
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality o f this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Use of Prior Knowledge
in Learning from Examples

Stephen B. Blessing

Carnegie Mellon University

Committee:
John R. Anderson, chair
Jill H. Larkin
H erbert A. Simon

Submitted in partial fulfillm ent o f the requirements o f the degree of Ph.D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9701866

UMI Microform 9701866
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C arneg ie -M ellon University

COLLEGE OF HUMANITIES & SOCIAL SCIENCES

DISSERTATION

S u b m i t t e d in partial fulfillment of the requ i rem en ts

for t h e d e g r e e of . - ?h. D._______________________

The Use of P rio r Knowledge in Learning frcrr. Examples

Presented by "t-.pphgn R. Bipssing-

Accepted by
/?

;______________ : L , /* ? ?(=>
Thes is Supervisor, for the C o m m it tee / Date

Approved by th e D ean

D ean Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This dissertation examines the w ay people acquire procedures from examples,

and provides a com putational m odel of the results. In four experim ents, people

learned an analog of algebra. For each experim ent, the initial know ledge that

people had of the task was varied. In two experiments (Experiments 1 and 3), the

syntactic know ledge that people had concerning the task w as m anipulated. The

know ledge of syntax that participants had, particularly the ability to correctly

parse the character string, w as found to be a m ajor d e term iner in the way

participants acquired the rules. Experim ent 2 explicitly m anipulated participant's

awareness as to how the task w as related to their p rio r know ledge of algebra,

with the finding that another m ajor determ iner of how the partic ipants learned

the task resting on how m uch of the task they can m ap to algebra. All three of

these experim ents examined the rule generalization behavior of the participants,

with a fourth experim ent specifically designed to exam ine th is issue. The less

syntactic and other declarative know ledge that participants had , the less general

their rules. These findings, that people can learn from exam ples bu t that this

learning is tem pered by their additional declarative know ledge, are captured by

an ACT-R model (Anderson, 1993).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

Acknowledgments
My sincere thanks go to the m em bers of my committee. John has been a

true m entor, and I have learned, by exam ple, how to do research from him. The

actual form of this dissertation has benefited greatly from Jill, and it is m uch

better than it would have been w ith o u t her suggestions. It was a honor to be a

teaching assistant in H erb's class, and through his questions and insights, I have

learned much. Thank you all.

W hat I will miss m ost about P ittsburgh is the friends I have m ade here. I

have m any fond memories, and you will be dearly missed. Also, to the friends

m ade prior to Pittsburgh, thanks for being there, and I'm glad e-m ail exists. Keep

in touch, and you all have a place to stay w hen you come to W alt Disney World.

I thank my God for the m any gifts He has given me. It is by His grace that

I have m ade it as far as I have, and I p ray that He will continue to guide and

bless me through my life.

Finally, I dedicate this d isserta tion to m y parents. They have allowed me

to take m y dream s as far as I could , even w hen it was against their better

judgm ent. They have taught me (again, by example) that dedication, hard work,

and perseverance will get you far in life, and these lessons I will have w ith me

always. Thank you.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

Table of Contents

A bstract............................
A cknow ledgm ents........
Table of Contents...........
C hapter 1: Introduction

m
iv
v
1

The Task
Overview of ACT-SF
M ain Contributions of this Dissertation
Dissertation Overview

C hapter 2: Literature Review 11
Examples v. Procedures in Learning
Schemata in Learning—Transfer
Generalizations in Learning
Previous Models of Learning by Example
Summary'

Chapter 3: Experiment 1—Syntactic Sym bols... 22
M ethod
Results
Discussion

C hapter 4: Experiment 2—Algebraic S ym bols... 39
M ethod
Results
Discussion

Chapter 5: The Model—ACT-SF .
Representation in ACT-SF
Operation of ACT-SF
ACT-SF Model Discussion
Conclusion

53

C hapter 6: Experiment 3—Prefix Symbols
M ethod
Results
Discussion

76

C hapter 7: Experiment 4—General Symbols
M ethod
Results
Discussion

88

C hapter 8: Conclusions
Implications

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References...108
A ppendix A: Additional Inform ation... 112
A ppendix B: Annotated Exam ples.. 113
A ppendix C: The ACT-SF M odel.. 114
A ppendix D: Model R un .. 127
A ppendix E: Example Protocol...133
A ppendix F: Additional Information I I .. 145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
Introduction

How do people learn a new task, given the instructions and inform ation

available to them ? H ow do they b ring th e ir existing know ledge, w hen

appropriate, to bear in learning the new task? Furtherm ore, is there is a simple,

underlying m echanism which can account for this learning? These are the

questions which are at the heart of this dissertation. By examining people in -

depth as they learn a new task, and by m anipulating the am ount and kind of

knowledge that they have available w ith w hich to learn, answers can be given to

such questions.

A nderson 's ACT-R theory (1993) claim s that all procedural know ledge

(knowledge of how to do things) has its orig ins in declarative know ledge

(knowledge of w hat things are). To be m ore concrete, and to use the term inology

of Newell and Sim on (1972), declarative know ledge can be thought of as the

description of the problem states of a problem space, and procedural knowledge

as the description of the transitions betw een these problem states. A sim ilar

distinction is m ade by Simon (1972). In the runn ing system, A CT-R 's syntax

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 2

m akes this distinction apparent, w ith declarative m em ory realized as w orking

m em ory elem ents, and procedural m em ory realized as production rules. Past

researchers have m ade a sim ilar claim concerning the transition of declarative to

procedural knowledge and have created models of this process (e.g., Neves, 1981;

Siklossy, 1972; see the literature review in Chapter 2 for m ore inform ation). The

ACT-R theory posits a sim ple mechanism, called the analogy m echanism , by

which declarative know ledge is proceduralized. This dissertation assum es this

underly ing claim and m echanism of the ACT-R theory. The m odel, described

briefly in this chapter and m ore in -dep th in C hapter 5, initially contains only

declarative know ledge from which procedural know ledge is induced, via the

analogy mechanism.

This chapter sum m arizes the task used in the experim ents, the m odel

developed w ith in the ACT-R system , and the m ain con tribu tions of this

dissertation.

The Task

The task used in all the experim ents of this dissertation is called Symbol

Fun, and was used by Blessing and Anderson (1996) in their study of how people

learn to skip steps. It is com posed of different symbols w hich represent operators

and operands, which are grouped together to form a character string. A sequence

of two, three, or four such character strings form a problem and its solution, with

legal steps in the sequence dictated by the application of particu lar rules. The

task has its basis in algebra, and so the m ain m anipulations involved are

analogous to the algebraic m anipulations of add ing , changing, and deleting

symbols from these character strings. However, the task is not a direct m apping

of algebra, as can be seen in the sam ple problem displayed in Table 1.1. As in

algebra, the goal is to follow syntactical rules to produce a final line in w hich the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 3

Table 1.1
Sample o f Problem in Symbol Fun

Step #__________ Symbol Fun Corresponding Algebra
Given - x - A = *C

1 - x - A + A = * C + A
2 v p<->#A®<P - x = * C + A

(Answer) 3 x = * C - A

variable, p , is alone on the left of the string divider, <-». The beginning of

Chapter 3 contains a m ore com plete description of Symbol Fun's rules.

This task has two features w hich m ake it appropriate for exam ining how

people use exam ples together w ith o ther know ledge to solve novel problems.

First, because it is an artificial task, the inform ation w hich partic ipan ts have

w hen starting to learn the task can be controlled. All partic ipan ts in every

experimental condition had the sam e set of examples to which to refer. However,

some conditions in the different experim ents were given additional information

with which to learn the task. This additional information generally corresponded

to syntactical inform ation, such as w hich symbols are operators and which are

operands, and also w hat m akes a w ell-form ed formula w ithin the task. Second,

even though the task is artificial, it d id have its basis in algebra, and so some

participants found it useful to use their know ledge of algebra in learning this

new task. In one experim ent (Experim ent 2, "Algebraic Symbols"), participant's

awareness as to how the task is related to algebra was explicitly m anipulated.

Overview o f A C T-SF

One of the m ain contributions of this dissertation is ACT-SF, an ACT-R

im plem entation of people learning Symbol Fun. As stated above, the ACT-R

theory claims th a t all know ledge begins in a declarative form , and that all

procedural know ledge arises from this declarative knowledge. This transition is

accomplished by the analogy mechanism. W hen ACT-R has a goal for w hich no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 4

procedures apply, it will attem pt to find a declarative example of the successful

resolution of that goal, and then to infer the rule behind that resolution. It will

next apply that rule to the current goal. ACT-SF uses this mechanism to learn the

rules of Symbol Fun. The analogy mechanism of ACT-R w as one of the least

tested claims of the theory, and over the course of this dissertation, as well as

through other research by different people, the mechanism has been refined.

Figure 1.1 provides a sim ple illustration of how the analogy mechanism

w orks w ithin ACT-SF. Panel A show s the current problem the system has, and

for which no existing productions apply. Since no productions apply , ACT-SF

m ust find an exam ple w hich dem onstrates w hat the p roper ru le to use is.

Examples are chosen based on their sim ilarity to the curren t goal and their

activation. The m odel finds an exam ple, such as in Panel B (Lines 1 and 2 from

Table 1.1). Contained within that example is its "solution," or the next correct line

in the solution sequence. ACT-R creates a new production rule w hich captures

A. Current Problem

Current Line ® p ® A v A < - » © f » A

B. Analogous Example

Example Line * P <-> # A ® 0

Solution Line * P <-» # A ® O

 1
Induce

Rule

C. Current Problem with result o f induced rule

Current Line ® p A

New Line ® p

Apply
Rule

a

Figure 1.1: A C T -R 's analogy mechanism

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 5

the transform ation from the exam ple to its solution, basically by m atching the

sym bols betw een the tw o lines, w ith a set w ay for variablizing or leaving as

constants the various symbols. If the matching of sym bols is not obvious, ACT-R

can bring in o ther declarative know ledge w ith w hich to augm ent the rule, in

order to create a potential candidate rule. The rule created from Panel B can be

simple, such as "If you have a line that has all 11 symbols, then drop symbols 3

through 6 in the next line." The system next attem pts to apply the new rule to the

current line, as show n in Panel C. If it is successful, then it stores the rule for

fu ture use. If unsuccessful, it discards the rule and attem pts to find another

example to generate a different rule.

