphibians (Yamauchi and Tata, 2001). The CTHBPs identified to date 

do not represent a specific protein family but rather are diverse, multifunctional proteins (Yamauchi and Tata, 2001). In 

frogs, two CTHBPs have been identified: aldehyde dehydrogenase 1 (ALDH1) and pyruvate kinase subtype M2 

(PKM2) (Shi et al., 1994; Yamauchi and Tata, 2001). Two other CTHBPs in frogs have been detected but not identified 

(Yamauchi and Tata, 1997; Yoshizato and Frieden, 1975). ALDH1 catalyzes aldehyde oxidation and synthesis of 

retinoic acid and was independently identified as a cytosolic TH binding protein (Yamauchi and Tata, 1994). TH 

interacts with ALDH1 as a non-competitive inhibitor of dehydrogenase activity (Yamauchi and Nakajima, 2002). 

PKM2, a central player in cellular energy metabolism, was identified as a CTHBP by protein purification of TH 

binding activity (Kitagawa et al., 1987). PKM2 exists in the cytoplasm as a tetramer (high enzymatic activity) or 

monomer (low enzymatic activity), depending on posttranslational modifications and allosteric regulators. The 

presence of fructose 1,6-bisphosphate and serine favors the tetrameric form and allosterically activates PKM2, whereas 

phenylalanine and T3 favor the monomer and allosterically inhibit PKM2 (Christofk et al., 2008; Gui et al., 2013; 

Morgan et al., 2013; Williams et al., 2006). Though not studied previously in amphibians, CRYM was discovered first 

as a CTHBP and was much later found to have NADH/NADPH-dependent ketimine reductase activity, involved in 

lysine catabolism, and T3 strongly and non-competitively inhibits this enzyme activity (Hallen et al., 2011). CRYM 

mutations are associated with deafness in humans, with a link to TH signaling (Oshima et al., 2006). In mouse, CRYM 

knockout affected serum and tissue T3 turnover but not peripheral T3 action in vivo, and there was no effect on mouse 

hearing (Suzuki et al., 2007). 

The mechanisms of CTHBP action in TH signaling are not known, but CTHBPs may shuttle TH to the nucleus to 

facilitate TH signaling or sequester TH in the cytoplasm and reduce TH signaling (Shi et al., 1996). Indeed, CRYM can 

increase cytoplasmic T3 retention and can suppress T3-induced gene expression in cell culture (Mori et al., 2002). 

Similarly, PKM2 or CRYM expression is negatively correlated with induction of TH response genes (Ashizawa and 

Cheng, 1992; Mori et al., 2002; Shi et al., 1994). On the other hand, TH-induced gene regulation was not affected by 

MCT8 alone but was increased in combination with CRYM (Van Mullem et al., 2011). Also, a positive correlation 

exists between cytosolic T3-binding activity from unidentified proteins and metamorphic changes in hind limb, 

intestine, head, and liver, but not in tail (Yamauchi and Tata, 1997). Equilibrium dissociation constants (Kd) among 

known CTHBPs for TH range from 0.1 nM to over 100 nM, indicating that some CTHBPs may be of only 

pharmacological importance and not relevant at physiological TH levels (Yamauchi and Tata, 2001). Also, the ability 



of T3 to inactivate enzyme activity of CTHBPs suggests that a potential role of an interaction between CTHBPs and 

TH may be to modulate enzyme activity in addition to modulate intracellular TH bioavailability for transcription 

regulation. 

Here, we address the role of THTs and CTHBPs in tissue-specific regulation in TH-dependent development in frog 

metamorphosis using expression and functional analyses. We quantified expression profiles of three THTs (LAT1, 

MCT8 and OATP1c1) and three CTHBPs (PKM2, ALDH1 and CRYM) in five TH-target tissues/organs (hind limb, 

liver, intestine, brain, and tail) at seven developmental stages throughout the larval period including metamorphosis. 

Also, we overexpressed THTs (LAT1 and MCT8) and CTHBPs (PKM2 and CRYM) in tail muscle cells to determine 

the effect on the rate of TH-dependent muscle cell disappearance. 

 

2. Materials and methods 

2.1. Animal care and rearing 

Breeding was induced by injecting human chorionic gonadotropin (Sigma Aldrich, St. Louis, MO) into Xenopus tropicalis (20 U in the evening 

followed by a 200 U booster in the morning for both sexes) and into Xenopus laevis (600 U in females and 100 U in males in the evening). 

Tadpoles were reared and staged according to Nieuwkoop and Faber (NF) (Nieuwkoop and Faber, 1994) until tissue harvest and/or tail 

injection. Tadpoles were reared at 25 °C and 19 °C for X. tropicalis and X. laevis, respectively, and fed powered food (Sera Micron) with daily 

water changes. The use of animals in this study was approved by the University of Cincinnati Institutional Animal Care and Use Committee 

(IACUC protocol # 06-10-03-01). 

2.2. RNA isolation, cDNA synthesis, and quantitative PCR 

Hind limb, brain, liver, intestine, and tail from staged tadpoles anesthetized in benzocaine (Sigma) were isolated, snap frozen on dry ice, and 

then stored at −80 °C until RNA isolation. The intestine was flushed of its contents using a 30-gauge needle filled with phosphate buffered 

saline at 60% mammalian strength prior to freezing. Three to six replicates were obtained, but for smaller organs, each replicate was pooled 

from 2 to 3 individuals. Total RNA was isolated using TRIzol (Invitrogen) according to manufacturer’s instructions. Two μg of RNA were 

used to synthesize cDNA, following the manufacturer’s protocol (Multiscribe reverse transcriptase kit, Applied Biosystems). Quantitative PCR 

(qPCR) was carried out with 1–2 μL cDNA in 20 μL reactions using FAM-labeled primer/probe sets (Table 1) and Universal Master Mix 

(Applied Biosystems) on a 7300 Real Time PCR System with default reaction conditions (50 °C 2 min, 95 °C 10 min, then 40 cycles of 95 °C 

10 s, 60 °C 1 min) (Applied Biosystems). qPCR standards (1:3 serial dilutions) were made from NF stage 62 whole body tadpole mRNA and 

used to quantify relative expression levels among stages and tissues. qPCR runs where slopes of the standard curves (generated using serial 

dilutions of cDNA from NF62 whole bodies) were outside the range of −3.40 to −3.90 (a slope of −3.54 reflects 100% amplification efficiency) 

and R2 values were less than 0.990 were not included in the analyses. A control sample (1/30 dilution of cDNA from NF62 whole bodies) was 

included in each qPCR run and used to evaluate the consistency among runs. Non-template controls were used in each qPCR run and failed to 

detect reaction product contamination. Each replicate was run in duplicate in qPCR, and the values were averaged for expression analysis. 

Table 1. Quantitative PCR primers and probes for TRβ, THTs and CTHBPs. 

