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Abstract: We utilize a swarm design methodology that enables us to develop classes of swarm solutions to specific

specifications. The method utilizes metrics devised to evaluate the swarm’s progress – the global variables –

along with the set of available technologies in order to answer varied questions surrounding a swarm design

for the task. These questions include the question of whether or not a swarm is necessary for a given task. The

Jacobian matrix, here identified as the technology matrix, is created from the global variables. This matrix

may be interpreted in a way that allows the identification of classes of technologies required to complete the

task. This approach allows us to create a class of solutions that are all suitable for accomplishing the task. We

demonstrate this capability for accumulation swarms, generating several configurations that can be applied to

complete the task. If the technology required to complete the task either cannot be implemented on a single

agent or is unavailable, it may be possible to utilize a swarm to generate the capability in a distributed way.

We demonstrate this using a gradient-based search task in which a minimal swarm is designed along with two

additional swarms, all of which extend the agents’ capabilities and successfully accomplish the task.

1 Introduction

Swarm engineering (Kazadi, 2000) as an area

of research concerns itself with the translation of a

task description into a design of multiple autonomous

agents whose combined effect accomplishes the de-

sired task. One method involves utilizing differen-

tial equations derived from state equations to gener-

ate behaviors. The Hamiltonian Method of Swarm

Design (HMSD) is a method for swarm design that

begins with functions called global functions defined

over the field of agent measurables (Kazadi and Lee,

2007). This method utilizes global swarm properties

to generate an abstract phase space. The initial and fi-

nal system positions define the task; behaviors imple-

mented by the agents must change the global proper-

ties’ numerical values so as to move the system from

the initial state to the final state. Design of the swarm

involves the analysis of the practical generation of a

set of behaviors, techniques, and timetables required

to move the system from the initial to the final state.

In this paper, we will examine how the HMSD

can be used to determine the requirements for classes

of swarms that accomplish specific tasks. We begin

with an examination of the way in which the task en-

coded as a function of measurements that individual

agents can accomplish. We continue to a derivation

of the technology matrix which defines the classes of

technologies necessary for the accomplishment of the

task. The technology classes are encoded in terms

of their ability to change the system state as opposed

to a description of the specific technology used. We

demonstrate that, using this approach, we can create

accumulation swarms of varied designs that accom-

plish the accumulation task. Additionally, we use the

source location task to explore the development of

a technological requirement that may or may not be

possible to accomplish on a single agent. In the case

that a single agent-based solution doesn’t exist, the

problem must be solved using a swarm. We derive

three different swarms that can accomplish the task,

demonstrating that in this case, a swarm is absolutely



required in order to accomplish the task.

2 The Technology Matrix

The Hamiltonian Method of swarm design

(Kazadi and Lee, 2007; Kazadi, 2009), involves the

writing of global variables Pi which are meant to cap-

ture the current state of the swarm. These are func-

tions of quantities that measure locally measurable as-

pects of the system which the individual agents can

measure and manipulate. Mathematically, these are

represented by vectors −→s = (s1, . . . ,sNs) where Ns is

the number of local measurables and each si repre-

sents the state of one element of the system. It is clear

to see that, with each agent potentially having K de-

grees of freedom and the system itself having more,

the number Ns can be quite large. Each of the values,

si, is assumed to come from a range Si of real num-

bers, making the system configuration −→s an element

of S1 ×·· ·×SNs which is itself a subset of RNs .

2.1 The Swarm Design Problem

As each of the Pi is a function of the local variables,

we write this as

Pi = fi

(−→s
)

. (2.1)

Pi is meant to capture a global state of the system.

Many examples may be developed for potential global

goals including the location of items that are being

collected, the flow rate of items that are being moved,

construction details, etc. Each of these may be repre-

sented as a potentially complex function of the local

measurables. Each of the functions may have a unique

numerical value corresponding to a specific state of

the system or, at least, a unique numerical value for

the desired system state.

One might imagine writing several functions Pi

describing aspects of the swarm system. A vector
−→
P = (P1, . . . ,PNP

) results from the combination of the

global properties. The number of global properties

NP greatly determines the complexity of the design

problem. We define NP as the swarm design dimen-

sion. Therefore, if NP = 1 the swarm design prob-

lem is referred to as a 1-d swarm design problem. If

NP = 2, the swarm design problem is referred to as a

2-d swarm design problem.