The full version of the m odel con tains the necessary declarative

representations, including a parsed, syntactically correct, hierarchic organization

of each of the examples, to learn the correct procedural knowledge with minimal

error. This m odel co rresponds to partic ipan ts g iven the m ost am ount of

information, before attem pting to solve any problems. By removing pieces of that

representation, the m odel mimics either participants early in the learning of the

task who did not start ou t w ith the m ost inform ation, or participants w ho were

unsuccessful at learning the task. Chapter 5 further discusses this feature of the

model.

Main Contributions of this Dissertation

This section outlines three main contributions of this dissertation. After

each contribution is a short phrase in parentheses w hich will be used throughout

the dissertation as an identifier for that contribution.

1) In learning the rules of a task such as Sym bol Fun, learners

construct internal declarative representations of the examples

presented to them. These declarative representations are

influenced by knowledge of the task's syntax, as w ell as other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 6

information particular to the task (e.g., know ledge of inverse

operators). (Syntactic Knowledge)

The experim ents in this dissertation utilize examples as the m ain source of

inform ation people had to learn the task. A subset of participants had additional

pieces of declarative information, about the task 's syntax, w ith which to learn. By

exam ining how people interact w ith these exam ples, and the extent to w hich

they interact w ith them , a better u n d erstan d in g of how people incorporate

exam ples in their learn ing of a new a task can be had. Furtherm ore, by

investigating exam ple use across the various inform ational conditions, the

process by w hich people use this additional declarative inform ation can be

exam ined. The hypothesis is that the m ore relevant declarative inform ation

available at the time of learning, the more efficient the learning will be.

Experim ent 1 (C hapter 3, "Syntactic Sym bols") tested this claim by

m anipulating the am ount of information participants had w ith which to learn the

task. O ne group of partic ipants only had som e exam ples to w hich to refer,

w hereas two groups had, in addition to the exam ples, inform ation regarding the

task 's syntax (e.g., a classification of the different sym bols used, w hat m akes a

w ell-form ed form ula, etc.). Also, one of these tw o groups was also given a key

piece of inform ation (that two pairs of operators w ere related, or inverses, of one

another) to aid in learning the task. Since this task has its origins in algebra,

people m ay use their algebraic know ledge as a source for this syntactic

inform ation. If this is the case, then the effects of the syntactic know ledge in

E xperim ent 1 w ill be a tten u a ted . E xperim en t 2, d iscussed in the next

contribution, w as designed to m anipulate people 's aw areness of how the task is

related to algebra, and Experiment 3, discussed below, was designed to eliminate

this attenuating factor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 7

Experim ent 3 (C hapter 6, "Prefix Symbols") provided an even stronger

test of this contribution by greatly reducing the similarity between the version of

Symbol Fun used in Experim ent 1 and algebra. The sim ilarity w as reduced by

using a prefix notation instead of the standard infix notation. The reduction was

necessary in o rder to p ro v id e a better p ic tu re of the benefit of syntactic

knowledge, free of any extraneous knowledge, above just examples. The version

of ACT-SF reported in C hapter 5 ("The ACT-SF M odel"), as well as the ACT-R

analogy m echanism in general, predicts that w ith in a particular experim ental

condition (e.g., exam ples only or w ith syntax), learning across the two versions

(infix or prefix notation) of the task should be equal.

2) One of the strongest predictors of success for learning Symbol

Fun was if the learner was able to access and use their

knowledge of algebra. (Prior Knowledge)

Often a s tu d en t a ttem pts, or is told, to app ly know ledge gained in

learning an old task to the learning of a new task. The old know ledge will

transfer to the new task. This issue of transfer has been stud ied by previous

researchers (e.g., Singley & A nderson, 1989; Kieras & Bovair, 1984), b u t the

m anner and m echanism by w hich this prior know ledge interacts w ith a set of

examples used to learn a new task has not been sufficiently exam ined w ithin the

context of the ACT-R theory. The hypothesis is that this p rio r inform ation

constrains the know ledge space the participant needs to search, and so learning

will be m ore efficient w hen this transfer occurs, w ith the benefit being the

proportion to which the old inform ation can be m apped onto the new task.

Experim ent 2 (C hapter 4, "Algebraic Sym bols") explicitly m anipulated

partic ipants ' know ledge of how the task is related to algebra. Three levels of

hints w ere given, w ith each level providing additional explicitness in suggesting

the use of algebra as a source of task know ledge. One group of partic ipants

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 8

received only the first level hint, another group the first and second level hints,

and a third group received all three levels of hint. The m ore explicit the hint, the

better the learning should be.

3) Lack of adequate syntactic know ledge causes the analogy

mechanism to build over-specific rules from examples. (Over

Specificity)

W hen the p rocedural know ledge required to do a task is form ed, that

knowledge m ust be constrained to only apply in certain contexts. Furtherm ore,

the procedural know ledge m ust encode the types of structu res to w hich it

pertains (i.e., it m ust be variablized in some way). W hen given only examples

from which to learn, fewer generalizations can be form ed than w hen additional

inform ation m ay be available (such as the fact that two pairs of operators are

inverses). The hypothesis is that the generalizations of partic ipants w ith more

syntactic inform ation will be less constrained than those of participants given

only examples from w hich to learn. That is, the ability to b ring in additional

declarative inform ation w hen the analogy mechanism constructs a rule results in

more general rules.

The errors m ade in the various experim ental conditions suggest how

partic ipan ts generalize their rules, particu larly the sign elim ination steps

(elim inating the sign in front of the p , as in Line 2 to 3 in Table 1.1). By

exam ining the w ay in w hich partic ipants sw itched and inverted , or d id not

sw itch and invert, a line 's symbols, inferences w ere m ade as to the w ay they

variablized their analogized rules.

Experim ent 4 (C hapter 7, "General Symbols") explicitly exam ined how

partic ipan ts variab lized the rules they w ere learning and com pared their

processes to ACT-SF. Participants initially learned only a subset of Symbol Fun,

just the sign elim ination steps and sim pler problems. They then transitioned to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction 9

m ore com plex problem s, w here a close exam ination of this generalization

process was obtained. Participants were good at generalizing the position in

w hich symbols appear and should change into other symbols, but were not good

at generalizing to h igher-o rder relations, like am ong the inverse operators (even

if given the inverse operator pairs).

Dissertation Overviezv

The rest of this dissertation follows this format:

Chapter 2: Literature Reviezv. D iscusses the findings of past re

searchers that bear on the issues contained w ithin this

dissertation.

Chapter 3: Syntactic Symbols. Explains m ore fully the task used in

this d issertation 's experiments, and details the results of

the first experim ent, w hich tested the claim s of the

Syntactic K now ledge Contribution: the m ore relevant

declarative, syntactic inform ation available, the better

the learning will be.

Chapter 4: Algebraic Symbols. Examines how people 's knowledge of

algebra a ids in learning the task in relation to the Prior

K now ledge Contribution: the m ore a new task can be

m apped onto an old one, the better the learning will be.

Chapter 5: The A C T -S F Model. C ontains a descrip tion and a

discussion of the full version of the ACT-R model, and

how by the rem oval of certain aspects of this m odel's

re p re se n ta tio n th a t u n su ccessfu l an d b eg in n in g

participants can be modeled.

Chapter 6: Prefix Symbols. Similar to the first experim ent in that it

tests the Syntactic Knowledge C ontribution, but uses a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction

m odified version of the task in o rder to elim inate any

ou tside know ledge that a partic ipan t could use. The

experim ent served as a strong test of the model, which

predicts sim ilar perform ance betw een this experim ent

and the corresponding groups of the first one.

Chapter 7: Generalized Symbols. A nother strong test of the model, but

one that specifically exam ines the issue raised by the

O ver Specificity C ontribution, that of how the rules are

generalized and variablized.

Chapter 8: Conclusions. Provides a sum m ary of the experim ents, the

m odel, and the findings of this d isserta tion . It also

discusses the implications of the findings for education.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2
Literature Review

A lot of learning, particularly of school-taught subjects, occurs by students

exam ining w o rk e d -o u t exam ples (Reed & Bolstad, 1991). W hen given a

hom ework assignm ent in m ath or physics, s tuden ts will often forego actually

reading the chapter, bu t instead will turn to the assigned problem s, then flip

through the chap ter to find an analogous problem , and attem pt to solve the

homework problem by doing the same transform ations found in the analogous

w orked-ou t exam ple. A dditional inform ation is often p rov ided w ith these

w orked-exam ples to enable the students to better interpret those examples. One

of the main goals of this dissertation is to better understand how this additional

information allows the learner to interpret such examples.

Several researchers have show n that people can learn a new task quite

well w ith only exam ples, which they som etim es m ust generate them selves, to

guide them (Zhu & Simon, 1987; Shrager & Klahr, 1986). Zhu and Simon (1987)

had Chinese studen ts learn factoring quadratics by studying a series of carefully

chosen w o rk ed -o u t exam ples. The students perform ed quite well at the task,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 12

som etim es outperform ing studen ts w ho w ere taugh t by m ore conventional

m eans. These students w ho learned by exam ples understood the m aterial, and

did no t ju st superficially learn the actions needed to solve problem s. The

studen ts could state the rules of factoring, and m oreover, could dem onstrate

their understand ing by checking their factoring w ork by m ultiplying, an aid not

directly taught them.