Gene Forward primer (5′–3′) Reverse primer (5′–3′) FAM-labeled probe (5′–3′) Product (bp) 

TRβ CAAGAGTTGTTGATTTTGCCAAAAAGC ACATGATCTCCATACAACAGCCTTT CTGCCATGTGAAGACC 98 

rpL8 AGAAGGTCATCTCATCTGCAAACAG CTTCAGGATGGGTTTGTCAATACGA CAACCCCAACAATAGCT 80 

LAT1 GTTCGCTACCTACCTGCTCAAG CCTGGTAGCTGCTTTCACACT CAGTCAGCAGCAAGATA 133 

MCT8 ACCGAGGAACAGGGTATGGA ACAACTGGAGAGCAGAAAAAGATCA CCAACCCAAGCTGTCTTG 83 

OATP1c1 GGCATTTACACACTGGTCATACG GCGCCCCCAGGTACATG ATCCCCGCAAGAACC 64 



Gene Forward primer (5′–3′) Reverse primer (5′–3′) FAM-labeled probe (5′–3′) Product (bp) 

PKM2 GGGAGACTGCAAAGGGAGACTA GGTGGAAAATGGCTGCTTCTG ATGCAGCATGCTATTGC 87 

CRYM CGGCAGTTTCAGCAATAGCAA GATCCCAGAATGCACAAGATTTCAG CAAAGCTCCTTAAGCCC 70 

ALDH1 GCCTGTTGGAGTAT GGAGCAATTTTCCA AATCCCATGGAACTTTC 72 

 

2.3. Cloning of plasmid constructs for tail injections 

LAT1, MCT8, PKM2, and CRYM were PCR amplified (primers in Table 2) from a X. tropicalis cDNA library made for gene expression 

analysis above or from pBluescript SK(−)_LAT1 (IU12) and _PKM2 (gifts from Dr. Y.-B. Shi) and cloned into the SacII site of pHGCR-lox to 

replace DsRed2. The pHGCR-lox plasmid (sequence is available on request) was made by standard cloning techniques and gene synthesis 

(DNA2.0). To make pHGC-CRYM-C-MCT8-lox, we designed an oligo linker (5′ GGCCGCGCGC 3′) and ligated it into the NotI site of 

pHGC-MCT8-lox to generate one more BssHII site, from which the C-MCT8 fragment was subcloned into pHGC-CRYM-lox to make pHGC-

CRYM-C-MCT8-lox. Plasmid DNA was purified using Plasmid Maxi prep kit (Qiagen) and precipitated with sodium acetate and ethanol. 

Table 2. Primers for subcloning THTs and CTHBPs into expression plasmids for tadpole tail muscle injections. 

Gene 

(species) 
Forward primer (5′–3′) Reverse primer (5′–3′) 

Product 

(bp) 

LAT1 (X. 

tropicalis) 
CATCATCCGCGGGCCACCATGGCCGCAGACAGCGTG CATCATCCGCGGTTAGGACTCCTGGGGGACAGCC 1524 

MCT8 (X. 

tropicalis) 
CATCATCCGCGGGCCACCATGGAAGAAGAAGCAGAAGAGGACGAG CATCATCCGCGGCTACACACATTCATCTGTTACTGGGCTCCC 1500 

PKM2 (X. 

tropicalis) 
CATCATCCGCGGGCCACCATGTCTGAGGCAGGTAGTGCTTTCATTC CATCATCCGCGGTTAAGGCACTGGAACAACACGCATTG 1584 

CRYM 

(X. 

tropicalis) 

CATCATGCGCGCGTCGACACCGGTCCGCGGGCCACCATGGGCGAGCAGCCGGCTTT CATCATGCGCGCCCGCGGTCATTTATTTTCAGCCAGCCAGGA 934 

ALDH1 

(X. laevis) 
CATCATACCGGTATGTCAGAGAAAACCATTCTACATGGTTTGCC CATCATAGATCTTTAGGAATTCTTCTGAGAAATTTTCATGATAACCG 1520 

 

2.4. Tail muscle injections 

Tadpoles of X. laevis reared in stock tanks until NF stage 54–56 were pre-heat shocked at 32 °C for 5 min. The next day, tadpoles were briefly 

anesthetized in benzocaine and injected with the control plasmid pHGCR on the left side and a THT or a CTHBP expression plasmid (see 

Fig. 3A) on the right side of the tail, as described previously (Hollar et al., 2011). Briefly, 0.5 μL of DNA (2 μg/μL), containing 0.05% w/v fast 

green dye (Sigma), was injected into two myomeres on each side of the tail. Tadpoles were given daily heat shocks at 33–34 °C for an hour to 

induce gene expression beginning the day of injection. Treatment with 2 nM T3 started on the day after tail injection. 2 nM T3 is near the 

sensitivity threshold for the tail and was chosen to increase the ability of the assay to detect effects of overexpressed genes that increased the 

effect of T3. The experiments using LAT1 and MCT8 were conducted 2–3 times with comparable results, and thus the experiments with 

PKM2, CRYM, CRYM + MCT8 were each conducted once. The number of tadpoles injected, the number of cells per tadpole, and the total 

number of cells per hormone treatment per gene are enumerated in Suppl. Table 1. Cell fluorescence appeared to reach a maximum intensity 

and maximum cell number five days after plasmid injection, thus from day 5 to 14, GFP-positive cells in the tail muscle were imaged daily 

using a fluorescent microscope and counted manually to determine the rate of cell disappearance. The disappearance of any one cell was not 

gradual but occurred within 24 h. Water and hormone were changed daily. 

To confirm THT and CTHBP mRNA expression from injected plasmids, each plasmid (i.e., control, LAT1, MCT8, PKM2, CRYM, and 

MCT8 + CRYM) was injected into multiple sites on a NF56–57 tadpole tail followed by daily heat-shock to induce GFP expression. Tail 

tissues in the region of injection were then harvested on the fifth day after injection to isolate RNA, synthesize cDNA, and measure LAT1, 



MCT8, PKM2, CRYM, and the reference gene rpL8 by qPCR. Two to three tadpoles were used for each plasmid. To analyze data, the ddCt 

method was used (Livak and Schmittgen, 2001). 

 

2.5. Statistical analysis 

Gene expression data were tested for normality and heteroskedasticity and conformed to assumptions of analysis of variance (ANOVA) (JMP 

Statistical software). ANOVA was performed to determine if there were significant differences among stages of development (Table 3). The 

threshold P-value of significance was set at 0.05. For any tissue and gene that yielded a P-value of 0.05 or less, a post hoc, pair-wise 

comparison was performed using the Tukey–Kramer method. To test for a significant effect of THT and CTHBP on cell disappearance, a 

generalized linear mixed model (GLMM) was used (Bates et al., 2012; Marschner, 2012; The R Core Team, 2013). In our data, there are n 

trials in each tail (i.e., total number of GFP positive muscle cells), and x number of “successes” (i.e., cells disappearing). Our response variable 

is the percent of muscle cells surviving, as calculated by y = 100 * x/n. Thus, GLMM analysis is appropriate and ANOVA is not (Warton and 

Hui, 2011). In the model, injected gene, TH treatment, and their interaction were fixed effects, and individual tadpoles and time (treatment 

days) were random effects. We evaluated which effects affected the rate of disappearance of fluorescent cells in tadpole tail muscle. 

Table 3. Statistical analysis of THT and CTHBP expression levels in different tissues across developmental stages. 

