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With over 400 units, between them covering almost 850 million acres of carefully preserved land, the 

National Park Service (NPS) acts as steward to the nation’s natural treasures. In the move to the 

Twenty-First century, the NPS faces numerous looming challenges, particularly those related to a rapidly 

changing climate. It was our task to strategize with the Service in addressing three such issues, leveraging 

our experience in mathematical modelling and data analysis to aid them in the quest to protect and to 

preserve. 

The first problem under consideration was determining the risk associated with sea-level change 

for five different coastal locations. Risk was categorized as being “low,” “medium,” and “high” over a 

period of 10, 20, and 50 years. The lines between the three intensities were determined by the 

intermediate-low and intermediate-high predictions of global sea-level rise, as given by the National 

Oceanic and Atmospheric Administration (NOAA). For example, if a location’s predicted rise in sea-level 

fell below the intermediate-low prediction for the rise in global sea-levels, it was deemed a “low” risk. If 

it fell in the middle, a “medium” risk. And above the intermediate-high line, a “high risk.” Together with 

other considerations like the elevation of a park, the final valuations are presented on page 8. Given the 

nature of the model and the inherent unpredictability of climatology, the model cannot be extrapolated to 

100 years, but works fairly well in the given time frame. 

The next challenge involved assigning climate vulnerability scores to coastal locations based on 

the susceptibility of each location to natural disasters. Such scores were determined as a product of the 

severity of a particular disaster with its frequency. By plumbing datasets provided, vulnerability scores for 

each of the five locations under analysis were determined and are presented on page 13. 

The final task sought to determine where the NPS’s financial resources should go based on the 

value of each park. By leveraging the vector-like nature of the vulnerability scores along with the 

popularity of each location and sea-level rise considerations, a graphical model was generated grouping 

parks of higher and lower values together in a distinguishable manner, as presented on page 16. From this 

graphic, our final recommendation to the NPS would be, in times of tight revenues, to fund Olympic 

National Park, consider funding Acadia and Kenai Fjords, and avoid funding the seashore locations. 
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1 Introduction

For the past 100 years, the National Park Service (NPS) has maintained the nation’s
natural treasures for both the sake of ecological preservation and general recreation.
Transitioning into another century of stewardship, the NPS faces a plethora of new
challenges, particularly in the domains of climate change and climate-related catas-
trophes [3, 4].

In this study, we sought to explore the impact climate may have on five specific
NPS locations:

• Acadia National Park

• Cape Hattaras National Park

• Kenai Fjords National Park

• Olympic National Park

• Padre Island National Park

For each location, a number of specific issues were considered. In Part 1, we
analyzed the impact rising sea-levels would have on each location and assigned the
parks corresponding risk ratings. In Part 2, we expanded our analysis by considering
all potential natural catastrophes for any NPS coastal unit, and applied our methods
to derive climate vulnerability scores for the five locations. And finally, in Part 3,
we factor in financial variables by considering long-term changes in tourists to each
park, and make corresponding recommendations on where NPS’s future financial
resources should go.

2 Part 1: Tides of Change

2.1 Restatement of Problem

In order to take a first step in modeling climate data, we were first tasked with
extrapolating existing sea level data in order to predict sea level change risks for
five different parks. For each of these parks (listed above), we were asked to deter-
mine whether the risk was high, medium, or low. To accomplish this, we used a
well-accepted quadratic model based on empirical observations [7].
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2.2 Assumptions and Justifications

• Assumption: The equation presented in this paper [7] written as E(t) =

at + bt2 is an accurate approximation of long-term sea level rise. t is defined
as time in years, and begins with year 0 at 1992. a is a constant defined as the
rate at which global sea level rises, accepted as 0.0017 meters per year on a
global scale. b is a constant derived empirically from the data, encapsulating
local factors like continental uplift/subsidence and water density.

Justification: The paper is highly cited and this equation is used multiple
times in other papers suggesting it is a widely accepted equation.

• Assumption: Climate change data is nearly completely stochastic except
with respect to a quadratic function.

Justification: After performing a Fourier transform on the data, we deter-
mined that there was no periodicity associated with the data.