Shrager and Klahr (1986) had participants leam a complex device by not

giving the participants any instructions, bu t rather by having them interact w ith

the device. The goal that the participants had was to figure out the function of

one p articu la r key on the keypad. Participants could w rite sim ple program s

using this keypad, and could w atch as the device carried ou t its program . In a

sense, the people were generating their ow n examples w ith which to leam , these

com binations of program s and device actions. Most people learned the device

adequately in about thirty m inutes, honing the hypotheses they w ere developing

as new evidence, in the form of these self-generated examples, was created.

Examples v. Procedures in Learning

As show n above, previous experim ents have indicated the im portance of

examples in learning a new task, and the reliance that students place in them. In

m any of these experiments, however, learning from exam ples w as p itted against

other w ays of learning. That is, in a typical experim ent there are three groups,

one w here the people are given only exam ples to leam from, another w here the

people only have a set of procedures to leam from, and a third group which has

both the exam ples and procedures w ith which to acquire a new skill (e.g.,

Sweller & Cooper, 1985; Reed & Bolstad, 1991). The exam ples usually take the

form of w orked -ou t problems, w hereas the procedures are an abstract "recipe"

for how to solve a certain class of problem s. The general finding is that people

leam best w hen both procedures and examples are given and a little w orse w hen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 13

they just have the exam ples available to leam from. People w ho are just given a

list of procedures to leam from generally do not perform nearly as well as the

other two groups. Perhaps non-in tuitively , the exam ples enable the students to

leam most of the “h o w -to " (procedural) knowledge, as opposed to the actual

procedures.

In one study , Reed and Bolstad (1991) taught g roups of partic ipants a

particular class of algebra w ord problem . Across tw o experim ents the finding

was as m entioned above— the group that had both exam ples and procedures

perform ed best, followed closely by the group that only had the examples. The

group that only had the procedures performed worst. In acknow ledging the poor

perform ance by th e g ro u p w ho learned by p rocedures, they s ta ted that

procedures in may w ork better for som e tasks than they do for others (cf. Cheng,

Holyoak, Nisbett, & Oliver, 1986; Fong, Krantz, & N isbett, 1986), and also that

they may not have w ritten the best set of procedures for learning these problems.

The efficacy of exam ples needs to be more adequately explored, particularly

w hat it is that people extract from examples w ith w hich to leam and how

supporting declarative know ledge aids in that learning process. The Syntactic

Knowledge Contribution from the first chapter addresses this issue.

Schemata in Learning— Transfer

People often try to un d erstan d a new dom ain in term s of previously

learned knowledge, and studies have shown that it is often advantageous to do

so (Singley & Anderson, 1989). A com m on way of characterizing such knowledge

is in terms of schem ata (Bartlett, 1932; Rumelhart & O rtony, 1977). Schemata are

knowledge structures that contain related information abou t a particular topic.

For example, a person m ay have a schema for a type of physics problem that

involves an inclined plane. This schema might contain inform ation regarding the

typical diagram that is associated w ith such problems, as well as the formulae

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 14

usually used to solve that type of problem. Schemata help problem solvers to

organize the knowledge they possess about a particular topic for easy and quick

access. Furthermore, schem ata allow people to m ake inferences about unknow n

aspects of a situation, by p rov id ing default assu m p tio n s about it. O ther

researchers have developed different conceptualizations of schemata (e.g., the

scripts of Schank & Abelson, 1977), bu t they all share the com m on fram ework of

related know ledge elem ents w ithin a single m em ory structure. The Prior

K nowledge C ontribution claims that a schema for an old dom ain can help a

learner interpret exam ples for a new dom ain. In ACT-R schem ata can contain

both declarative and p rocedural know ledge, w ith the potential for both to

transfer, depending on the closeness of the target dom ain. In the model discussed

in C hapter 5, the transfer of procedural knowledge is not m odeled.

Students are often told that a new concept tha t they are about to leam is

sim ilar to a concept that they already know, and th u s for which they already

possess a schema. For exam ple, w hen learning abou t electricity, students are

often told to think of it as w ater running down a pipe, or w hen learning about

atoms, students are told they are similar to planets rotating around the sun in our

solar system. The students are then expected to in terpret the new knowledge in

term s of their old know ledge, s to red in a schem a. H ow useful is this

information? Do students leam more or leam faster w hen they are told that new

information will be sim ilar to previously acquired inform ation, or are they better

off learning from scratch, as it were? One of the goals of this dissertation was to

examine these questions closely, particularly as it pertains to learning procedural

information from prior, declarative knowledge.

Researchers have show n that schemata can be used in order to more easily

leam and remember new, declarative material. By being able to place incoming

inform ation within an existing schema aids the learning process. Bransford and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 15

Johnson (1972) gave people a passage of text to m em orize. The g ro u p of

participants who knew that the passage referred to doing laundry recalled m ore

of the text than the partic ipan ts w ho did not know w hat the passage w as

describing. People were able to use their knowledge about doing laundry, stored

in a schema, in order to help them rem em ber the passage.

A few studies have show n th a t people can also use previously acquired

know ledge in order to help them leam new procedural skills. Kieras and Bovair

(1984) gave people an electrical device that they had to leam to operate. One

group of participants w as instructed on how to use the device as if it w ere the

w eapon system on a spaceship from Star Trek. The other group of participants

was show n how to use the device w ithout reference to phasers, accumlators, and

o ther science fiction elem ents. The group who received the Star T rek-like

train ing learned to use the device in the same am ount of training tim e, bu t

rem em bered the procedures m ore accurately, used m ore efficient procedures,

and executed them faster. Obviously, participants did not have a schema for how

to use a phaser w eapon system , and probably not all participants w ere even

fam iliar w ith Star Trek and o th e r science fiction w orks. H ow ever, the

inform ation could be tied together w ith a sim ple schem a for how electrical

systems should work ("shipboard pow er," "energy source selector," etc.), and so

was able to aid partic ipants in learn ing about the system . While Kieras and

Bovair did not offer a m echanism to account for their finding, one explanation

could be that the Star Trek inform ation elaborated and built redundancy into

their declarative knowledge of the system. These elaborations and redundancies

allow easier access to the necessary knowledge.

However, the different k inds of inform ation given to a problem solver as

they are learning the task will not all be equally effective. Therefore it should not

be interpreted that providing additional, even apparently relevant, inform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 16

will always lead to better learning. In one experim ent of their study , Kieras and

Bovair gave different groups of participants different information, all of it related

to either a Star T rek-them e or to electronics. They found th a t the given

information was m ost effective w hen it contained useful, low er-level knowledge

(i.e., specific descriptions of the parts and know ledge of w h at parts w ere

connected to one another) about the internal workings of the system that allowed

the learner to infer exactly how to operate the device. Inform ation that w as

overly general— that did not talk about the system in particular— w as of no use.

H ow ever, the low er-level know ledge did not have to be com plete or set in a

fantasy setting in order to be useful.

Generalizations in Learning

In developing a theory of how task instructions and prior knowledge are

used in learning a new task, it is im portant to also examine how such knowledge

either generalizes or constrains the rules that are being learned to do the new

task. For instance, w hen learn ing by exam ple, how does one decide w hich

aspects of the problem are essential for solving it, and w hich aspects can be

glossed over or variablized?

Many researchers have dem onstrated that people just learning a task or

dom ain often pay much attention to the superficial aspects of the problem (Chi,

Feltovich, & Glaser, 1981; N ovick, 1988; H olyoak & Koh, 1987; Ross, 1984).

Instead of depending on how the problem is actually solved, they will often use a

problem 's content in determ ining its solution. For example, people will describe

problems in terms of their typical contents (e.g., "riverboat" problem s in algebra,

or "spring" problems in physics), and will base their initial categorizations on the

presence of such contents (H insley, Hayes, & Simon, 1977). It is only as they

becom e m ore expert in the dom ain th a t they begin to focus m ore on the

s truc tu ra l aspects of a p rob lem (C um m ins, 1992), such as its underly ing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 17

equations. H ow ever, even experts place at least some im portance on content

(Blessing & Ross, 1996; H ardim an, D ufresne, & Mestre, 1989), since content is

often predictive of how the problem is solved.

This re liance on sup erfic ia l co n ten t features m ake p eo p le very

conservative in the generalizations they m ake while learning a new skill (Ross &

K ennedy, 1991). Research by Bassok an d H olyoak (1989; Bassok, 1990)

investigated people learning physics. W hen tested for transfer on analogous

problems in algebra, they perform ed poorly, since the original physics problem s,

as is typical for such problem s, w ere presented in a very con ten t-dependen t

manner. People originally taught algebra, on the other hand, did exhibit transfer

to the physics problems. Bassok (1990) further examined this finding, and found

that partic ipan ts are sensitive to the type of variables (e.g., in tensive vs.

extensive) used to solve the problems. Ross (1989) has also dem onstrated in his

w ork w ith probability problem s that people will generalize to categories of

anim ate objects and inanim ate objects, b u t w hen the current problem requires

that an inanim ate object take the role of an anim ate object in a previous problem,

they are hesitan t to do so. In recent w ork, how ever, Bassok, W u, and O lseth

(1995) found evidence that suggests people generalize by inducing sem antic

knowledge from the problems and creating “interpreted structures" that encode

the relation betw een the objects in the problem s. Lastly, Bernardo (1994) found

that people tend to keep around problem -specific information in their schemata.

He argues that this problem-specific inform ation affords access to m ore abstract

information during transfer.