Gene Statistics Brain Hind limb Intestine Liver Tail 

LAT1 
F 0.9199 5.5079 5.237 1.869 2.0587 

n 3–5 3–5 4–6 5–6 4–6 

OATP1c1 
F 6.9451 6.8307 3.9326 4.4839 3.4851 

n 3–5 3–5 4–6 5–6 4–6 

MCT8 
F 2.2519 8.4057 5.5618 10.4579 39.9546 

n 3–5 3–5 4–6 5–6 4–6 

CRYM 
F 6.9571 15.557 4.1552 2.9006 20.4657 

n 3–5 3–5 4–6 5–6 4–6 

PKM2 
F 2.2002 13.6944 4.0911 0.4977 21.945 

n 3–5 3–5 4–6 5–6 4–6 

ALDH1 
F 1.5814 4.9732 7.4861 7.6153 2.0967 

n 3–5 3–5 4–6 5–6 4–6 

Statistics: one-way ANOVA, F = F statistic, n = sample size across stages for each gene and tissue, highlighted bold F values indicate 

statistical significance (P < 0.05) across stages for that gene and tissue. 

 

3. Results 

3.1. TRβ and rpL8 

To examine the potential functional significance of THTs and CTHBPs with respect to the sensitivity/responsivity of a tissue to TH, we 

obtained the profile of the TH-response gene TRβ for comparison with expression profiles of THTs and CTHBPs. For any one tissue, the 

expression of TRβ mRNA is expected to peak at the initiation of TH-dependent morphological change. Indeed, the developmental profiles of 

TRβ for the intestine and tail follow this pattern (Fig. 1A). However, the hind limb and brain show among the earliest TH-dependent changes 

(NF52–54), but the TRβ peak occurred later at NF58 and NF62, respectively (Shi, 1999). Similarly, the liver expresses TH-induced urea cycle 

enzymes at climax of metamorphosis (NF62) (Helbing et al., 1992), but the TRβ peak occurred after that at NF64. 



 

Fig. 1. Quantification of TRβ and rpL8 mRNA among tissues during natural metamorphosis. Tadpoles of Xenopus tropicalis were staged, 

tissues were harvested (hind limb, brain, intestine, liver, tail), and total RNA and cDNA were prepared. Expression of TRβ (A) and rpL8 (B) 

were measured by quantitative PCR. Standard error is indicated with a bar at each time point, n = 3–6. Post hoc pair wise comparisons (Tukey–

Kramer) were conducted within tissues across developmental stages, and letters in the tables represent significance groups within tissues. 

Gray/bold cells in the table indicate stage at peak TRβ expression for each tissue. The black box indicates absence of data for the tail, which 

has resorbed completely by NF66. Numbers in the tables represent fold changes in TRβ expression comparing the levels between NF54 and 

stage of the TRβ peak for each tissue. 

As reported previously (Dhorne-Pollet et al., 2013; Duarte-Guterman et al., 2010; Sindelka et al., 2006), we found that 

rpL8 values do not remain constant across stages or tissues (Fig. 1B). Thus, analyses of TRβ and the THTs and 

CTHBPs were not normalized to a housekeeping gene to avoid introducing undesirable biases. Rather, each cDNA 



sample used for qPCR was synthesized using the same amount of total RNA, and relative expression levels were 

calculated as the average of 3–6 samples per stage and tissue. 

3.2. TH transporters 

3.2.1. LAT1 

Comparison of expression across tissues revealed that brain expressed significantly more LAT1 than the other tissues and that only hind limb 

and intestine had significantly different expression levels across stages (Fig. 2A, Table 3). For the intestine, LAT1 expression was similar 

across stages until a 16-fold increase at NF66 compared to NF54 but showed no significant increase at the stage of peak intestinal TRβ 

expression. In the hind limb, high levels of LAT1 expression corresponded to the peak in TRβ expression, with nearly 6-fold expression level 

change across stages. 

 



 



 
 
Fig. 2. Quantification of THT and CTHBP mRNAs among tissues during natural metamorphosis in Xenopus tropicalis. The same samples and 

statistical analyses were used as in Fig. 1. For the THTs, LAT1, OATP1c1 and MCT8 (A–C) and CTHBPs, CRYM, PKM2 and ALDH1 (D–F), 

the peak in mRNA expression is indicated by a gray box for each tissue. TRβ peaks are indicated by bold boxes to compare timing of 

expression peaks with the TH signaling genes. 

 

3.2.2. OATP1c1 

Expression levels of OATP1c1 varied across stages for each tissue except intestine (Fig. 2B, Table 3). Like LAT1, OATP1c1 was highly 

expressed in the brain compared to the other tissues and remained high through NF63, followed by a 2-fold decrease. In the hind limb, 

OATP1c1 was initially high at the time of limb growth initiation then showed a 35-fold decrease at NF58 and then remained low. Liver and tail 

maintained relatively low levels of OATP1c1 expression throughout the larval period. In no tissue did an OATP1c1 peak match the TRβ 

expression peak for that tissue, though the hind limb and tail OATP1c1 peaks were one stage before the corresponding TRβ peak. 



3.2.3. MCT8 

Expression levels of MCT8 varied across stages for each tissue except brain (Fig. 2C, Table 3). The peaks in MCT8 expression roughly 

matched the stage of transformation in hind limb, intestine, and tail but not in liver. The fold change expression from NF stage 54 to expression 

peak varied among tissues with the greatest fold change in the tail (16-fold increase) and hind limb (14-fold decrease), followed by the intestine 

(7-fold increase) and liver (2-fold decrease). 

3.3. Cytosolic TH binding proteins 

3.3.1. CRYM 

Expression of CRYM changed significantly with distinct profiles across stages for each tissue (Fig. 2D, Table 3). CRYM expression peaks for 

brain and hind limb occurred one stage before the TRβ peak, but had the opposite pattern in intestine. CRYM expression increased in tail 

during tail resorption. Overall expression levels in the liver were low compared to other tissues. 

3.3.2. PKM2 

The expression profile of PKM2 significantly increased in hind limbs and decreased in intestine and tail (Fig. 2E, Table 3), and these changes 

were inversely correlated with the corresponding TRβ peak in hind limb and tail. Brain and liver showed no significant change in PKM2 

expression during the stages tested. 

3.3.3. ALDH1 

Intestine and liver had high expression levels that declined as development progressed, compared to the other tissues, which had low and 

usually non-significant changes across development (Fig 2F, Table 3). The decreases in ALDH1 expression coincided with the timing of 

metamorphic changes in liver and intestine and were inversely related to the peak in TRβ expression. 