The vector ~P is an element of the vector space

A = A1×·· ·×ANP
where each Ai represents the range

of each Pi. A is the systemic phase space. Each

element represents a specific set of states. That is,

given a state
−→
P , there is a number of system states

for which the global state is
−→
P . We can define the

system domain I
(−→

P
)

in the following way I
(−→

P
)

=
{

−→s |
−→
P =

(

f1

(−→s
)

, . . . , fNP

(−→s
))

}

. If

∣

∣

∣I
(−→

P
)∣

∣

∣ = 1

then we say that the system state is well defined.

The goal is to change the state of a system from

an initial state to some defined final state. This is de-

fined in terms of the global properties. Therefore, the

goal is to change
−−→
Pinit to some final desired state

−→
Pf in.

However, it is clear that both of these states may be

extremely degenerate in the sense that many micro-

scopic configurations may make this happen. We de-

fine the task as either the ordered pair of
(−−→

Pinit ,
−→
Pf in

)

or, in the case that the initial state is ambiguous,

−→
−→
Pf in meaning that all initial states should go to the

final state. That is, the final state
−→
Pf in is an attractor of

the system under the dynamics we will construct.

As a result, we are interested in the dynamics of

the properties
−→
P . Let us consider now dPi

dt
. First, it

is straightforward that, using the Einstein summation

convention,
dPi

dt
=

∂Pi

∂s j

ds j

dt
. (2.2)

this can be rewritten as

dPi

dt
=
−→
∇Pi ·

−̇→s . (2.3)

Defining P as

P =















∂P1
∂s1

∂P1
∂s2

· · · ∂P1
∂sNs

∂P2
∂s1

∂P2
∂s2

· · · ∂P2
∂sNs

...
...

. . .
...

∂PNP

∂s1

∂PNP

∂s2
· · ·

∂PNP

∂sNs















(2.4)

we can write the time change of the system as

−̇→
P = P−̇→s . (2.5)

We can then write the goal of the swarm as

−→
Pf in =

−−→
Pinit +∆

t f

t0
P−̇→s dt (2.6)

when the initial and final points are well defined and

as
−→
Pf in =

−−→
Pinit +∆

∞
t0

P−̇→s dt (2.7)

if the initial point is not well defined.

2.2 Connecting to the real world

In the real world, we can describe the swarm engi-

neering problem differently than the somewhat eso-

teric description given above. Generally speaking, the

goal of a swarm is to solve a task. That is, given a task,

we want to determine the following items:



• The technologies that one must use

• The way to deploy the technologies

• The minimal number of agents to use

• The number of teams/groups to assemble

• The number of agents that will be “consumed”, or

lost, during the task

• The time needed to accomplish the task

• The amount of energy required to accomplish the

task

• The supplies required to accomplish the task

These items are, interestingly, either present in the

equations given above in Section 2.1 or capable of be-

ing calculated as a result.

Note that the quantity −̇→s represents the way in

which the local measurables are manipulated. These

local measurables are assumed to be accessible to the

agents; they are things that they can directly mea-

sure and change. This quantity defines how and, ul-

timately, when these measurables must be changed.

While the details of the method of changing the quan-

tity must be developed by an engineer, this provides a

clear design specification.

The quantities ∂Pi

∂s j
represent the ways in which

changes in the local properties are connected to the

changes in the global properties. For instance, these

may indicate that the value of
ds j

dt
is coupled with a

value for ∂Pi

∂s j
that is positive. Therefore, the system

must have some way of determining ∂Pi

∂s j
. If it is the

case that Pi must decreased in order for the global goal

to be achieved, this requirement determines a poten-

tial course of action for the swarm:
ds j

dt
should be the

opposite sign of that of ∂Pi

∂s j
.

The manner in which
ds j

dt
couples to changes in

Pi is determined by the ∂Pi

∂s j
. In order to couple the

two quantities together correctly, it must be possible

for the agents to determine what ∂Pi

∂s j
is. This can be

achieved only if there is a mechanism or technology

capable of determining this. The matrix P, therefore,

represents the superset of all of the sensory, commu-

nication, and/or computational technologies that must

be deployed in order to achieve the task. That is, the

non-manipulative requisite technologies or capabili-

ties for the task exist within the matrix P. Yet, under-

standably, these technologies are not represented by

the names and vendors of the technologies to be used.