In m any respects, then, the problem of form ing generalizations in the

service of creating, or perhaps m odifying, rules for a new task can be thought of

as trying to decide which example to refer to, or w hat the applicable instructions

are, and then deciding which aspects of the example or instruction is relevant to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 18

the current situation. Once that determ ination is m ade, the solver m ust decide

w hat is the proper level of generalization. Each experim ent in this dissertation

exam ined how people generalize the rules they are learning given their prior

instructions, w ith one experim ent (Experiment 4, "General Symbols") specifically

designed to examine this issue (the O ver Specificity C ontribution of the last

chapter: Lack o f adequate syntactic knowledge causes the analogy mechanism to build

over-specific rules from examples).

Previous Models o f Learning by Example

Several past researchers have p u t forward the idea of learning procedural

know ledge by declarative instruction w ith some com puter sim ulations having

been im plem ented (e.g., the UNDERSTAND program of Hayes & Simon, 1974;

the A ptitude Test Taker of Williams, 1972). Perhaps the m ost am bitious effort,

and the one m ost sim ilar to the m odel presented in this d issertation, was a

sim ulation by Neves (1978,1980), who developed a com puter model, called Alex,

that learned sim ple linear algebra by having available only exam ples. Alex

learned by examining pairs of lines for sim ilarities and differences, and then

constructing a rule that w ould account for the change. His system started with

know ledge of arithmetic and a representation of algebraic structure, and then

learns the rules of algebraic m anipulations. It is rem arkable in that it is still one of

the few com puter models that takes as its goal to account for learning by example

essentially the whole of a real dom ain, bu t Neves does not present any empirical

w ork to check if the processes used by Alex resem bled the processes used by

hum ans to learn the same material.

Siklossy (1972) also developed a com puter model, referred to as ZBIE, that

learned natu ral language by being presented w ith sentences in the target

language along with representations of those sentences (e.g., a picture which is

described by the sentence). By com paring across these representations and then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 19

to the paired sentences, ZBIE learned the language 's lexicon and syntax. Like

Neves, how ever, Siklossy did not report any em pirical evidence to check if the

processes ZBIE used to learn a language this w ay w as sim ilar to the w ay a

hum an w ould do it. Indeed, Siklossy anecdotally sta ted that he him self had

difficulty learning a language through this m ethod (a picture book series called

Language through Pictures), m ore so than ZBIE w ou ld predict. O ther cognitive

architectures have also addressed language learning by example (e.g., Anderson,

1983; R um elhart & McClelland, 1986)

In m odeling how people supposedly generalized rules w hile learning,

both Alex and ZBIE w ould sometimes create rules tha t w ould be either over- or

under-specified. O ver the course of learning, these rules w ould be replaced by

m ore correct versions. Both systems had their ow n m ethod of dealing w ith how

that process occurred. A few com puter m odels have exam ined explicitly how

generalizations are form ed while learning from specific examples. H ofstadter,

Mitchell, and French (1987) have developed a com puter system, called Copycat,

that attem pts to find generalizations from a given p a ir of letter strings. Copycat

has limited know ledge of the Roman alphabet (e.g., w hat comes before and after

each letter) and the idea of sameness. W hen given a string transform ation pair

like abc —> abd and asked w hat ijk should be transform ed into, it will probably

respond (it is non-determ inistic) w ith ijl. It develops its rule by noticing in the

given pair w hat letters are the same, or proceed or succeed one another. When

given a m ore challenging transform ation, like ssskkoooo —> oopokkkss, it can use

the notions of rightm ost or left-neighbor in o rder to produce a generalization

that is "robust"—a rule that takes structural features into account. Little empirical

w ork has been done to see if the transform ations that Copycat tends to produce

are similar to the rules that hum ans w ould produce.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 20

Lewis (1988), how ever, d id exam ine em pirical evidence in o rd er to

validate the kinds of generalizations that h is com puter m odel, EXPL, m ade.

Lewis described a handful of heuristics th a t aided people in m aking their

generalizations. Two of these were the iden tity heuristic and the loose-ends

heuristic. The identity heuristic asserts th a t w hen a com ponent of a system

response has occurred earlier in a user action, that user action specified that

com ponent of the system response. For exam ple, if clicking a m ouse on an object

is followed by the disappearance of that object, then the identity heuristic w ould

lead one to conclude that it was the clicking on the object that led to its

disappearance. The loose-ends heuristic states that if an unexplainable response

occurs in the presence of an action for which it cannot account, then that action is

linked to the unexplained response.

Lewis perform ed an experim ent in w hich he p resen ted partic ipan ts

several scenes of a person interacting w ith a com puter. Lewis asked the

participants several questions concerning this interaction. For example, one scene

has the w ords "alpha," "beta," "gamma," and "epsilon" in a bar at the top of the

screen, and a star in the lower part of it. The user touches the star, then touches

beta, and then touches the left side of the screen. The star then m oves to the left

part of the screen. For this scene, Lewis asked the question: "If a person tried to

move the star to the bottom of the screen this way: 1) Touch "beta", 2) touch the

star, 3) touch a place near the bottom of the screen, w ould it work. If not, why

not?" For this particular item, most people (67%) replied that the a ttem pt w ould

not work, since the order was wrong. From an analysis of such responses across

sim ilar stim uli, Lewis found support for the identity (the one illustrated by the

example) and loose-ends heuristics.

H e further analyzed how people generalized from the given scenes, and

characterized the generalizations as e ither as rational or superstitious. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Literature Review 21

superstitious generalization will norm ally preserve the order of steps, and will

also leave unchanged any unexplained steps. A rational generalization, on the

other hand, will accept step reorderings, assum ing that no logical constraint,

such as rem oving a floppy disk before it is ejected, is violated in the reordering,

and will get rid of any unexplained step. Lewis found that people m ake both

types of generalizations, b u t tend to m ake m ore superstitious than rational

generalizations. H ow ever, it is possible for th e sam e person to m ake a

superstitious generalization in one instance and then a rational generalization in

another. It is still an open question as to w hat influences a person to make either

a rationalistic or superstitious generalization in a particular instance, and w hat

the role of prior know ledge m ay be in making these sorts of generalizations.

Summary

Previous researchers have shown the im portance of examples in learning a

new task. However, w hile models of the m echanism s by which the examples and

other supporting declarative inform ation are used to infer rules have been

developed, their relation to the processes by which hum ans do it is not clear. The

goal of this dissertation is to closely study this process empirically, and to m odel

the results, including how people generalize th e rules, w ith in an existing

cognitive architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3
Experiment 1 —Syntactic Symbols

The initial experim ent tested how crucial exam ples are in the learning

process, and to see the benefit and im portance of various pieces of declarative

know ledge in interpreting those examples, such as the task 's syntax and how the

operators are related to one another. This is in accordance w ith the first m ain

contribution of this dissertation:

1) In learning the rules of a task such as Sym bol Fun, learners

construct internal declarative representations of the examples

presented to them. These declarative representations are

influenced by knowledge of the task's syntax, as w ell as other

information particular to the task (e.g., know ledge of inverse

operators).

The m ore re levan t declarative know ledge th a t can be brough t to bear in

in terpreting the exam ples, the m ore efficient the learning will be. As stated

previously, the ACT-R theory claims that through these interpreted exam ples

new procedural know ledge arises, through a process dictated by the analogy

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 23

Table 3.1

Hozv the Symbols Used in this Task Map onto Algebraic Symbols (All Experiments)

Algebraic Symbol + - * / O perands x =
Symbol in Task ® ¥ # © A, T, 4>, Q p

m echanism. By varying the am ount and kind of inform ation available to people

as they try to the task, some m easure of the contribution of the various pieces of

declarative knowledge can be assessed and m odeled.

As m entioned earlier, the task used in this dissertation, called "Symbol

Fun," was designed to be an analog of algebra. In place of the s tandard four

operators and Roman letters, Greek and various other symbols w ere used in

order to m ask the similarity to algebra. Table 3.1 lists the symbols used, and how

they m ap onto the standard algebraic symbols. In m ost of the exam ples to be

presented in this dissertation, the standard algebraic symbols w ere used, so that

the reader m ay use previous knowledge in order to decode parts of the task.

The m an ip u la tio n s used in the task co rrespond to the algebraic

m anipulations of adding the same thing to bo th side of the character string,

canceling sym bols, and elim inating signs in front of the p . All of these

m anipulations make use of the fact that there are two pairs of inverse operators.

Table 3.2 contains an example of one of the hardest problems, w ith all of the

steps needed to solve the problem m ade explicit. The first step in solving this

problem is to add ®<t> to both sides of the character string (the <-> divides the

Table 3.2
Sample o f Problem in Symbol Fun

Step #__________ Symbol Fun Corresponding Algebra
Given * p v O ^ # A - x - A = * C

1 v p - x - A + A = *C + A
- v £K-»# A®<& - x = * C + A

(Answer) 3 x = * C - A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 24

string into left and right halves). For the second step, the is canceled from

the left hand side. For the final step, a rule is applied in order to elim inate the v

from in front of the p . It shou ld be noted th a t the underly ing rules were

constructed such that each problem only had one solution pa th — there is no

branching.

M ethod

Participants. Forty-n ine C arnegie M ellon U niversity u n d erg rad u a tes

participated in this experiment for partial course credit and pay.

Materials. I constructed an algebra analog for this experiment. Differences

existed betw een this task and algebra, and so the m apping was not perfect. For

exam ple, the d iv is io n /m u ltip lica tio n o p e ra to r pa ir acted m ore like the

add ition /sub traction operator pair than in standard algebra. Also, this task had a

m ore lim ited order of operations. Parentheses w ere not used, and som e of the

allowable m anipulations w ould look strange in algebra. Also, any operator was

allowed in front of x, so it was possible to end up w ith an equation w hich looked

like * x = * A + B. The order of operations w as constrained so that at each step in

any problem , only one rule w as applicable. That is, at any interm ediate step in

solving a problem, only one operator can be used to achieve the next step in the

problem. There was never a choice between operators.