3.4. In-vivo gene function study in tadpole tail muscle 

To test direct effects of TH signaling proteins in TH-dependent development in vivo, plasmids encoding LATI, PKM2, MCT8, CRYM, 

MCT8 + CRYM, or control DsRed2 fluorescent protein under transcriptional control of the ubiquitous promoter CMV (cytomegalovirus) were 

injected into tadpole tail muscle cells using somatic gene transfer system (De Luze et al., 1993; Sachs et al., 2004) (Fig. 3A). Fluorescent 

protein expression marked cells that received the plasmids in order to monitor their cell disappearance by daily monitoring using a fluorescence 

microscope (Fig. 3B). A set of tadpoles was used to test the overexpression of THTs and CTHBPs on day 5, and qPCR measurements of 

mRNA levels confirmed their overexpression in injected tails (Suppl. Table 2). As expected with the low dose of T3, the amount of cell 

disappearance in control-injected tails was slightly more in the 2 nM T3 compared to the 0 nM T3 treatment (Fig. 4, compare solid and dashed 

lines lacking symbols in all the panels). Also, substantial variation was observed among individual tadpoles in most of the experiments, but 

treatment day had low variation across experiments (Table 4, see Random Effects sections of table). 



 

Fig. 3. Diagrams of constructs used to overexpress target genes and exemplar images of tail muscle cells. (A) Expression of green fluorescent 

protein (GFP) was under the control of the heat shock-inducible promoter (HSP), and expression of DsRed2 and genes encoding THTs, 

CTHBPs was under the control of the ubiquitous cytomegalovirus (CMV) promoter. GFP was used as a marker to monitor cell disappearance. 

(B) Tails injected with the pHGC-LAT1 construct were treated with T3 (0 or 2 nM) starting on Day 2, and imaged on treatment day 5 and 12. 

Muscle cells expressing the transgenes appear as horizontal green rods, and their disappearance has occurred to a greater extent in the T3-

treated animals. 

 



 
 

Fig. 4. Effect of THT and CTHBP overexpression in TH-dependent tail muscle cell disappearance. Overexpression of LAT1 (A), PKM2 (B), 

MCT8 (C), CRYM (D), and MCT8 + CRYM (E) was achieved by injection of expression plasmids into tail muscle at NF56. Expression 

cassettes for a fluorescent protein on the same plasmid enabled observation of muscle cells overexpressing a THT or CTHBP. Injection on the 

opposite side of the tail of a plasmid that only expresses fluorescent proteins served as the control for the absence of overexpressed THT or 

CTHBP. Injected tadpoles were treated with 0 or 2 nM T3 daily for 14 days, and counts of muscle cells expressing fluorescent proteins were 

conducted daily from Day 5 to Day 14. Cell disappearance was quantified as the percent of the number of fluorescent cells on a particular day 

compared to the number of fluorescent cells on Day 5. The effect of T3 was to reduce the number of fluorescent cells to 60–80%, and 

overexpression of THTs or CTHBPs in the presence of T3 reduced the percent of fluorescent cells to 20–40% depending on the gene. In the 

absence of T3, percent of fluorescent cells remained above 80% in the controls and ranged from 60% to 80% across overexpressed THTs and 

CTHBPs. Error bars represent standard deviation. 

 

 

 



Table 4. Analysis of fixed and random effects on the rate of cell disappearance in tadpole tail muscle after THT and CTHBP plasmid injection. 

 

 
 

Bold values indicate significance at a level of α < 0.05. 

LAT1, PKM2, and CRYM had similar patterns of cell disappearance among treatments (Fig.4A, B and D). In the 

absence of T3, overexpression of these genes had a similar effect on muscle cell disappearance compared to the control 

muscle cells injected on the opposite side of the tail. However, in the presence of T3, cell disappearance was greater in 

tails with overexpression of these genes compared to control-injected tails. The generalized linear mixed model 

statistical analysis showed that all three fixed effects, i.e., Gene, TH treatment, and Gene × TH interaction had 

significant effects on cell disappearance in tadpole tail muscle (Table 4). Thus, LAT1, PKM2, and CRYM 

overexpression increased the amount of cell disappearance induced by T3. 



For MCT8, the rate of cell disappearance in the MCT8-injected tails paralleled that in the control tails in the absence 

and presence of T3 (Fig. 4C). The generalized linear mixed model statistical analysis showed that the fixed effects, 

Gene and TH treatment but not Gene × TH interaction, had significant effects on cell disappearance (Table 4). Thus, 

MCT8 had a slight but significant effect on cell disappearance but did not increase T3-induced cell disappearance. 

Co-overexpression of MCT8 and CRYM greatly increased rate of tail muscle cell disappearance in the absence and 

presence of exogenous T3 treatment (Fig. 4E). The generalized linear mixed model showed that only the fixed effect, 

Gene and not TH treatment or Gene × TH interaction, had a significant effect on cell disappearance (Table 4). Thus, 

MCT8 + CRYM significantly increased cell disappearance but the high variation in the experiment precluded the 

ability to detect a statistically significant effect of TH or of a Gene × TH interaction. 

 

4. Discussion 

The THT and CTHBP expression patterns observed were consistent with those in previous studies examining mRNA 

profiles, in cases where there was overlap among studies in developmental stages and organs (Connors et al., 2010; Shi 

et al., 1994). To evaluate their potential contribution to the timing of tissue transformation, the THT and CTHBP 

expression profiles were compared to those of TRβ. TRβ autoinduction is a sensitive molecular indicator of TH 

signaling that presages morphological transformation in many tissues (Tata, 2000). Indeed, the TRβ expression profile 

peaked at developmental stages coinciding with initiation of metamorphic changes in brain, intestine, and tail. 

However, hind limb TRβ expression peaked at NF58, even though TH-dependence of hind limb development begins at 

NF54. The explanation for this discrepancy is not clear, but previous RT-qPCR data for hind limb TRβ expression 

showed a similar developmental profile (Wang et al., 2008). Also, liver TRβ mRNA levels gradually increased to a low 

peak at NF64, but the explanation is unknown for the lack of correspondence with TH-dependent induction of urea 

cycle enzymes, which occurs at climax of metamorphosis (Atkinson et al., 1996). 

For any given tissue, we hypothesized that a high expression level of a THT potentially involved in tissue sensitivity to 

TH would correspond to or immediately precede the TRβ peak and initiation of metamorphic change. Our data show 

that expression peaks for LAT1 in hind limb, OATP1c1 in hind limb and brain, and MCT8 in hind limb and tail 

corresponded to the TRβ expression peaks, thereby strengthening the link between THT expression and timing of tissue 

transformation in those cases. For CTHBPs, we expected a trough for CTHBPs at the TRβ peak if they act to sequester 

TH in the cytoplasm inhibiting TH movement to the nucleus. On the other hand, CTHBPs may act as a delivery system 

from the cell surface to the nucleus, in which case the CTHBP and TRβ peaks may correspond. The pattern of CRYM 

mRNA expression was consistent with that of a delivery system in hind limb, brain, and tail. Expression of PKM2 in 

hind limb, intestine, and tail and ALDH1 in intestine was consistent with a sequestering role. However, for most 

tissues, expression of THTs and CTHBPs either was not significant across stages or did not correspond to the TRβ 

peak, signifying a lack of evidence one way or the other that they play a role in tissue asynchrony in those tissues. 