Rather, they represent the capabilities of the requisite

technology; how that is achieved is up to the discre-

tion of the swarm designer. Note that if any technol-

ogy ∂Pi

∂s j
does not actually exist, this technology will

either not be used in the solution or will be developed

in order to solve the swarm design problem. Develop-

ing these capabilities is a way of discovering needed

technologies one may not have realized is necessary.

Likewise, the various elements
ds j

dt
that are

nonzero in order to lead to the desired final system

configuration
−→
Pf represent the agent-level capabilities

that must be in place in order to change the s j values

within the system. These might be lights, grippers,

methods of movement, actuators, internal computa-

tions, or any other method of changing some part of

the system. Therefore the
ds j

dt
entries represent the

manipulative technologies that must be in place in or-

der to achieve the task.

Together, these two technological requirements

define the superset of all of the technologies and abil-

ities required in order for the task to be achieved. The

system engineer, then, is tasked with identifying or

creating them. A swarm is appropriate in the case that

these abilities can be generated through the interac-

tion of agents when they are not available or possible

with a single agent.

Once we have a set of actuation technologies, or

perhaps if we obtain a list of currently available tech-

nologies, we can determine that the application of any

given technology together with the actuation mecha-

nisms at a given point in the system configuration will

lead to a change in the system configuration ∆−→s . This

change will have a concomitant change in the posi-

tion of the system in phase space, which may be ap-

proximated as P∆−→s . Therefore, our goal is to deter-

mine the sequence of applications of actuation tech-

nologies that leads the system from the initial point

to the final point. That is, the swarm engineering de-

sign problem consists of determining a set of applica-

tions of actuation technologies and concomitant steps

through phase space
{

∆−→sl

}Nsteps

l=1
for which the result-

ing change in
−→
P yields

−→
Pf =

−→
Pi +

Nsteps

∑
l=1

P∆−→sl . (2.8)

As P may be a function of the state of the system, the

problem may be more generally written as

−→
Pf =

−→
Pi +

Nsteps

∑
l=1

P
(−→sl

)

∆−→sl . (2.9)

As a result of this sequence of applications, we

can now determine many of the desired quantities.

Clearly, we have determined the technologies to use

as well as their deployment schedule. Each of the

manipulations will require at least one agent. In the

case that more than one agent is required, a team is



needed. When a manipulation requires the transition

of an agent from an active to an inactive state, this

“consumes” an agent. Summing those for which a

reverse transition is not applied along the pathway in-

dicates how many agents will be consumed. Each of

the transitions requires an amount of energy, supplies,

time, etc. Representing the consumption as γl , we can

write out the consumed quantity as

γconsumed =
Nsteps

∑
l=1

γl . (2.10)

This expression allows us to calculate what we will

need to accomplish the task along the pathway.

While the determination of this set of applications

of actuation technologies provides a mathematically

rigorous definition of a swarm strategy that will ac-

complish the task, its determination can be nontrivial.

In the remainder of this paper, we will examine two

relatively simple swarms that can be designed using

this approach.

3 Accumulation swarms

An accumulation swarm is a swarm that, when

initially organized with agents physically far from one

another, responds by moving the agents toward one

another to eventually form a tightly packed group. A

swarm behaving in this way might be a precursor to a

swarm that then forms a well-ordered formation for a

secondary purpose.

Mathematically, accumulation swarms are defined

as follows: Suppose that each member of the swarm

has a position given by −→xi . Let the entire swarm have

a set of positions given by −→s = (−→x1 , . . . ,
−→xN). Then we

can define a global property P as

P
(−→s
)

=
N

∑
i< j

(−→xi −
−→x j )

2
. (3.1)

P is the dispersion of the group. An accumulation

swarm will have the defining property that dP
dt

< 0.

Note that

dP

dt
= 2

N

∑
i< j

(−→xi −
−→x j ) ·

(

d−→xi

dt
−

d−→x j

dt

)

. (3.2)

This can be simplified to

dP

dt
= 2

N

∑
i

d−→xi

dt
·

(

∑
j 6=i

−→xi j

)

(3.3)

where −→xi j =
−→xi −

−→x j . If we let −→xM,i =
(

∑ j 6=i
−→xi j

)

then

the change in P is given as

dP

dt
= 2

N

∑
i

d−→xi

dt
·−→xM,i. (3.4)

We may identify −→xM,i as the center of mass of the re-

maining agents from the point of view of the ith agent.