Thirteen rules are sufficient to do all problem s (see the m odel in Chapter

5). These rules corresponded to add ing the sam e symbols to both sides of the

character string, canceling sym bols w hen ap p ro p ria te on one side of the

equation , and elim inating the sign in fron t of the p w hen one occurred.

H ow ever, these rules w ere nev er p resen ted to the partic ipan ts. Instead,

participants had to infer the ru les from the inform ation that w as available to

them and by interacting w ith the task. D epending upon condition, the initial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 25

Table 3.3
Examples available to all participants in Experiments 1 and 2

Example 1
p ®dx-»® A
#?®<!>¥(|><-»®A¥<I>
p<-»®A¥<t>

Example 4

p*r®n->v<D®r
£?<-»¥<i>®r

Example 7
£?#T<->©A
^ # r © r ^ © A © r
£?<-»© A©r

Example 2

»p#r©r<->f<j)©r

Example 5
p ^ # t ©a
p «->©t #a

Example 8
© p® rv»® f2
© p ®r v rv»®Q¥ r

»p<->v<b©r
p<->®<t>©r Example 6

®p®A<-»©r
®£>®A¥A<-»©T¥A

©p^®Qvr
£k->®T¥Q

Example 3
© £k -»#t®a
p<->#A®r

®p<->©r ¥ a
p < - » © f¥ A

information available to the participants differed. All participants had a screen of

eight com pletely w orked-ou t exam ples available to them, as presented in Table

3.3. They could refer to this screen at any point as they tried to solve problems. In

picking this set of examples, the only rubric used was that each underlying rule

had to be represented at least once. Some of the conditions received additional

information, to be described shortly.

Procedure. The task w as im plem ented as a HyperCard 2.2.1 stack (Apple

C om puter, Inc., 1994) which w as run on an accelerated A pple M acintosh Ilci

com puter connected to a tw o-page m onitor. All partic ipan ts initially saw two

screens that contained some introductory com m ents about the experim ent and

instructions on the task 's interface. A fter this poin t, the inform ation that

partic ipan ts subsequen tly received depended on w h at condition they w ere

placed (Appendix A contains the inform ation that the two syntax groups had):

Examples: This group only saw the screen w ith the eight examples

(show n in Table 3.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 26

Syntax(No Hint): Before seeing the examples screen, bo th syntax

g ro u p s (Syntax(H int) and Syntax(N o H in t)) received

inform ation concerning the task's syntax and goal structure.

The syntax inform ation classified the sym bols used in this

task as either "object" or "connector" sym bols, roughly

corresponding to constants and operators in algebra, and

also explained w hat constituted a w ell-form ed form ula in

the task. The goal structure simply indicated that the goal for

each problem was to "isolate" (i.e., solve for) the scrip t-p

character, that a set of rules existed for solving the problem s,

and that only one rule was applicable at any step in solving

the problem.

Syntax(Hint): Between seeing the syntax inform ation screens and

the exam ple screen, this group received a h in t for learning

the task. This h in t told the participants that tw o pairs of

operators w ere "re la ted" to one another. In algebra, this

w ould correspond to the fact that plus and m inus, and times

and divide, are inverses.

Once participants started to solve problems, they could refer back to any

of the information they had already seen by clicking on-screen buttons. It should

be em phasized that for this experim ent no mention of algebra w as m ade to the

participants, and the term inology used tried to distance the task as m uch as

possible from algebra (e.g., using "isolate" instead of "solve for").

Each problem w as presented in a box near the top of the screen. The

participant then used an on-screen keypad which contained all the symbols used

in the task to click out, w ith the mouse, the next correct step w hich w ould follow

from either the problem , or from one of the lines the partic ipan t had already

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 27

clicked. A delete key was available to erase any character they had clicked. The

participant's lines appeared in a box below the problem . Once the partic ipant

had clicked out a step, he o r she clicked a special bu tton to have the com puter

check the answer. If the step they had clicked ou t w as the next correct one, the

com puter would respond, "G ood," and the partic ipant could continue w ith the

problem. If the line clicked ou t was the problem 's solution, then the com puter

w ould respond, "Excellent," the box containing the partic ipan t's lines w ould

clear and a new problem w o u ld appear. If the line was correct, bu t the

participant had skipped a step (possible on the tw o - and three-step problems), a

dialog box w ould appear stating that step skipping was not allowed, their line

w ould be erased, and they w ould be given another chance to click out a line. If,

however, the line was incorrect, the com puter w ould respond, "Try again," the

participant's line w ould be erased from the box below the problem and m oved to

a different location, and the participant w ould then have another chance to click

out a correct line. If the second attem pt was no t correct, the com puter w ould

respond, "Here's the correct line" and the next correct step (following from the

last correct line) would appear.

Each partic ipant w as asked to solve 32 of each of the three types of

problems (one-, tw o-, and three-step problems) for a total of 96 problems. Each

partic ipan t had 2 hr w ith w hich to solve all 96 problem s. There w ere 12

participants in the Syntax(Hint) group, 14 in the Syntax(No Hint) group, and 23

participants in the Examples group.

Results

Background and General Results

Table 3.4 contains sum m ary inform ation ab o u t the perform ance of

participants in this experim ent for easy reference. Participants reported their

m ath SAT scores on a v o lu n ta ry basis (out of all the experim ents in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 28

Table 3.4
Syntactic Symbols A t-a-G lance

Syntax(Hint) Syntax(No Hint) Examples Only

Self-reported m ath SATs 662a 656a 655a

Reading Instructions (min) 5.11a 4.34a 2.94b

Examining Examples (min) 2.00a 1.583 0.79b

Successful Participants 12 of 12a 12 of 14a 12 of 23b

Self-reported m ath SATs 662a 673a 683a

Example References 23.72a 52.41b 70.83b

Total Time (min) 64.093 79.42b 81.54b

First Block (12 problems) 20.10a 24.123 33.09b

dissertation, only 6 participants reported that they did not remember their score,

or that they did not w ish to divulge it). No difference is detected betw een the

SAT scores of the participants in the three groups (F < 1), either when exam ining

the groups as a whole, o r just looking at those participants who com pleted all 96

problems (the "successful" participants, to be discussed shortly).

Preparation times. N ot surprisingly, participants in the three groups spent

different am ounts of tim e reading the initial inform ation (F(2,46) = 9.96, MSE =

2.08, p < .001), with the Examples group taking less time (2.94 m in on average)

than the other two groups (5.11 min for the Syntax(Hint) group and 4.34 m in for

the Syntax(No Hint) group), as shown by a N ew m an Keuls post-hoc test, p < .05.

Participants in the th ree groups also differed in the am ount of tim e initially

examining the screen of examples (F(2,46) = 6.16, M SE = 1.07, p < .01). Again, a

New m an Keuls post-hoc test shows that the Examples group spent less tim e

(0.79 min, on average) than the other two groups (2.00 m in for the Syntax(Hint)

group and 1.58 min for the Syntax(No Hint) group), which did not differ from

each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 29

Successful and unsuccessful participants. A t this points it is im portan t to

m ake a distinction betw een two types of participants w ithin each group: those

participants w ho com pleted all 96 problem s in the allotted two hours and those

who did not. Twelve participants in each group completed the entire set of 96

problem s. Everyone in the Syntax(H int) g roup finished, b u t 2 people in the

Syntax(No H int) group did not, and 11 people in the Examples group d id not

complete the task. The 2 people who did no t complete the task in the Syntax(No

Hint) condition solved 56 problems in one case and 52 problems in the other, and

the 11 people w ho did not finish in the Examples group m ade it to problem 23.4

on average. Significantly fewer people {p < .05) finished in the Examples group.

Looking at the initial instruction tim e m easures exam ined in the p rev ious

paragraph , the people w ho did not fin ish the task did no t differ on those

m easures from the people w ho did finish. Unless specifically m entioned, the

analyses d iscussed for the rest of this experim ent, and also for the o ther

experiments, will be based just on those participants who com pleted the task.

Remindings. At the end of the experim ent, every participant was asked if

the task they just learned (or attem pted to learn) rem inded them of anyth ing—

any other task or dom ain that they knew about. In both the Syntax(Hint) and

Syntax(No Hint) groups, 9 of the 12 participants who finished the task reported

that the task rem inded them of algebra. In the Examples group, 11 of the 12

people who learned the task said the task w as sim ilar to algebra. However, of the

11 people w ho d id not learn the task in the Examples group, only 1 partic ipant

reported the task 's similarity to algebra. The two people who did not finish in the

Syntax(No H int) group, one reported being rem inded of algebra, the o ther one

did not. For those w ho d id not say algebra, the most com m on answ ers w ere

either that they were rem inded of nothing o r they were rem inded of some sort of

logic task. C learly, for those people w ho learned the task, d raw in g u p o n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 30

algebraic know ledge was beneficial—particu larly for those w ho m ad e that

connection in the Examples group. This relation between being rem inded of

algebra and learning the task was exam ined in depth in the second experim ent.

Learning

Accessing information. The m o st com m on piece of in fo rm ation that

partic ip an ts referred back to w hile solving the problem s w as the screen of

exam ples (indeed, that was all the Exam ples group had to refer back), and

significant differences were detected betw een the num ber of times participants

re tu rned to that page (F(2,33) = 5.54, M SE = 6759, p < .01). The Syntax(H int)

group turned back to that page a m ean of 23.72 times, the Syntax(No Hint) group

52.41 times, and the Examples group 70.83 times. A Newman Keuls post-hoc test

show ed that the Syntax(Hint) group w as significantly lower than the o ther two

groups, b u t the Syntax(No Hint) g roup did not differ from the Examples group.