Several caveats are important when inferring biological significance of mRNA expression levels for tissue sensitivity 

and developmental asynchrony. Importantly, even though mRNA expression levels are suggestive of the degree of 

involvement in tissue sensitivity, protein expression and activity levels, which may or may not correspond to mRNA 

levels, directly determine the effect of THTs and CTHBPs. Indeed, our ALDH1 mRNA expression pattern did not 

correspond to T3 binding activity which was previously shown to increase gradually in liver and intestine during 

metamorphosis (Yamauchi and Tata, 1997). Also, our measurements using whole organs such as the brain may obscure 

significant expression changes important in subsets of cells for tissue sensitivity. Furthermore, lack of correspondence 

between THT/CTHBP and TRβ mRNA expression we observed does not preclude participation in control of tissue 

asynchrony because even steady levels of THT/CTHBP expression may trigger tissue transformation at a particular 

point in time corresponding to a threshold level of the rising TH titer. Thus, though suggestive, mRNA expression 

patterns and levels by themselves are not definitive evidence for a role in regulation of tissue sensitivity to TH and 

developmental asynchrony. 



Functional studies provide a complementary approach to assess THT or CTHBP involvement in TH signaling. We used 

a tail injection assay involving a standard form of GFP whose protein lasts for weeks in vivo (Kerney et al., 2012) to 

determine the effect of THT or CTHBP overexpression on metamorphic change, i.e., TH-dependent tail muscle cell 

disappearance. The loss of GFP signal from a muscle cell within 24 h is considered strong evidence of cell death 

(Hollar et al., 2011; Nakajima et al., 2012). Such cell disappearance observed is likely via cell death by apoptosis 

because the cells disappear within one day rather than gradually decreasing in GFP fluorescence and because TH is 

well known to induce apoptosis in tail muscle cells (Nakajima and Yaoita, 2003). From the above expression studies, 

endogenous levels of THTs and CTHBPs in the tail were likely to be low favoring the chance that tail muscle would be 

a good test tissue. Also, we used a dose of T3 close to the threshold level of sensitivity for the tail, which favors 

detecting an increase in response to TH. Decreased responses to TH potentially due to CTHBPs are less likely to be 

measured. The multiple protein activities of THTs (transport amino acids in addition to TH) and CTHBPs (have 

enzymatic activity in addition to binding TH) complicate interpretation, such that any increase in cell death may not be 

via TH signaling but due to altered amino acid transport or enzyme activity. However, lack of induction of cell 

disappearance by THT or CTHBP overexpression in the absence of T3 would argue against toxicity or alteration of cell 

function causing cell death. 

For LAT1, consistent with in vitro assays measuring TH gene regulation (Ritchie et al., 2003; Shi et al., 2002), LAT1 

increased the rate of tail cell disappearance in a T3-dependent manner suggesting that LAT1 can increase TH signaling 

in vivo. Alternate interpretations have not been formally ruled out that the increased amino acid transport may lead to 

cell disappearance by an unknown mechanism independent of T3 transport. Use of the related transporter y + LAT1 

that transports an overlapping spectrum of amino acids as LAT1 but without the T3 transport (Hennemann, 2001) may 

formally rule out the alternate explanation. The positive correlations of LAT1 expression with hind limb, tail, and 

intestine remodeling may signify a role in TH signaling especially in those tissues, but may also reflect a greater need 

for amino acid transport during tissue remodeling. Indeed, LAT1 was highly expressed after metamorphic climax (NF 

stage 66) when intestine may require amino acid transport in the intestine. Teasing apart the impact of one role versus 

the other for LAT1 is a challenge for future experiments. 

In contrast to LAT1, overexpression of MCT8 did not increase the rate of T3-induced cell disappearance. The 

explanation for this discrepancy between LAT1 and MCT8 is not clear but may be related to different transport rates 

across the cell membrane. TH uptake by MCT8 may quickly reach equilibrium because significant TH efflux out of 

cells occurs (Visser et al., 2007), but efflux by LAT1 is limited potentially enabling LAT1-overexpressing cells to 

achieve a higher intracellular TH level (Meier et al., 2002). Further testing to establish such a mechanism is required. 

Overexpression of CRYM and PKM2 increased tail muscle cell disappearance in a T3-dependent manner, which is 

consistent with facilitating shuttling T3 from the cytoplasm to the nucleus for TR binding. This is in contrast with 

previous in vitro studies showing CRYM- and PKM2-dependent decreased transcription from T3 response genes 

(Ashizawa et al., 1991; Mori et al., 2002). The in vivo mechanisms of these multifunction proteins need further work 

and may be explored with mutants, such as the PKM2KE mutant, which retains kinase activity but cannot bind T3 

(Christofk et al., 2008). 

For MCT8 + CRYM, we observed a huge effect, where MCT8 + CRYM increased the amount of cell disappearance to 

a great extent even in the 0 nM T3 treatment. Our statistical analysis showed a lack of a significant T3 effect because of 

the high variation. Also, the interaction we observed (namely, the difference in cell disappearance between 

MCT8 + CRYM and control was 88% to 57% (31%) in the absence of T3 compared to 65% to 18% (47%) in the 

presence of T3) was not statistically significant due to high variation in the experiment. Nevertheless, our 

MCT8 + CRYM results are congruent with previous cell culture studies, where co-transfection of MCT8 plus CRYM 

had a greater transcriptional effect than either CRYM or MCT8 alone (Van Mullem et al., 2011). We hypothesize that 

MCT8 + CRYM is very effective at sensitizing cells to T3, such that the low level of endogenous T3 was sufficient to 

induce cell disappearance in tail muscle cells overexpressing MCT8 + CRYM in our assay. 

 



5. Conclusions 

We used expression profiles, expression levels, and functional assays to assess the possible role of six THTs and 

CTHBPs in regulating the timing of TH-induced developmental change. Our expression analysis showed that in no 

case was a THT or a CTHBP or even TRβ itself always correlated with the timing of metamorphic change across all 

tissues but did suggest a role in TH-dependent development of some of these TH signaling proteins for some tissues. In 

accord with its extremely high sensitivity to TH, the hind limb had the largest number of mRNAs measured favoring 

TH sensitivity that were highly expressed at the time of TH-dependent development, namely LAT1, MCT8, CRYM, 

OATP1c1 from our study as well as TRα and deiodinase type 2 from previous studies (Cai and Brown, 2004; Wang 

and Brown, 1993). Similarly, the brain is very sensitive to TH as judged by neuron proliferation early in 

metamorphosis and expresses high levels of LAT1, OATP1c1, PKM2, MCT8, and CRYM mRNA. The least sensitive 

organ, the tail, expresses lower levels of THTs and CTHBPs among tissues, and the expression of MCT8 and CRYM 

dramatically increases at the time of tail resorption at the end of metamorphosis. The other organs, which transform in 

between the extremes of hind limb and tail, had fewer THT or CTHBP expression patterns that correlated with the 

timing of their transformation. As with expression profiles, expression level differences among tissues for a THT or 

CTHBP may suggest that tissues may vary in the significance a particular TH signaling protein has for TH sensitivity. 

The brain had high levels of LAT1, PKM2, CRYM, and OATP1c1 mRNA, whereas the liver and intestine had high 

ALDH1 mRNA levels, suggesting a role in those tissues perhaps affecting TH signaling. 