2.3 Model

2.3.1 Fourier Transform

The data given for the MSL (Mean Sea Level) was clearly stochastic in nature. A
common practice in signal processing when looking at data of this sort is to apply
a Fourier Transform on it to determine if there are any frequencies that are more
common than others. Viewing such signals in frequency space is often more revealing
of internal structure allowing for a seemingly indescribable mathematical function
to be nicely encapsulated in a more fitting space. This led us to applying the Fourier
transform on our MSL data which could have potentially given us information on
seasonal trends or underlying periodicity. We used the data for all of the cities to
calculate the fast fourier transform and look for patterns. A graph of the fourier
transform is shown below:
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Upon calculation, it was revealed that, other than the center point, there were
no clear peaks in frequency. The center peak, which represents the amplitude of
0 frequency, is merely a calculation of average value and yields no significance in
showing periodic trends in the data. All other frequencies occurred with similar
amplitude which implies a white noise signal. White noise signals are essentially
random. This does not mean there is no structure in the data but that there is no
clear periodicity. From this, we were able to conclude that the data might require
an approximation method that is not based on periodicity like perhaps a polynomial
one.

2.3.2 Quadratic Regression Analysis

After determining that the data was not periodic, we decided to do a simple quadratic
regression analysis in order to plot how MSL rates were changing over time. The
reason for this is an algorithm found in [7] that uses a quadratic regression to model
climate data over time. The algorithm uses a quadratic equation of form at + bt2

where month “0” is set to be January 1997. To do this, we simply employed a “curve
of best fit” to our given data. Doing so yielded the following tables of equations
where time is given in years and the sea level is given in meters.

City Equation (m)

Acadia (2.18× 10−3)t+ (1.09× 10−4)t2

Cape Hattras (3.84× 10−3)t+ (1.61× 10−4)t2

Kenai Fjords (−2.62× 10−3)t+ (−1.60× 10−4)t2

Olympic (1.4× 10−4)t+ (2.56× 10−5)t2

Padre Island (3.48× 10−3)t+ (−4.70× 10−5)t2
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2.3.3 Defining Low, Medium, and High

In order to define the somewhat arbitrary terms “low”, “medium”, and “high”, we
utilized a paper that presented four different quadratic regression models of climate
data. These models were presented to model for worst-case, best-case, intermediate-
low, and intermediate-high scenarios of global climate change (shown below).

Figure 1: Fig 1. A predictive measure of global climate change rise from 1900 to
2100. Utilizes four scenarios to measure climate change rise.

Due to this we decided to utilize this global data as benchmarks to measure our
local data. For our model, a high risk area would mean that the estimated sea level
rise is greater than the intermediate-high calculated value for global climate change.
A medium risk area, on the other hand, would mean that the estimated sea level
rise falls in between the intermediate-high and intermediate-low curves. Finally, a
low risk area falls below the intermediate-low curve.

These equations, however, were calculated assuming that the year 1992 as 0 for
sea level. Therefore, we must adjust the calculations to account for our 1997 as our
0 value.

The equations for the two curves are given as follows:

Intermediate-Low: E = (1.7× 10−3)t+ (2.71× 10−5)t2 − 9.178× 10−3 (1)
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Intermediate-High: E = (1.7× 10−3)t+ (8.71× 10−5)t2 − 1.07× 10−2 (2)

2.4 Results

Now that we have established all of the curves, we can go ahead and compare the
results. Simply plugging in values of 30, 40, and 55, accounting for the difference
from 1997 to the desired years of 2027, 2037, and 2057, we can obtain our results.
The corresponding graphs for each city are shown. The dashed orange line represents
the quadratically extrapolated line from the data and the green region represents
the medium zone. All points higher represent high sea level rise and all points below
represent low sea level rise.

Figure 2: Graph of projected sea levels for Acadia National Park

Figure 3: Graph of projected sea levels for Cape Hattras National Park
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Figure 4: Graph of projected sea levels for Kenai Fjords National Park

Figure 5: Graph of prjected sea levels for Olympic National Park

Figure 6: Graph of prjected sea levels for Padre Island National Park

From this data, we can gather our final assessments of climate risk.
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National Park 10 Years 20 Years 50 Years

Acadia LOW-MED LOW-MED LOW-MED
Cape Hattras HIGH HIGH HIGH
Kenai Fjords LOW LOW LOW

Olympic LOW LOW LOW
Padre Island MED MED MED

2.5 Analysis and Discussion

First off, in determining the final valuation of "low". "medium", or "high", it is
vital to consider the elevation at each location. For example, while Acadia may have
had a projection higher than the intermediate-high level, it is a fairly mountanious
region. A rise in sea level of a meter would therefore do little to damage the park,
thus earning the place a low-medium rating. Overall, it was found that Acadia and
Kenai Fjords tended to be fairly mountainous regions with high elevations, Cape
Hattras and Padre Islands were seashores with correspondingly low elevations, and
the Olympic National Park had both seashores and mountains.