The Syntax(Hint) group and the Syntax(No Hint) group did not refer back to the

screens of syntax or goal inform ation often (on average only twice for the syntax

screen, and less than once for the goal screen). There were no differences between

these two groups on those references (for both, F < 1). No one in the Syntax(Hint)

g roup referred back to the h in t screen. For the groups that d id receive the

additional information, that extra inform ation just needed to be viewed once, and

that was sufficient to help them in learning the task. Furthermore, despite the fact

that the additional information just needed to be examined once, it allowed those

people to learn the task w ith fewer references back to the example screen. The 11

people w ho did not finish in the Examples group referred back to the Examples

page 93.52 times. Even though they m ade it through roughly 24 problem s on

average, they referred back to the exam ples screen a lot.

Completion time. The three groups differed significantly in the m ean total

tim e it took participants to solve all 96 problems, F(2,33) = 3.50, M SE = 310.57, p <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 31

1-Step Problems

2-Step Problems

3-Step Problems

200-,

Example

Syntax(No Hint)

Syntax(Hint)

150-

5 0 -

75 6 82 3 41
Blocks

2 0 0 - i

Example

Syntax(No Hint)

Syntax(Hint)

150-

C 1 0 0 -

5 0 -

7 85 62 3 41
Blocks

200-1

Example

Syntax(No Hint)

Syntax(Hint)

150-

i= 100-

50 -

76 852 3 41
Blocks

F:$urc 3.1: Overall time bv block for each problem *ypc (Experiment 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 32

.05. The Syntax(Hint) group took a m ean of 64.09 m in to solve all the problem ,

the Syntax(No Hint) group spen t 79.42 m in, and the Examples group took 81.54

min. A N ew m an Keuls te st revealed th a t the Syntax(H int) g ro u p took

significantly less time than both the other groups (p < .05), bu t that the other two

groups d id no t differ from one another. F igure 3.1 plots the average tim e

partic ipan ts spen t solving the problem s (broken up betw een problem s of

differing lengths). Note that trials have been blocked in these graphs, and in the

graphs to follow, to aid readability . As can be seen, the g roups differed

substantially in the first block of trials, less so in the second block, and by the

third block the groups w ere perform ing alm ost equally, and continued to do so

throughout the rest of the experiment.

Since the m ost difference is seen in the first block of trials, a separate

analysis was done on it. This block contains the first 12 problems, with each type

of problem being represented 4 times. The sam e set of problem s was used for

each participant, and the problem s were presented in the same order. The results

of this analysis show a significant difference (F(2,33) = 3.50, MSE = 310.57, p <

.05), w ith a N ew m an K euls test show ing that the Exam ples g roup took

significantly longer than the other two groups (on average, 33.09 min to complete

these first 12 problem s), b u t no difference betw een the Syntax(H int) and

Syntax(No Hint) groups (20.10 min and 24.12 min, respectively).

Errors

Error types. The three groups differed on the num ber and kind of errors

they produced while learning the task. Table 3.5 provides a breakdow n of those

errors by group. Syntax errors refer to lines that participants type that are not

w ell-form ed. That is, these lines could in no w ay exist within the task's syntax.

Semantic errors are all other errors—generally they are the use of the w rong

operator. The table rows for each group refer to the step that the error occurred.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 33

Table 3.5
Experiment 1: Average Errors per Participant

Examples Only

Syntax Semantics Total
A ddition 2.75 (8%) 9.42 (28%) 12.17 (36%)

Cancellation 0.50 (2%) 1.5 (4%) 2.00 (6%)
Sign Elimination 3.17 (9%) 16.50 (49%) 19.67 (58%)

Total 6.42 (19%) 27.42 (81%) 33.83

Syntax(No Hint)

Syntax Semantics Total
A ddition 2.75 (4%) 17.00 (26%) 19.75 (30%)

Cancellation 0.67 (i%) 3.17 (5%) 3.83 (6%)
Sign Elimination 5.67 (9%) 37.17 (56%) 42.83 (65%)

Total 9.08 (14%) 57.33 (86%) 66.42

Syntax(Hint)

Svntax Semantics Total
Addition 1.08 (4%) 4.25 (14%) 5.33 (17%)

Cancellation 0.17 (1%) 2.67 (9%) 2.83 (9%)
Sign Elimination 1.42 (5%) 21.42 (70%) 22.83 (74%)

Total 2.67 (9%) 28.33 (91%) 31.00

A ddition errors occurred on the first step of one- and tw o-step problems, where

the p roper thing to do was to add an o perato r/operand pair to both sides of the

character string. Cancellation errors occurred on the second step of one- and

tw o-step problems, in which participants needed to cancel symbols on the left-

hand side. Finally, sign elim ination errors happened on the last step of a th ree-

step problem or the only step of a one-step problem. These steps involved the

rem oval of the sign in front of the sc rip t-p , and generally involved some

m anipulation to the symbols on the righ t-hand side.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 34

In term s of total errors the Syntax(No H int) group m ade significantly

m ore than the o ther two groups (F(2,33) = 3.82 M S E = 1281, p < .05). This can be

attributed to tw o reasons. First, the Syntax(No H int) group knew w hat m ade a

w ell-form ed expression, bu t did not initially have the knowledge that two pairs

of operators w ere related to one another. This add itional information that the

Syntax(H int) g ro u p had enab led them to lea rn th e task w hile m ak ing

significantly few er errors. A lot of the errors m ade by the Syntax(No Hint) group

w ere at the beginning, trying to figure out the p ro p er operator to add for the

addition step (12.10 errors per participant, of the 17.00 erorrs, could be attributed

to participants know ing that the same thing needed to be added to both sides of

the character string, b u t no know ing w hich operator), or how the operators

affected one ano ther du ring the sign elim ination step (essentially all of the

sem antic sign elim ination errors). Second, there is a selection bias in the

Examples group, in that Table 3.5 lists the statistics for 12 of 23 people in the

Examples g ro u p and 12 of 14 people in the Syntax(N o Hint) group. The

Examples group contains only participants fairly proficient at learning the task.

Examining in m ore detail the 11 participants who d id not m aster the task in the

Examples group (and w ho m ade it to a m ean of 23.5 problems), it is found that

they made 516 total errors, 221 (43%) of them being syntactic in nature. However,

looking at only the top 50% of partic ipants in each group (i.e., 12 of 23

participants in the Examples group, 7 of 14 in the Syntax(N o Hint) group, and 6

of 12 in the Syntax(H int) group), in terms of least num ber of total errors, one

does not find a difference (F(2,22) = 1.96, M SE = 383.2, p > .1).

Examining the percentages of errors in Table 3.5, one sees that the profile

of errors in the Syntax(N o H int) group is m uch m ore sim ilar to that of the

Examples group; the correlation between the percentages of these two groups is

.98 (the correlation betw een the Syntax(No Hint) and Syntax(Hint) groups is .92,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 35

and .85 betw een the Examples and Syntax(H int) group). The Syntax(N o Hint)

and Examples groups m ade a m uch h igher percentage of semantic errors on the

add itio n step than did the Syntax(Hint) group. The addition step, once one

know s that tw o pairs of operators are related, is relatively sim ple to learn. No

one had m uch difficulty with the cancellation step. The proper rule for that step

is th a t if the pattern ((o p e r a t o r) (c o n s t a n t) (o p e r a t o r i n v e r s e)

(sam e c o n s t a n t)) appears on one side of the equation, those four symbols can

be elim inated. At the beginning, how ever, m ost participants learned it as just

dropping the four right-m ost symbols on the left side of the character string. This

is evident in verbal protocols, to be discussed in conjunction w ith the m odel in

C hapter 5. The sign elimination step w as difficult for participants to m aster, and

this is w here m ost errors occurred for all participants, bu t particu larly so for

those in the Syntax(Hint) group, who had the inform ation available to quickly

m aster the addition steps (e.g., knowledge of inverse operators).

Sign-elimination errors. The Syntax(Hint) group tended to m ake errors that

m ade the rule set m ore parsimonious. The rule for eliminating a # in front of the

scrip t-p was sim ilar to the rule for elim inating a v (that is, inverting the related

symbols on the righ t-hand side). H ow ever, the rule for elim inating the ® (do

nothing to the righ t-hand side) was quite different than the rule for elim inating

the © (sw itch the two constants on the r ig h t-h an d side). People in the

Syntax(Hint) group attem pted to apply the ® elimination rule w hen elim inating

a © and vice versa 54 times (42% of all errors on ® and © elim ination steps),

w hereas participants in the Examples g roup did so only 17 times (14% of errors

on those steps). The Syntax(No Hint) group was m ore similar to the Syntax(Hint)

group, m aking those errors 54 times (30% of applicable errors). Thus participants

w ith the m ost information tended to over-generalize their rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 36

However, participants in the Examples group w ere m ore likely to make a

particular type of error in # elimination. The correct rule is that to elim inate a # in

front of the script-p, all the #s on the righ t-hand side become ©s, and all the ©s

becom e #s. The single exam ple that dem onstrated this rule in the screen of

examples was misleading:
Example 5: #p<-»#T©A

#?<-»© t #a

One possible interpretation of that exam ple w ould be that the rule is to switch

the position of the operators. Indeed, the first time almost all participants tried to

solve a problem which needed the # elim ination rule, they w ould sw itch the

operators, not invert them (across all experim ents, only one partic ipant used the

correct rule on the first attem pt). The Syntax(Hint) group quickly learned the

correct rule. For this experim ent, they attem pted to switch the operators 15 times

(18% of the # elimination errors). However, the Examples group perseverated in

m aking that particu lar error, do ing so 34 tim es (41% of the errors). The

Syntax(No Hint) also m ade this error often, 41 times (31% of # elim ination

errors). The groups w ith the least inform ation were not able to create a rule with

the proper generality.