Our in vivo functional assays suggested that LAT1, PKM2, CRYM, and likely CRYM + MCT8 have the potential to 

increase T3-dependent cell disappearance. A potential mechanism underlying this effect on cell disappearance is that 

these genes may increase cell sensitivity/responsivity to T3. Furthermore, based on these results from the tail, 

expression of these genes in other tissues would sensitize cells to T3 and accelerate transformation in those tissues. On 

the other hand, the known dual functions of LAT1, PKM2, and CRYM leave open the possibility that such augmented 

cell disappearance may not solely be due to increasing TH bioavailability in the cell nucleus. In conclusion, each tissue 

examined appears to have a unique deployment of TH-signaling proteins, some of which we have shown to affect TH-

dependent development in vivo, potentially underlying tissue-specific developmental timing during metamorphosis. 

 

Acknowledgments 

Support for this project was from the University of Cincinnati WISE Program to A.N. and NIH RO3 5F32DK010069-03 to D.R.B. 

Appendix A. Supplementary data 

 

 

 

 

 

 



References 

Ashizawa and Cheng, 1992 

K. Ashizawa, S.Y. Cheng 

Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein 
Proc. Natl. Acad. Sci. U. S. A., 89 (1992), pp. 9277-9281 

Ashizawa et al., 1991 

K. Ashizawa, P. McPhie, K.H. Lin, S.Y. Cheng 

An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1,6-

bisphosphate 
Biochemistry, 30 (1991), pp. 7105-7111, 10.1021/bi00243a010 

Atkinson et al., 1996 

B.G. Atkinson, C. Helbing, Y. Chen 

Reprogramming of genes expressed in amphibian liver during metamorphosis 
Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, Academic Press, New York 

(1996) 

Bates et al., 2012 

Bates, D., Maechler, M., Bolker, B., 2012. lme4: Linear Mixed-effects Models using S4 Classes [version 0.999999-0]. 

Brown et al., 2005 

D.D. Brown, L. Cai, B. Das, N. Marsh-Armstrong, A.M. Schreiber, R. Juste 

Thyroid hormone controls multiple independent programs required for limb development in Xenopus laevis metamorphosis 
Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 12455-12458, 10.1073/pnas.0505989102 

Buchholz et al., 2011 

D.R. Buchholz, S.S. Kulkarni, A.R. Hollar, A. Ng 

Hormonal Regulation and the Evolution of Frog Metamorphic Diversity in Mechanisms of Life History Evolution 
Oxford University Press (2011) 

Buchholz et al., 2006 

D.R. Buchholz, B.D. Paul, L. Fu, Y.B. Shi 

Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog 
Gen. Comp. Endocrinol., 145 (2006), pp. 1-19, 10.1016/j.ygcen.2005.07.009 

Buchholz et al., 2004 

D.R. Buchholz, A. Tomita, L. Fu, B.D. Paul, Y.-B. Shi 

Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog 

metamorphosis 
Mol. Cell. Biol., 24 (2004), pp. 9026-9037, 10.1128/MCB.24.20.9026-9037.2004 

Cai and Brown, 2004 

L. Cai, D.D. Brown 

Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced 

metamorphosis in Xenopus laevis 
Dev. Biol., 266 (2004), pp. 87-95, 10.1016/j.ydbio.2003.10.005 

Choi et al., 2015 

J. Choi, K.-I.T. Suzuki, T. Sakuma, L. Shewade, T. Yamamoto, D.R. Buchholz 

Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis 
Endocrinology, 156 (2015), pp. 735-744, 10.1210/en.2014-1554 

Christofk et al., 2008 

H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley 

Pyruvate kinase M2 is a phosphotyrosine-binding protein 
Nature, 452 (2008), pp. 181-186, 10.1038/nature06667 

Connors et al., 2010 

K.A. Connors, J.J. Korte, G.W. Anderson, S.J. Degitz 

Characterization of thyroid hormone transporter expression during tissue-specific metamorphic events in Xenopus tropicalis 
Gen. Comp. Endocrinol., 168 (2010), pp. 149-159, 10.1016/j.ygcen.2010.04.015 

De Luze et al., 1993 

A. De Luze, L. Sachs, B. Demeneix 

Thyroid hormone-dependent transcriptional regulation of exogenous genes transferred into Xenopus tadpole muscle in vivo 
Proc. Natl. Acad. Sci. U. S. A., 90 (1993), pp. 7322-7326 

Dhorne-Pollet et al., 2013 

S. Dhorne-Pollet, A. Thélie, N. Pollet 

Validation of novel reference genes for RT-qPCR studies of gene expression in Xenopus tropicalis during embryonic and post-

embryonic development 
Dev. Dyn., 242 (2013), pp. 709-717, 10.1002/dvdy.23972 

http://pubs.acs.org/doi/abs/10.1021/bi00243a010
http://www.pnas.org/content/102/35/12455
https://doi.org/10.1016/j.ygcen.2005.07.009
https://doi.org/10.1128/MCB.24.20.9026-9037.2004
https://doi.org/10.1016/j.ydbio.2003.10.005
https://doi.org/10.1210/en.2014-1554
https://doi.org/10.1038/nature06667
https://doi.org/10.1016/j.ygcen.2010.04.015
https://doi.org/10.1002/dvdy.23972


Duarte-Guterman et al., 2010 

P. Duarte-Guterman, V.S. Langlois, B.D. Pauli, V.L. Trudeau 

Expression and T3 regulation of thyroid hormone- and sex steroid-related genes during Silurana (Xenopus) tropicalis early 

development 
Gen. Comp. Endocrinol., 166 (2010), pp. 428-435, 10.1016/j.ygcen.2009.12.008 

Friesema et al., 2003 

E.C.H. Friesema, S. Ganguly, A. Abdalla, J.E. Manning Fox, A.P. Halestrap, T.J. Visser 

Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter 
J. Biol. Chem., 278 (2003), pp. 40128-40135, 10.1074/jbc.M300909200 

Friesema et al., 2008 

E.C.H. Friesema, J. Jansen, J.-W. Jachtenberg, W.E. Visser, M.H.A. Kester, T.J. Visser 

Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10 
Mol. Endocrinol., 22 (2008), pp. 1357-1369, 10.1210/me.2007-0112 

Furlow and Neff, 2006 

J.D. Furlow, E.S. Neff 

A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis 
Trends Endocrinol. Metab., 17 (2006), pp. 40-47, 10.1016/j.tem.2006.01.007 

Gui et al., 2013 

D.Y. Gui, C.A. Lewis, M.G. Vander Heiden 

Allosteric regulation of PKM2 allows cellular adaptation to different physiological states 
Sci. Signal., 6 (2013), p. pe7, 10.1126/scisignal.2003925 

Hallen et al., 2011 

A. Hallen, A.J.L. Cooper, J.F. Jamie, P.A. Haynes, R.D. Willows 

Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones 
J. Neurochem., 118 (2011), pp. 379-387, 10.1111/j.1471-4159.2011.07220.x 

Helbing et al., 1992 

C. Helbing, G. Gergely, B.G. Atkinson 

Sequential up-regulation of thyroid hormone beta receptor, ornithine transcarbamylase, and carbamyl phosphate synthetase 

mRNAs in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis 
Dev. Genet., 13 (1992), pp. 289-301, 10.1002/dvg.1020130406 