Interestingly, while global sea level tends to rise, it appears that the sea-level is,
in fact, falling for certain locations. Such a result may be due to a phenomenon
called "continental uplift," in which a landmass floats upwards on the mantle after
the weight of a glacier has been lifted. For example, Alaska is currently experienc-
ing uplift, increasing the volume of the basin holding surrounding water and thus,
causing the sea level to dip [2]. Of course, it is important to note, the equations used
to project future behavior of sea-levels are not designed to except values describing
decreasing sea-levels (i.e. a negative b), so the long-term trends in these plots are
likely inaccurate.

In the case of Padre Island, the inaccuracy is the long-term trend is especially
evident. Given its lower elevation and the rate of global sea-level rise, it is likely
Padre Island will be somewhat submerged within the next half century, despite
having a relatively gentle curve [11]. Thus, it was given the rating of "medium"
across all three time intervals.

Finally, in considering whether the model may realistically predict sea levels one
hundred years into the future, the answer would be a resounding "no." Any extrap-
olation to such a dramatic distance, especially in a field as fickle as climatology, is a
risky enterprise. Furthermore, as already demonstrated with Padre Island, locations
with a dropping sea level cannot be accurately modelled too far into the future with
the present model. And finally, the quadratic equation itself central to the analysis
is merely and empirical approximation with minimal theoretical basis. No future
trends can be expected to be as smooth as it predicts [7].
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2.5.1 Sensitivity Analysis

In order to do sensitivity analysis, we will look into only Cape Hattras national park.
Had we had more time, we would like to do sensitivity analysis on each of the parks.
To test sensitivity, we will change the values of the coefficients of the t and t2 term
on the Cape Hattras equation. A table of values is shown below. In the table the
coefficient of the t term is denoted a while the coefficient of the t2 term is denoted
b.

a % Change b % Change 10yr % Diff 20yr % Diff 50yr % Diff

10% 0% 5.57% 6.26% 7.45%
-10% 0% -5.57% -6.26% -7.45%
0% 10% 4.42% 3.73% 2.54%
0% -10% -4.42% -3.73% -2.54%

As one can see, a percent change of 10% amounted to a change less than 10% in the
data. Therefore, we can say our model is robust. A graph of the percent differences
is provided below:

2.5.2 Strengths

• Alignment with the literature - The model used to predict the behavior of
sea levels for each of these national parks matches those used to model sea
levels on a global scale. Although this regression may seem questionable as a
descriptive model for a complex behavior like sea level change, it is very well
supported empirically in the literature of the field.

• Simplistic and generalizable - The model provides an approach that can be
universally applied to any site in a very simplistic manner. It does not require
extensive simulation or computational rigor.
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2.5.3 Weaknesses

• Lack of scientific basis - The approximation, although descriptive, is unjustified
on a scientific basis which is a fact acknowledged by the original paper itself.
It is a purely empirical formula. Perhaps, a better model would have been
to find a stochastic way to simulate and extrapolate future data points. A
common process for doing so, especially in predicting the market, is using
Wiener processes and the following differential equation as described in [5].

dX = a(X, t)dt+ b(X, t)dWx

where X is the measured variable, a(X, t) is some base function, b(X, t) is
the stochastic factor, and dWx is a Wiener process or, put more simply, a
random Gaussian value. By using an accepted function for a(X, t) like the
aforementioned quadratic and running a Monte-Carlo simulation to extrapo-
late a b(X, t) for the data, it may have been possible to run a more accurate
stochastic simulation of the future sea level.

3 Part 2: The Coast is Clear?

3.1 Assumptions and Justifications

• Assumption 1: Vulnerability is better described as a vector of values for
different climatic events rather than a single encompassing value

Justification: Often times, the effect of events such as wildfires or hurricanes
have different effects on different sites. A small hurricane may be significantly
more detrmental to a site than multiple wildfires. As a result, creating a way
to calculate vulnerability for a general site would ignore such differences and
would thusly not be a holistic representation of vulnerability.