Discussion

This experiment tested the claim of the Syntactic Knowledge Contribution:

1) In learning the rules of a task such as Symbol Fun, learners

construct internal declarative representations of the examples

presented to them. These declarative representations are

influenced by know ledge of the task's syntax, as w ell as other

information particular to the task (e.g., know ledge o f inverse

operators).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 37

On all m easu res the group th a t h ad the m ost in form ation , the

Syntax(Hint) g roup , perform ed significantly better than the other tw o groups.

The m ost in teresting resu lt is the 50% failure rate of the Examples group,

com pared to alm ost everyone learning the task in the two syntax conditions. The

Examples group w as alw ays worst (except in to tal num ber of errors for all 12

successful participants), and the Syntax(No Hint) group w ould be someplace in

betw een—som etim es they w ere m ore sim ilar to the Syntax(Hint) group bu t

frequently w ould be m ore similar to the Exam ples group. This pattern held

across all the m ajor m easures of performance— w hether or not they learned the

task, num ber of references back to the examples, tim e to learn the task, and errors

m ade w hile learning. The additional declarative inform ation was extrem ely

beneficial in learning the task. Such results su p p o rt the Syntactic Know ledge

Contribution.

Experim ent 2 was conducted in order to m ore closely investigate the link

between people learning this task and their know ledge that the task is based on

algebra. One of the striking findings of this experim ent is that a major determ iner

as to w hether a person learns the task, if they are in the Examples group, is if

they are rem inded of algebra. Almost all the people (11 of 12) in the Examples

group who learned the task were rem inded of algebra, but only 1 of the 11 w ho

did not complete the task reported the task's sim ilarity to algebra. Experiment 2

m anipulated people 's knowledge as to how the task was related to algebra in an

attem pt to better understand this relationship.

An in teresting pattern emerges from the error data, particularly on the

sign elim ination steps, betw een the people w ho have a lot of inform ation w ith

which to begin learning the task and those w ho have only the examples. The

pattern provides some evidence for the Over Specificity Contribution:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Syntactic Symbols 38

3) Lack of adequate syntactic k now ledge causes the analogy

mechanism to build over-specific rules from examples.

This difference can perhaps best be characterized as one group being m ore

theory driven (the Syntax(Hint) group) and the other being m ore driven by data

(the Examples group). As previously stated, m any of their errors w ith the sign

elim ination steps attem pted to m ake th e ru le set m ore parsim onious. The

Syntax(Hint) group knew that certain pairs of operators were related, and knew

to look for those kinds of relations. Once they figured out the rules for * and #

elim ination, they w ere m ore likely to pa ir the © and ® together for the sign

elim ination steps. The Examples group did not initially know about the pairing

of operators, and so were less disposed to finding such over-arching relations.

The Syntax(No Hint) group w ith their know ledge of syntax and goal had some

idea of the underly ing structure of the task, and so resembled m ore closely the

Syntax(Hint) group on this measure.

A nother instance w here this occurs in the error data is in learning the #

e lim ination rule, w here one of the exam ples w as very m islead ing . The

Syntax(Hint) group, w ith their know ledge of inverse operators figured ou t the

correct transform ation after attem pting to do one problem and being told the

righ t answ er. The Examples and Syntax(N o H int) groups, no t know ing to

p e rh ap s look for inverse operato rs, p e rsev era ted in m aking th a t error.

Experim ent 4 was designed specifically to examine these issues m ore closely, but

I will be m entioning them in relation to the other two experim ents as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4
Experiment 2: Algebraic Symbols

Experiment 2 exam ined m ore closely the result from Experim ent 1 that

people w ho were rem inded of algebra in the Examples group were much more

likely to learn the task than those w ho w ere not rem inded of it. Indeed, almost all

the people in the former group (11 of 12) reported being rem inded of algebra,

w hereas almost none of the people in the latter group did (1 of 11). People were

clearly tapping into their know ledge of algebra in learning the task. Since the

largest effect of this was seen in the Examples group, it is on that condition that

the g roups in this experim ent w ere based. This experim ent a ttem pted to

m anipulate in a controlled w ay peop le 's aw areness of the task 's sim ilarity to

algebra, thereby obtaining a better test of this dissertation's second contribution:

2) One of the strongest predictors of success for learning Symbol

Fun was if the learner w as able to access and use their

knowledge of algebra.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 40

In Experiment 1, nothing in the task's instructions m ade mention of algebra, and

in fact the information presented to the participants was w ritten in order to m ask

the task's basis in algebra.

The main m anipulation in this experim ent took the form of an explicit hint

that the task was indeed related to algebra. The level of detail that the hint had

was m anipulated betw een the three groups th a t com prised this experim ent.

People either received a low detailed hint, which just said that the task was based

on algebra, or an interm ediate detailed hint, w hich not only said the task had its

origins in algebra, bu t also m entioned the different kinds of transform ations in

the task. There w as also a high detailed hint, w hich no t only contained the

inform ation in the in term ediate detailed hint, bu t also provided a m apping

betw een the character strings in the examples and their algebraic counterparts.

The expectation is that the more detailed the hint, the m ore efficient the learning

will be.

M ethod

Participants. F o rty -fo u r C arnegie M ellon U niversity underg rad u a tes

participated in this experim ent for partial course credit and pay.

Materials. The task used in this experim ent was exactly the same as the one

used in Experiment 1. The differences betw een the groups, as in Experiment 1,

was only in the initial inform ation available to the participants. The screen of

exam ples available to the partic ipan ts in all g roups w as the sam e as in

Experiment 1, except th a t for one group in this experim ent it was augm ented

w ith additional inform ation (to be described later).

Procedure. Again, the task instructions w ere part of the HyperCard stack

used to test the participants. The informational content given to the three groups

in this experiment was based on the Examples group of the last experiment. That

is, none of the groups in this experiment were given knowledge of syntax or goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 41

Rather, all of them were given the screen of exam ples, but before they w ere

shown that, an additional screen of inform ation w as presented to them . This

screen contained inform ation as to how the task w as related to algebra, and the

information differed in directedness betw een the groups. The labels used for the

groups refer to the detail level of the algebraic h in t given to the participants in

that group. The least directed inform ation given to the Algebra(Low) group read

as follows:

This task is like algebra. It is not a direct m apping, so do not get
caught on any one m anipulation. H ow ever, as you look at the
examples and start solving problems, you will find it helpful to use
your know ledge of algebra in figuring out the domain.

After reading this screen, the participant went on to the screen of exam ples, and

then proceeded like the other groups in Experiment 1.

Another g roup of people, w hich I refer to as the A lgebra(Interm ediate)

group, saw not only the paragraph above, but also this paragraph:

There are basically 3 types of m anipulations in this task. One is
add ing the sam e th ing to both sides of equation. A nother is
canceling, and the last is elim inating the sign in front of the p
(which often has consequences for the rig h t-h an d side of the
character string).

These two p a rag rap h s w ere p resen ted on the sam e screen, and like the

Algebra(Low) group, once the people in the Algebra(Intermediate) group read

through these paragraphs, they w ere presented w ith the screen of examples, and

the experiment proceeded as in Experiment 1.

Finally, the people in the A lgebra(H igh) group saw the sam e algebra

information screen as the Algebra(Intermediate) group. However, each example

on the following screen of exam ples was annotated w ith the corresponding

algebraic symbols, m uch like the exam ple presented in Table 3.2 (A ppendix B

contains the full list of annotated examples).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 42

In all three conditions, the w ay participants interacted w ith the program

as they w ere trying to solve problem s w as exactly the sam e as in Experim ent 1.

They could refer back to the exam ples screen, which for the Algebra(High) group

contained additional information, as well as the text of the algebra hint.

Again, each participant was asked to solve 32 of each of the three types of

problem s (one-, tw o-, and th ree-step problem s) for a total of 96 problem s. Each

p a rtic ip an t had 2 h r w ith w hich to solve all 96 problem s. There w ere 19

partic ipants in the Algebra(Low) group, 12 in the A lgebra(Interm ediate) group,

and 13 participants in the Algebra(High) group.

Results

Background and General Results

Table 4.1 contains sum m ary in form ation about the perfo rm ance of

participants in this experiment for easy reference, with the Examples group from

Experim ent 1 displayed to provide reference. No difference is detected in the

SAT scores of the participants in the three groups (F < 1) w hen exam ining the

g roups as a w hole, but w hen exam ining just the successful partic ipan ts, a

difference is detected (F(2,33) = 3.68, M SE = 2663, p < .05). A N ew m an Keuls test

reveals th a t the A lgebra(Low) g ro u p is sign ifican tly h ig h e r th an the

A lgebra(H igh) group (p < .05). This difference betw een the ap titu d e of the

groups, at worst, attenuated the predicted effect, since the Algebra(Low) group

was expected to perform worst.

Preparation times. Examining both time to read the inform ation given to the

partic ipan ts up front, and the tim e spen t initially studying the exam ples, no

differences w ere detected betw een these three groups (F < 1). H ow ever, w hen

com pared to the am ount of tim e spen t by the Examples group from Experiment

1, all three of these groups spent significantly more time, as show n by a N ew m an

Keuls test (p < .05). The Algebra(Low) group spent 2.65 min initially studying the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 43

Table 4.1
Algebraic Symbols At-a-G lance

Algebra
High Interm ediate Low Examples

Self-reported math SATs 663a 689a 692a 655a

Reading Instructions (min) 4.44a 4.90a 5.14a 2.94b

Examining Examples (min) 2.24a 2.43a 2.65a 0.79b

Successful Participants 12 of 13a 12 of 12a 12 of19b 12 of 23b

Self-reported m ath SATs 674a 689a 730b 683a

Example References 16.423 24.58ab 45.00b 70.83c

Total Time (min) 62.77a 65.153 67.033 81.54b

First Block (12 problems) 19.49a 19.363 23.89a 33.09b

exam ples and 5.14 m in w ith all of the initial instructions, the A lgebra(Inter-

m ediate) group spent a mean of 2.43 with the examples and 4.90 min w ith all the

instructions, and the Algebra(High) spend 2.24 m in w ith the examples and 4.44

min with all the instructions.