This swarm is defined entirely in terms of its de-

sired behavior by a single global property. As the

swarm requirements are defined in terms of only a sin-

gle global function, it is a single dimensional swarm.

Examining the form of (3.4), we see that there are

two main terms, d−→xi
dt

and −→xM,i. These two terms define

the capabilities of the agents that must be in place in

order for the swarm to perform as desired. That is, in

particular, the swarm must have the ability to move,

and it must have the ability to determine the center of

mass of the system. Therefore, these two basic capa-

bilities define the technological requirements for the

swarm.

In order for the swarm to coalesce, we must have

dP

dt
< 0. (3.5)

I.e., the sum must be negative. The minimal require-

ment for this to happen the magnitude of the summed

negative values should exceed that of the summed

positive values. There are many ways in which this

can be accomplished including making each of the

terms negative. Making each of the terms negative

requires that the angles between −→xM,i and d−→xi
dt

exceed

90◦. If this is the case for all agents, the swarm will

always coalesce.

In order to validate these theoretical results, we

simulate a swarm of thirty generalized agents. Each

identical agent has the ability to move and has simu-

lated onboard sensors that report the relative positions

of all other agents. The agents are capable of calcu-

lating relative positions using the coordinates of other

agents. Using this data the agents also can calculate

the center of mass of all agents. All agent movement

is dictated by the center of mass.

The simulation initializes 30 agents with random

coordinates. Each iteration, the agents obtain the rel-

ative positions of other agents. The center of mass

of the set of positions of the other agents is then cal-

culated. The agents then move towards the center of

mass either directly or partially tangentially. When all

agents’ positions are close to or equal to the center of

mass, the simulation stops.

In the first case, the agents move directly towards

the center of mass as they have calculated. In Figure

3.1, all of the agents move towards the center in a

direct path as indicated by the trail each agent leaves.

This accomplishes the task as envisioned.



A)

B)

C)

Figure 3.1: These figures illustrate the evolution of the coalescing

agents when moving directly toward calculated centers of mass. In

this and later figures, the agents are the triangular-shaped objects

in the scene. The black lines illustrate the path taken by the agent

connecting to the line.

In the second case, the agents behave identically to

the previous case except that they move in at an angle

of 30 degrees with respect to vector directed at the

calculated center of mass. Figure 3.2 shows the agents

moving in an indirect path towards the center of mass;

the swarm spirals inward, ultimately still completing

the task.

A)

B)

C)

Figure 3.2: These figures illustrate the evolution of the coalesc-

ing agents when moving at an angle of 30◦ from directly toward

calculated centers of mass.

We again utilize an indirect trajectory but in this case

we assign an offset angle of 60 degrees. As illustrated

in Figure 3.3, we again observe the swarm achieving

the task through a longer spiral.

A)

B)

C)

Figure 3.3: These figures illustrate the evolution of the coalesc-

ing agents when moving at an angle of 60◦ from directly toward

calculated centers of mass.

In all cases, the agents accomplish the task by satis-

fying the swarm requirement given in equation (3.5).

As these last two cases demonstrate, even when

the agents’ behaviors are significantly perturbed the

swarm is still capable of achieving the global task. In

fact, in this case, it is straightforward to determine

the limit of the perturbation still yielding the desired

global goal.



4 When to use a swarm and minimal

swarm size

One of the most important goals of swarm engi-

neering centers around simply verifying that a swarm

is suitable for the given task. Interestingly, despite the

myriad of studies surrounding the use of swarms, no

systematic approach to the determination of the ap-

propriateness of using a swarm for a given task has

been proposed. In this section, we will examine how

this question can be answered in the context of a sim-

ple swarm. As we shall see, the question is complex

because it requires the consideration of the availabil-

ity of technology, as opposed to simple swarm agent

control algorithms. What makes swarms so interest-

ing is their ability to create, as a group, a capability

that their constituent members cannot. We shall see

in this example that, when technology is not available,

the swarm can make up the ability. In such a case, a

swarm is required. Additionally, we can determine

how many agents must be in this swarm in order for

the task to be achieved.