• Assumption 2: Vulnerability can be expressed as a product of severity and
frequency.

Justification: Severity can be measured as the average magnitude of an event
and frequency as the average number of events per unit of team, yielding a
product that represents the sum magnitude across all events per unit of time

3.1.1 Model

Perhaps the biggest obstacle facing this section of the analysis was finding an ef-
fective way to generalize climate catastrophes across the massive diversity of types

Page 9 of 18



Team #7204

and contexts. To accomplish this feat, we approached the model using a two-part
strategy.

The first part consisted of forming a general framework applicable to any park
in any climate susceptible to any natural disaster. The two variables forming a
"climate vulnerability score" were given as severity and frequency of a particular
kind of disaster. To extract a score, the two components were simply multiplied.
In this way, if severity can be defined as a measure of damage wrought per natural
disaster event, and frequency can be defined as a measure of events per unit of time,
then a simple multiplication of the two factors yields a measure of damage wrought
per unit of time. Because of the ultimate goal of a climate vulnerability score is
to determine the susceptibility of a location to climate catastrophes, such a general
framework was determined to be a simple, clean approach to calculating such a
score.

The second part consisted of adapting the general framework to the specifics of
each, individual location. First off, it became evident that translating a particular
severity in one variety of natural disaster to another was highly dependent on context
and therefore an unproductive approach. For example, consider equating severity
in a forest fire to that of a hurricane. For in a location like a forest preserve, a
relatively small forest fire may be considered as devastating as a fairly powerful
hurricane, whereas in a coastal park, a relatively relatively mild hurricane may be
considered even worse than a moderate forest fire. Therefore, our model sought
to keep individual scores for each variety of natural disaster separated. Instead of
calculating a grand vulnerability score encompassing every possible catastrophe, we
instead produced a data structure analogous to a vector, extracting a vulnerability
score based on the framework outlined in the previous paragraph for each variety
of natural disaster under consideration. To do so, data was pulled directly from the
data-sets provided. Below is a list of the natural disasters considered along with a
description of how they were evaluated:

• Hurricanes

– Severity of hurricanes was judged by their wind-speed. The average wind-
speed for each hurricane at a location was multiplied by the average
number of hurricanes expected per year, giving an estimate for the total
wind-speed of hurricanes at a location per year.

• Forest fires

– Severity of forest fires was judged by the area of land damaged, measured
in acres. Much opportunity for more delicate analysis was provided in the
data-set with measurements like ecological damage, but acre was chosen
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simply in the interest of time. The average acreage damaged per each
fire was multiplied by the average number of forest fires per year, yielding
the average acreage damaged by forest fires per year.

• Extreme low temperatures

– Temperatures were measured using the distance (in standard deviations)
from the mean at a particular measurement station. Such an approach
was favored over using the exact temperatures themselves in order to
more rigorously compare temperatures across locations of different cli-
mate (for example, -10 degrees F will mean different things in Alaska as
compared to Texas). In this case, means and standard deviations typical
to a measurement station were obtained from the National Oceanic and
Atmospheric (NOAA) Administrations’ Global Summary of the Month
(GSOM) data-sets. Z-scores for each month’s record low of each year
were calculated against the averages to obtain a severity. Methodology
like that described above was performed on these severeties, yielding the
average number of standard deviations below the average in temperature
per year. The Z-scores are signed, so a final vulnerability of score of -50
would mean a total of 50 standard deviations below normal observed in
temperatures in an average year at that location.

• Extreme high temperatures

– The methodology detailed above was repeated with high temperatures,
replacing the record low’s for each month with record high’s.

• Air quality

– Severity of air quality was determined with the Air Quality Index (AQI).
The average AQI at each location per month was multiplied by the num-
ber of months per year, giving the average sum AQI over a typical year.