Hennemann, 2001 

G. Hennemann 

Plasma Membrane Transport of Thyroid Hormones and Its Role in Thyroid Hormone Metabolism and Bioavailability 
Endocr. Rev., 22 (2001), pp. 451-476, 10.1210/er.22.4.451 

Heuer and Visser, 2009 

H. Heuer, T.J. Visser 

Minireview: Pathophysiological importance of thyroid hormone transporters 
Endocrinology, 150 (2009), pp. 1078-1083, 10.1210/en.2008-1518 

Hollar et al., 2011 

A.R. Hollar, J. Choi, A.T. Grimm, D.R. Buchholz 

Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases 

metamorphic rate 
Gen. Comp. Endocrinol., 173 (2011), pp. 190-198, 10.1016/j.ygcen.2011.05.013 

Huang et al., 1999 

H. Huang, N. Marsh-Armstrong, D.D. Brown 

Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase 
Proc. Natl. Acad. Sci. U. S. A., 96 (1999), pp. 962-967 

Jansen et al., 2008 

J. Jansen, E.C.H. Friesema, M.H.A. Kester, C.E. Schwartz, T.J. Visser 

Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8 
Endocrinology, 149 (2008), pp. 2184-2190 

Kerney et al., 2012 

R.R. Kerney, A.L. Brittain, B.K. Hall, D.R. Buchholz 

Cartilage on the move: cartilage lineage tracing during tadpole metamorphosis 
Dev. Growth Differ., 54 (2012), pp. 739-752, 10.1111/dgd.12002 

Kitagawa et al., 1987 

S. Kitagawa, T. Obata, S. Hasumura, I. Pastan, S. Cheng 

A cellular 3,3-prime,5-triiodo-l-thyronine binding protein from a human carcinoma cell line: purification and characterization 
J. Biol. Chem., 262 (1987), pp. 3903-3908 

Liang et al., 1997 

V.C. Liang, T. Sedgwick, Y.B. Shi 

https://doi.org/10.1016/j.ygcen.2009.12.008
https://doi.org/10.1074/jbc.M300909200
https://doi.org/10.1210/me.2007-0112
https://doi.org/10.1016/j.tem.2006.01.007
https://doi.org/10.1126/scisignal.2003925
https://doi.org/10.1111/j.1471-4159.2011.07220.x
https://doi.org/10.1002/dvg.1020130406
https://doi.org/10.1210/er.22.4.451
https://doi.org/10.1210/en.2008-1518
https://doi.org/10.1016/j.ygcen.2011.05.013
https://doi.org/10.1111/dgd.12002


Characterization of the Xenopus homolog of an immediate early gene associated with cell activation: sequence analysis and 

regulation of its expression by thyroid hormone during amphibian metamorphosis 
Cell Res., 7 (1997), pp. 179-193, 10.1038/cr.1997.19 

Livak and Schmittgen, 2001 

K.J. Livak, T.D. Schmittgen 

Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method 
Methods, 25 (2001), pp. 402-408 

Marschner, 2012 

Marschner, I.C., 2012. glm2 : Fitting Generalized Linear Models [version 1.1.1]. 

Matsuda et al., 2009 

H. Matsuda, B.D. Paul, C.Y. Choi, T. Hasebe, Y.B. Shi 

Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the 

regulation of metamorphic rate in Xenopus laevis 
Mol. Cell. Biol., 29 (2009), pp. 745-757, 10.1128/MCB.00827-08 

Meier et al., 2002 

C. Meier, Z. Ristic, S. Klauser, F. Verrey 

Activation of system L heterodimeric amino acid exchangers by intracellular substrates 
EMBO J., 21 (2002), pp. 580-589 

Morgan et al., 2013 

H.P. Morgan, F.J. O’Reilly, M.A. Wear, J.R. O’Neill, L.A. Fothergill-Gilmore, T. Hupp, M.D. Walkinshaw 

M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation 
Proc. Natl. Acad. Sci. U. S. A., 110 (2013), pp. 5881-5886, 10.1073/pnas.1217157110 

Mori et al., 2002 

J. Mori, S. Suzuki, M. Kobayashi, T. Inagaki, A. Komatsu, T. Takeda, T. Miyamoto, K. Ichikawa, K. Hashizume 

Nicotinamide adenine dinucleotide phosphate-dependent cytosolic T3 binding protein as a regulator for T3-mediated 

transactivation 
Endocrinology, 143 (2002), pp. 1538-1544 

Nakajima et al., 2012 

K. Nakajima, K. Fujimoto, Y. Yaoita 

Regulation of thyroid hormone sensitivity by differential expression of the thyroid hormone receptor during Xenopus 

metamorphosis 
Genes Cells, 17 (2012), pp. 645-659, 10.1111/j.1365-2443.2012.01614.x 

Nakajima and Yaoita, 2003 

K. Nakajima, Y. Yaoita 

Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis 
Dev. Dyn., 227 (2003), pp. 246-255, 10.1002/dvdy.10300 

Nieuwkoop and Faber, 1994 

P.D. Nieuwkoop, J. Faber 

Normal Table of Xenopus laevis (Daudin) 
Garland Publishing Inc (1994) 

Oshima et al., 2006 

A. Oshima, S. Suzuki, Y. Takumi, K. Hashizume, S. Abe, S. Usami 

CRYM mutations cause deafness through thyroid hormone binding properties in the fibrocytes of the cochlea 
J. Med. Genet., 43 (2006), p. e25, 10.1136/jmg.2005.034397 

Paul et al., 2007 

B.D. Paul, D.R. Buchholz, L. Fu, Y.-B. Shi 

SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis 
J. Biol. Chem., 282 (2007), pp. 7472-7481, 10.1074/jbc.M607589200 

Pizzagalli et al., 2002 

F. Pizzagalli, B. Hagenbuch, B. Stieger, U. Klenk, G. Folkers, P.J. Meier 

Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter 
Mol. Endocrinol., 16 (2002), pp. 2283-2296, 10.1210/me.2001-0309 

Ritchie et al., 2003 

J.W.A. Ritchie, Y.-B. Shi, Y. Hayashi, F.E. Baird, R.W. Muchekehu, G.R. Christie, P.M. Taylor 

A role for thyroid hormone transporters in transcriptional regulation by thyroid hormone receptors 
Mol. Endocrinol., 17 (2003), pp. 653-661, 10.1210/me.2002-0179 

Sachs et al., 2004 

L.M. Sachs, S. Le Mevel, B.A. Demeneix 

Implication of bax in Xenopus laevis tail regression at metamorphosis 
Dev. Dyn., 231 (2004), pp. 671-682, 10.1002/dvdy.20166 

Sato et al., 2007 

Y. Sato, D.R. Buchholz, B.D. Paul, Y.B. Shi 

https://doi.org/10.1038/cr.1997.19
https://doi.org/10.1128/MCB.00827-08
https://doi.org/10.1073/pnas.1217157110
https://doi.org/10.1111/j.1365-2443.2012.01614.x
https://doi.org/10.1002/dvdy.10300
https://doi.org/10.1136/jmg.2005.034397
https://doi.org/10.1074/jbc.M607589200
https://doi.org/10.1210/me.2001-0309
https://doi.org/10.1210/me.2002-0179
https://doi.org/10.1002/dvdy.20166