We consider a task quite similar to plume track-

ing (Spears et al., 2009) or odor source identification

swarms. We suppose that in a space there exists a

source of some desirable thing (light, food, odorant,

etc.), and that the dispersion of the substance is de-

fined by some real function of position S (−→x ). The

goal is to find a “good" location in the sense that it is

locally optimal (Kazadi et al., 2015).

As indicated in Sections 2 and 3, we begin to de-

sign this swarm by defining a global property of the

swarm.

P =
Ns

∑
i=1

S (~xi) (4.1)

where S is the position-dependent average measure-

ment of the target, −→xi is the position of the ith agent,

and Ns is the number of agents in the swarm. The time

derivative is

dP

dt
=

Ns

∑
i=1

−→
∇ S · −̇→xi . (4.2)

In order to move the swarm to an optimum, we must

have that

dP

dt
=

Ns

∑
i=1

−→
∇ S · −̇→xi ≥ 0. (4.3)

Equations (4.2) and (4.3) indicate both the technolo-

gies and their functional requirement. Firstly, two

technologies are needed for this process to work. The

swarm agents must have a method of evaluating the

quantity
−→
∇ S, and the agents must have the ability to

move, as indicated by −̇→xi . Technologies that give us

these capabilities can be used to generate the desired

motion. Secondly, the motion given by −̇→xi and the

quantity
−→
∇ S must be oriented in such a way that the

sum of positive products at most equals that of neg-

ative products. Given these requirements, the swarm

will move toward the optimum.

As we’ve indicated above, swarms are indicated

for a task if their capability exceeds that of the indi-

vidual agents. Focusing on the technology that gener-

ates
−→
∇ S, we can ask whether or not individual agents

have access to a technology with ability to determine
−→
∇ S. There are two possibilities:

1. such a technology exists and can be integrated

with the agent design; or

2. such a technology does not exist.

In the first case, the gradient sensor can be integrated

on a single agent. The problem will be solved by that

single agent; a swarm is not needed – the agent can

find its way to the optimum of S.

In the second case, there are again two possibili-

ties:

1. A single agent, by moving around and sam-

pling the local area can generate a local gradient,

thereby making the information available; or

2. Such a movement and integration is unavailable

or impractical.

Again, in the first case, the integration of this techno-

logical capability solves the problem and only a single

agent is required. In the second case, a single agent

has no way of obtaining this information. Therefore,

if we mean to get the data needed to solve the prob-

lem, we need at least two agents. As a result, a swarm

with a minimal size of two (2) is required.

We can design swarms that accomplish the overall

task with the limitations imposed by the last case. We

describe three strategies for accomplishing the gradi-

ent ascent and demonstrate their capabilities below.

Swarm of two agents

Two agents represent the smallest group that can ac-

complish this task in the event of the restrictions given

above. Our swarm acquires and processes the local

gradient by cooperation. One agent initially remains

stationary while the second agent orbits the first in a

circular orbit, sampling the value of S (−→x ) at points

along its path. The second agent executes more than

one full orbit, measuring the intensity of the field as

it goes. After its first time around, the second agent

stops at the location of the highest intensity in the

first orbit when it re-encounters it during the second

orbit. The direction indicated by the two positions



of the agents when the second one stops is approx-

imately that of the local gradient. Once the second

agent stops, the agents switch roles and the process

restarts. After multiple iterations, the swarm finds and

stays at the area with the global intensity peak.

We illustrate in Figure 4.1 the performance of the

two-agent swarm below:

Figure 4.1 The trial of the two-agent swarm in a radiation field

modeled by functions one through three.

The swarm finds the highest intensity, overcoming the

limitations that would hobble a single agent.

Swarm of three agents

We construct a simulated swarm comprising three

identical agents. Each of these agents is capable of

making an intensity measurement at their location.