3.2 Results

Below are the vulnerability score "vectors" for each location.
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National Park Hurricane Forest fire Temp (Low) Temp (High) Air quality

Acadia (ME) 27.8 10.6 -75.1 58.9 41.5
Cape Hatteras (NC) 116 18.1 -13.2 37.3 43.2
Kenai Fjords (AK) 0 0 -70.5 7.49 31.8
Olympic (WA) 0 576 -31.3 23.8 35.5

Padre Island (TX) 37.1 2420 2.23 32.7 44.6

3.3 Analysis

Reassuringly, the vulnerability scores appear to corroborate a general understanding
of each location. For example, the Kenai Fjords in Alasksa, a state in the far north,
have a remarkably negative low-temperature score and an accompanying small high-
temperature score, supporting the notion that the area produces days of incredible
chill.

3.3.1 Strengths

This model leverages simplicity in that a general framework with universal applica-
bility is applied on a case-by-base basis to produce specific results for a particular
location. In this way, the model ceases to be so much a model as a methodology for
constructing models for various park locations. Furthermore, the simple framework
leaves plenty of space for flexibility. If one would like to take into consideration
other natural disasters like drought or tornadoes, these elements may be added on
as simply as an item being appended to a list, with severity measured in no unit
more complex than the units traditionally used to gauge the disaster.

Additionally, another strength of our model is our adaptability towards cost. If a
park would wish to determine a single vulnerability score, they may simply dot the
vector representing their vulnerability scores with the amount they wish to spend
on each natural distaster. We would have done this ourselves given more time.

3.3.2 Weaknesses

In our specific case, there is much more opportunity to further define the severity
of the forest fires. While acreage is a fine representation, an acre burned in a
wilderland would be far less catastrophic than an acre burned in the Enchanted
Groves of Lothlorien, stocked with all sorts of rare plants and endangered species
(and High Elves). Thus, taking into account other factors like ecological damage
would be an important imporvement on the current estimation of a forest fire’s
severity. Given more time, we would certainly expand our investigation into this
dimension.
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4 Part 3: Let Nature Take Its Course?

4.1 Assumptions and Justifications

• Assumption: An increase in natural disasters will deter visitors from at-
tending a national park.

Justification: Visitors are naturally concerned about their safety and will not
attend a national park if it is unsafe.

• Assumption: There is a correlation between vulnerability and monetary
expense

Justification: A higher vulnerability means that there is a higher risk of
natural disasters. This means that the park must pay more to pay for those
natural disasters, affecting the costs.

• Assumption: Monetary Expense can be justified by high visitor counts.

Justification: Each visitor pays money when attending a national park, con-
tributing to its revenue.

• Assumption: We should allocate funds to parks that have a combination
of the most visitors and the least vulnerability.

Justification: This combination is further highlighted in the model, but we
want to ensure that if a park has most visitors and is least vulnerable, it gets
the most funds.

4.2 Model

Before we begin, let us consider what draws us to the national parks. Every park
has a unique characteristic that entices and attracts visitors, whether it be its geog-
raphy, its wildlife, or its vistas. At the same time, as we have seen above, national
parks present a venue for a wide range of dangers to the unfortunate traveller, from
hurricanes to deadly temperatures. Yet, something about these natural spaces keep
die-hard fans coming back for more.

While these sentiments are vague and anecdotal, could they inspire some way
to objectively quantify the “allure” of a national park? Specifically, to quantify the
value of a national park in terms of its patronage in visitor and overall worthiness
of preservation? Computing such a property would allow us to compare the relative
cost/benefit of maintaining each park and select the most important parks to fund
in the future.
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Word2Vec [6] is a method to represent words as high-dimensional vectors. Through
machine learning, Word2Vec "trains" vectors to capture all the nuance of a word’s
connotations and relationships in a mathematical quantity. This ingenious advance-
ment has a number of fascinating properties. For one, words that are related to each
other, such as the set of numbers and the set of colors, are grouped together closely
in the vector space. Furthermore, the vector difference between word pairs with
parallel relationships, such as Man → Woman and King → Queen are themselves
vectors with similar magnitude and parallel orientation.

For our final model, we present Park2Vec, a similar method that leverages the
vector representation of our vulnerability scores to map scores describing similar
locations closer to one another. By then visualizing these placements using a special
algorithm designed to project entities with high-dimensionality on the two-dimension
of a monitor, we could see and determine the groupings of locations with higher
financial value as compared to those with less.