A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis 
Mech. Dev., 124 (2007), pp. 476-488, 10.1016/j.mod.2007.03.006 

Shi et al., 1994 

Y.-B. Shi, V.C.T. Liang, C. Parkison, S.-Y. Cheng 

Tissue-dependent developmental expression of a cytosolic thyroid hormone protein gene in Xenopus: its role in the regulation 

of amphibian metamorphosis 
FEBS Lett., 355 (1994), pp. 61-64, 10.1016/0014-5793(94)01173-7 

Shi et al., 2002 

Y.-B. Shi, J.W.A. Ritchie, P.M. Taylor 

Complex regulation of thyroid hormone action: multiple opportunities for pharmacological intervention 
Pharmacol. Ther., 94 (2002), pp. 235-251, 10.1016/S0163-7258(02)00219-X 

Shi, 1999 

Y.B. Shi 

Amphibian Metamorphosis: From Morphology to Molecular Biology 
John Wiley & Sons Inc (1999) 

Shi et al., 1996 

Y.B. Shi, J. Wong, M. Puzianowska-Kuznicka, M. Stolow 

Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its 

receptors 
Bioessays, 18 (1996), pp. 391-399 

Sindelka et al., 2006 

R. Sindelka, Z. Ferjentsik, J. Jonák 

Developmental expression profiles of Xenopus laevis reference genes 
Dev. Dyn., 235 (2006), pp. 754-758, 10.1002/dvdy.20665 

Suzuki et al., 2007 

S. Suzuki, J.-I. Mori, K. Hashizume 

Mu-crystallin, a NADPH-dependent T(3)-binding protein in cytosol 
Trends Endocrinol. Metab., 18 (2007), pp. 286-289, 10.1016/j.tem.2007.07.002 

Tata, 1958 

J.R. Tata 

A cellular thyroxine-binding protein fraction 
Biochim. Biophys. Acta, 28 (1958), pp. 91-94 

Tata, 2000 

J.R. Tata 

Autoinduction of nuclear hormone receptors during metamorphosis and its significance 
Insect Biochem. Mol. Biol., 30 (2000), pp. 645-651, 10.1016/S0965-1748(00)00035-7 

The R Core Team, 2013 

The R Core Team, 2013. R: A Language and Environment for Statistical Computing [version 2.15.3]. 

Van Mullem et al., 2011 

A.A.A. Van Mullem, R.P. Peeters, T.J. Visser 

The effect of MCT8 on the biological activity of T3 
Endocr. Abstr., 26 (OC5) (2011), p. 5 

Visser et al., 2007 

W.E. Visser, E.C.H. Friesema, J. Jansen, T.J. Visser 

Thyroid hormone transport by monocarboxylate transporters 
Best Pract. Res. Clin. Endocrinol. Metab., 21 (2007), pp. 223-236, 10.1016/j.beem.2007.03.008 

Wang et al., 2008 

X. Wang, H. Matsuda, Y.B. Shi 

Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus 

tropicalis metamorphosis 
Endocrinology, 149 (2008), pp. 5610-5618, 10.1210/en.2008-0751 

Wang and Brown, 1993 

Z. Wang, D.D. Brown 

Thyroid hormone-induced gene expression program for amphibian tail resorption 
J. Biol. Chem., 268 (1993), pp. 16270-16278 

Warton and Hui, 2011 

D.I. Warton, F.K.C. Hui 

The arcsine is asinine: the analysis of proportions in ecology 
Ecology, 92 (2011), pp. 3-10 

Williams et al., 2006 

R. Williams, T. Holyoak, G. McDonald, C. Gui, A.W. Fenton 

https://doi.org/10.1016/j.mod.2007.03.006
https://doi.org/10.1016/0014-5793%2894%2901173-7
https://doi.org/10.1016/S0163-7258%2802%2900219-X
https://doi.org/10.1002/dvdy.20665
https://doi.org/10.1016/j.tem.2007.07.002
https://doi.org/10.1016/S0965-1748%2800%2900035-7
https://doi.org/10.1016/j.beem.2007.03.008
https://doi.org/10.1210/en.2008-0751


Differentiating a ligand’s chemical requirements for allosteric interactions from those for protein binding. Phenylalanine 

inhibition of pyruvate kinase 
Biochemistry, 45 (2006), pp. 5421-5429, 10.1021/bi0524262 

Yamauchi and Nakajima, 2002 

K. Yamauchi, J. Nakajima 

Effect of coenzymes and thyroid hormones on the dual activities of Xenopus cytosolic thyroid-hormone-binding protein 

(xCTBP) with aldehyde dehydrogenase activity 
Eur. J. Biochem., 269 (2002), pp. 2257-2264, 10.1046/j.1432-1033.2002.02891.x 

Yamauchi and Tata, 1994 

K. Yamauchi, J.R. Tata 

Purification and characterization of a cytosolic thyroid-hormone-binding protein (CTBP) in Xenopus liver 
Eur. J. Biochem., 225 (1994), pp. 1105-1112, 10.1111/j.1432-1033.1994.1105b.x 

Yamauchi and Tata, 1997 

K. Yamauchi, J.R. Tata 

Tissue-dependent and developmentally regulated cytosolic thyroid-hormone-binding proteins (CTBPs) in Xenopus 
Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 118 (1997), pp. 27-32 

Yamauchi and Tata, 2001 

K. Yamauchi, J.R. Tata 

Characterization of Xenopus cytosolic thyroid-hormone-binding protein (xCTBP) with aldehyde dehydrogenase activity 
Chem. Biol. Interact., 130–132 (2001), pp. 309-321, 10.1016/S0009-2797(00)00274-X 

Yoshizato and Frieden, 1975 

K. Yoshizato, E. Frieden 

Increase in binding capacity for triiodothyronine in tadpole tail nuclei during metamorphosis 
Nature, 254 (1975), pp. 705-707 

 

 

https://doi.org/10.1021/bi0524262
https://doi.org/10.1046/j.1432-1033.2002.02891.x
https://doi.org/10.1111/j.1432-1033.1994.1105b.x
https://doi.org/10.1016/S0009-2797%2800%2900274-X

	Regulation of thyroid hormone-induced development in vivo by thyroid hormone transporters and cytosolic binding proteins
	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Animal care and rearing
	2.2. RNA isolation, cDNA synthesis, and quantitative PCR
	2.3. Cloning of plasmid constructs for tail injections
	2.4. Tail muscle injections
	2.5. Statistical analysis

	3. Results
	3.1. TRβ and rpL8
	3.2. TH transporters
	3.2.1. LAT1
	3.2.2. OATP1c1
	3.2.3. MCT8

	3.3. Cytosolic TH binding proteins
	3.3.1. CRYM
	3.3.2. PKM2
	3.3.3. ALDH1

	3.4. In-vivo gene function study in tadpole tail muscle

	4. Discussion
	5. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References