Additionally they can determine the relative range and

bearing of the other agents. The agents’ utilize a

modified physicomimetic control algorithm (Gordon

et al., 1999; Spears and Gordon, 2007; Spears et al.,

2004) in which the force function is given by

−→
F = 5arctan

(

G

r2

)

r̂+

−→
∇ I
∣

∣

∣

−→
∇ I

∣

∣

∣

. (4.4)

We assign G to 1200. When this simulation is run,

three agents are randomly placed in the arena. Each it-

eration each agent obtains the intensity measurements

from other agents and uses these to calculate the force

as in (4.4). The agent then moves in the direction of

the combined force. To calculate the gradient, we use

a first order linear approximation defined by

I (x,y) = ax+by+ c (4.5)

where x and y are the coordinates of each agent, and a

and b are undetermined coefficients. We can calculate

the local gradient

~∇(I) = (a,b) . (4.6)

In Figure 4.2, the performance of the three-agent

swarm are displayed. It is worth noting that, con-

strained by the method we implemented in the al-

gorithm, the swarm does not always move perpen-

dicularly to the contour lines. The swarm linearly

approximates its local gradient vector. The further

apart the agents are, the less accurate the estimation

is. Nonetheless, once in the correct configuration, the

swarm is able to find the peak intensity. One crucial

advantage of this three-agent design, comparing to the

two-agent swarm, is that the former does not require

designated memory space for each agent, for the col-

lection of all three agents is capable of computing the

gradient instantaneously from their relative positions

and their current intensity readings.

Figure 4.2 The trial of the three-agent swarm in a radiation field

modeled by two functions.

Large physicomimetic swarms

We illustrate in Figure 4.3 the performance of a multi-

agent swarm. As in the three-agent swarm, the agents

in the multi-agent swarm do not require internal mem-

ory; the agents compute the local intensity gradient

vector instantaneously which is again a linear ap-

proximation. For the multi-agent swarm to find the

peaking intensity for the three functions is not ex-

tremely challenging given that swarm consists of 20

agents and the ability of the swarm controlled by

physicomimetics to perform well in noisy fields (Het-

tiarachchi et al., 2008). It is highly improbable in

these three scenarios that the swarm would get stuck

in a local minimum; there are multiple neighboring

agents which are capable of obtaining the intensity

measurements required to compute their force vec-

tors. Moreover, there are no other obstacles in the

field. The swarm easily finds the peaks of the first two

functions causing the agents to surround the peak. In

the third function the swarm faces difficulty due to the

flat trough like peak. Since the swarm stretches out in

the trough, it becomes challenging for the agents in

the back of the formation to compute intensity. Given

adequate time, the swarm is capable of reaching the

peak.

Figure 4.3 The trial of the large physicomimetic swarm in a radi-

ation field modeled by two functions.



In all three cases, the swarm finds the highest inten-

sity, overcoming the limitations that would hobble a

single agent.

5 Conclusion and future work

This paper examined the HMSD. Global functions

of the local measurables were used to gemerate a state

space describing the swarm’s state. Next, a set of

swarm requirements was developed that generating

swarm classes. This approach equates to a mathemat-

ical proof that the swarm’s task will be achieved, if

sometimes indirectly.

Within the equations generated from the global

functions are mathematical descriptions of the varied

technologies that one must have in order to achieve

the task. The technology matrix is made up of ex-

pressions that describe the function of the technology

on one or more aspects of the phase space describing

the system. It is sufficient to enable the identification

of solutions or the determination that such equipment

does not yet exist.

In our estimation, the completion of a task is not

dependent on a swarm if all requisite technologies can

be deployed on a single agent. However, if the tech-

nologies cannot be implemented on a single agent,

then a swarm is required.

We illustrated these principles using two classes

of swarms: accumulation swarms and gradient ascent

swarms. All developed gradient ascent swarms which

achieved the task. It was demonstrated that mini-

malist stigmergic swarms consisting of two agents

could achieve the gradient ascent task, as could larger

physicomimetic swarms, as long as they implemented

the technological and behavioral requirement that

emerged, even when they had to do it cooperatively.

These developments enable us to approach the

problem of swarm engineering from a different point

of view than has generally been employed. The global

properties amount to metrics on the state space of the

system and their time derivatives enable the identifi-

cation of technologies that are related to the achieve-

ment of the goal. The design problem, then, is re-

duced to developing a method of applying these tech-

nologies sequentially so that the system will move in

state space from its initial state to a predetermined

one. As a result, this approach reduces the swarm

design problem to a multidimensional search through

technology space, guided by the movement through

phase space.

We have focused in this study on designing low di-

mensional swarms with simple design requirements.

We turn in future work to more complex swarms

whose design requirements are multidimensional as

opposed to single dimensional.
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