We define a vector ~ap to be the Park2Vec representation of a particular national
park p. Let us also name ~vp to be the vector respresentation the park’s vulnerabili-
ties, as defined in section 4.2. We give ~ap meaning in being the relationship between
vulnerabilities of the park and its popularity Pp, a scalar measruement of annual
visitor count. This is a very meaningful quantity: a park with few vulnerabilities
but high popularity is much different that a park with many vulerabilities and low
popularity. Therefore, we define ~ap to be

~vp · ~ap = Pp

Essentially, ~ap represents a vector to scalar function that takes the vulnerabilities
(a vector) at a certain site and converts it to popularity (a scalar) in terms of visitors
giving a comprehensive description of the site.

Using the data from the NPS Visitor Stats resource, we substitute annual visitor
counts for each particular park into Pp in order to find a “best fit” value for ~ap.
We accomplish this by thinking of these as a large system equations and using a
least-squares optimization algorithm to fit ~ap. Note that since this is a dot product,
our ~ap in this problem is a vector in dimension R5, the same as ~vp.

With this method, we computed Park2Vec vectors ~ap for each of our five parks.

4.3 Results

Below is the graphical representation of our vulnerability vectors augmented with
popularity and sea-level rise considerations. Entities in the green space are the best
and should receive the most funding, followed by ones in the yellow. Ones in the
white are least financially worthwhile.
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Figure 7: A t-SNE visualization of our Park2Vec results.

We used t-SNE [12] to create the 2-dimensional representation of our high-
dimensional vector Park2Vec vectors. Roughly speaking, t-SNE reduces the dimen-
sionality of a vector space by flattening it, revealing the interesting relationships
between vectors in the space. Note that the axes of this graph are abstract in na-
ture. Most notably, vectors that are nearby in the full vector space are clustered
together similarly in the 2D representation.

4.4 Analysis

The placement and assosciation of the vectors makes assuring, logical sense. For
example, with a high popularity and relatively low risk from natural disasters and sea
level rise, the Olympic National Park would clearly be the most favorable location
to direct funding. With its high occurence of forest fires and likelihood of being
flooded, Padre Island is fairly far from the epicenter of allure.

Such a representation expands even beyond these five parks. Any location can
be given a vector representation as described in the previous parts and plotted on
this figure. Parks in the green zone are recommended to be funded, yellow are areas
for further consideration, and whites are recommended to be let go in the event the
NPS finds itself short on funding.

Page 15 of 18



Team #7204

4.4.1 Strengths

One of the strengths of this algorithm is that it utilizes a prize winning machine
learning algorithm known as t-SNE. This algorithm, presented in this paper [12] is
one that takes a vector in multi-dimensional space, and reduces it to two dimen-
sional space for visualization and simplification purposes. Another strength of this
algorithm is that it is relatively simple in that it only takes into account our previous
vulnerability scores and the visitor statistics data.

4.4.2 Weaknesses

Regardless of the simplicity of the algorithm, since the t-SNE algorithm simply
projects five dimensional vectors into two dimensional space, it has the potential to
greatly oversimplify the problem. In the future, we wish to discover more connections
between the data and the visitor statistics and use that to avoid oversimplifying the
problem. Perhaps if given more time, we would have looked at correlations between
previous natural disasters and visitor statistics.

Another weakness of our model is that it does not talk specifically about cost,
rather it talks about overall utility. The ~n that we use connects the vulnerability to
the people that come back. In doing so, this vector consists of all possible factors
lumped into one, which does not specify cost very well. Regardless, since cost is
generally affected by any factor that would affect visitation rates, such as natural
disaster frequency, we can model cost as an approximation of this vector ~n.

5 Final Thoughts

Overall, we have presented models capable of determining the risk level of various
coastal locations from sea level-rise, as well as provided a vector-like representation
of vulnerability scores along with a grouping methodology that leverages such a
representation. It is our hope the National Park Service will find the results of
this analysis useful in planning their future approaches in preserving the nation’s
immeasurably priceless flora, fauna, and scenery.

Expanding beyond the NPS, it is undeniable the impact global climate change
and sea level rise will have not only on the nation’s ecologies, but the ecologies of
the world. Looming throughout the analysis has been the shadow of climate-change
driven sea-levels and the potentially catastrophic effects they will have on many
coastal parks. Such effects transcend the ability of even the NPS to handle, and
call on all of us, rangers, modellers, and humans alike, to take care of our planet’s
natural treasures and together, be the stewards of the world.
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