Successful and unsuccessful participants. H ow ever, as in Experim ent 1, a

distinction needs to be m ade between those people finishing the task and those

who did not finish in the 2 hr time limit. Twelve participants completed the task

in each of the three groups. Seven people d id n o t learn the task in the

Algebra(Low) group, and one person did not finish in the Algebra(High) group.

Everyone finished in the A lgebra(Interm ediate) g roup . The p roportion of

successful participants betw een the Algebra(Low) and A lgebra(Interm ediate)

group is significant (p < .05). A significant difference does not exist betw een the

p ro p o rtio n of successful partic ipan ts in the A lgebra(Low) group and the

successful participants in the Examples group from Experim ent 1. The one

person who did not com plete the task in the Algebra(High) condition did solve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 44

42 problem s, and the 7 people w ho did no t finish in the Algebra(Low) group

m ade it to problem 35.3 on average. Looking at the initial instruction time

m easures examined in the previous paragraph, the people w ho did not finish the

task did not differ on those m easures from the people who did finish.

Usefulness o f algebra hint. In Experim ent 1 participants w ere asked if the

task rem inded them of anything. It was found that, for those people who learned

the task, m ost people were rem inded of algebra. At the end of this experim ent in

which people w ere to varying degrees explicitly told the task was based on

algebra, people w ere asked if they felt that the algebra h in t was beneficial in

learning the task. In the Algebra(Low) group, 8 of the 12 people who learned task

reported that the hint was helpful, and perhaps surprisingly, four of the people

who did not complete the task said that the hint helped. N ine of the 12 people in

the A lgebra(Interm ediate) stated that m aking use of the h in t aided them in

learning, and everyone in the Algebra(High) group, including the one person

who did not finish, said it helped. In elaborating on how it helped, m ost people

said it allowed them to m ore easily notice that things w ere being added to both

sides and then being canceled, as well as clued them in to the fact that there may

be inverse operators.

Learning

Accessing information. A cross the three g roups partic ip an ts differed

significantly on the num ber of times the exam ple screen w as referred back to

(F(2,33) = 3.64, MSE = 713.9, p < .05). The Algebra(Low) group referred to that

page a m ean of 45.00 times, w hich was significantly different by a N ew m an

Keuls test (p < .05) from the 16.42 times on average that the Algebra(High) group

looked back. The Algebra(Intermediate) group referred back to that page a mean

of 24.58 times, w hich does not differ from either of the other two groups. All

three of these groups differ from the Examples group of Experim ent 1 (who

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 45

referred back to the examples screen 70.83 times). No one in these three groups

referred back to the page w ith the hint as to how the task w as related to algebra.

The seven people w ho did not finish in the Algebra(Low) group referred back to

the examples an average of 74.32 times.

Completion time. The three groups did no t differ significantly in the total

time it took them to solve all 96 problem s (F < 1). How ever, there was a slight

suggestion that the m ore detailed the hint, the faster learning took place. The

Algebra(Low) group spent 67.03 min on average solving all the problem s, the

Algebra(Intermediate) group spent 65.15 min, and the Algebra(High) group took

62.77 min. In com paring them to the Example group from the last experim ent,

which took a m ean of 81.54 min to solve the problem s, all three groups did

significantly differ by a N ew m an Keuls test (p < .05). Figure 4.1 plots the

performance of the three groups in this experim ent, using the Examples group

from Experim ent 1 as a com parison, on all three types of problems. As in the

graph of Figure 3.1, the groups did noticeably differ during the first block, that

difference was attenuated during the second block, and by the third block all

groups were perform ing equally on subsequent trials. Therefore, any difference

in time to learn the task betw een the th ree g roups occurs very early in the

learning process. As in Experiment 1, perform ing an ANOVA on only the first

block of trials, one does see a significant difference (F(3,44) = 2.93, M SE = 50958, p

< .05), and a N ew m an Keuls post-hoc test revealing that the Examples group

differs from the Algebra(High) group, but no other pairings are significant at the

p < .05 level.

Errors

Table 4.2 presents the error data from this experim ent in a m anner sim ilar

to Table 3.5. The Examples group data from Table 3.5 is presented here for

comparison purposes. The three groups did not differ significantly in the total

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 46

1-Step Problems

200

150-

0»| 100
a
C

H 50-

1

2-Step Problems
2 0 0 i

150-

p 100-

c
f- 50-

1

3-Step Problems
200

150-

o

{I 100-

c
f- 50-

1

Example

Algebra(Low)

Algebra(Intermediate)

Algebra(High)

 1 1 1 1 1 1 1
2 3 4 5 6 7 8

Blocks

Example

Algebra(Low)

Algebra(Intermediate)

Algebra(High)

 1 1 1 1 1 1 1
2 3 4 5 6 7 8

Blocks

Example

Algebra (Low)

Algebra(Intermediate)

Algebra(High)

i i
4 5 6 8

Blocks

4.7: Overal l t ime by block for each problem type (Experiment 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 47

Table 4.2
Experiment 2 Errors

Examples Only

Syntax Semantics Total
Addition 2.75 (8%) 9.42 (28%) 12.17 (36%)
Cancellation 0.50 (2%) 1.5 (4%) 2.00 (6%)
Sign Elimination 3.17 (9%) 16.50 (49%) 19.67 (58%)
Total 6.42 (19%) 27.42 (81%) 33.83

Algebra(Lozv)

Syntax Semantics Total
Addition 2.25 (7%) 6.83 (21%) 9.08 (28%)
Cancellation 0.75 (2%) 1.42 (4%) 2.17 (7%)
Sign Elimination 1.50 (5%) 19.67 (61%) 21.17 (65%)
Total 4.50 (14%) 27.92 (86%) 32.42

Algebra(Intermediate)

Syntax Semantics Total
Addition 7.17 (14%) 14.92 (29%) 22.08 (43%)
Cancellation 0.83 (2%) 1.83 (4%) 2.67 (5%)
Sign Elimination 1.92 (4%) 24.25 (49%) 26.17 (51%)
Total 9.92 (19%) 41.00 (81%) 50.92

Algebra(High)

Syntax Semantics Total
Addition 4.83 (11%) 4.83 (11%) 9.67 (22%)
Cancellation 2.50 (6%) 2.42 (5%) 4.92 (11%)
Sign Elimination 2.42 (5%) 27.92 (62%) 30.33 (68%)
Total 9.75 (22%) 35.17 (78%) 44.92

num ber of errors they produced (F < 1). Again, one m ust keep in m ind that for

the Algebra(Low) the 12 people represented in the table come from a group of 19

people, w hereas the 12 people in the o ther tw o g ro u p s are either all the

participants in that group (the Algebra(Intermediate) group) or all but one of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 48

participants in the group (the Algebra(High) group). However, looking at the top

50% of participants in each group (i.e., 10 of 19 participants in the Algebra(Low)

group, 6 partic ipants in the Algebra(Intermediate) group, and 7 participants in

the Algebra(High) group), in terms of least num ber of total errors, one does find

a difference betw een the groups (F(2,20) = 4.55, M SE = 90.83, p < .05), w ith a

N ew m an Keuls test show ing that this subset of the Algebra(High) group m ade

m ore errors than the other two groups {p < .05). These Algebra(High) people

m ade an average of 29.3 errors, whereas the Algebra(Low) people m ade a mean

of 19.8 erro rs, and the A lgebra(Interm ediate) g roup 12.8 errors. Both the

Algebra(Low) and the Algebra(Intermediate) groups had participants who did

extremely well (i.e., m ade less than a dozen errors), w hereas the participants in

Algebra(High) group all did roughly the same, m aking around the m ean num ber

of errors.

As in Experim ent 1 the error profiles, in term s of the percentages, are

d ifferent betw een the groups, as evidenced in Table 4.3 w hich show s the

correlations of those percentages w ith one ano ther. Sim ilar am oun ts of

syntactical erro rs w ere m ade betw een the g roups, w ith m ost errors being

semantic in nature. The pattern of errors betw een the three types of steps are

most sim ilar betw een the Examples group and the Algebra(Interm ediate) and

Algebra (Low) groups, and the Algebra(Low) group and the Algebra(High)

group. It is im p o rtan t to keep in m ind th a t the 12 people reported in the

Algebra(Low) group are, in some sense, the people who got the m ost ou t of the

Table 4.3
Correlations in Error Percentages

Examples Algebra(Low) Algebra(Inter.)

Algebra(Low)
Algebra(Inter.)
Algebra(High)

.96

.81

.95
.91
.95 .79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 49

algebra hint—enough so to m ake them sim ilar to the A lgebra(H igh) group,

w here m any of the connections between this task and algebra w ere laid bare. The

A lgebra(Interm ediate) g roup m ade the h ighest percen tage of errors on the

addition step, w here know ing the inverse operators is m ost im portant. The idea

of inverse operators is m ade apparent in the Algebra(High) group (i.e., seeing

that ® is paired w ith + and v is paired w ith -), and as previously stated, the

partic ipants in the Algebra(Low) group are the ones w ho quickly m ade that

connection based upon the algebra hint. Like the Syntax(H int) group in

Experim ent 1, the Algebra(High) and Algebra(Low) groups had m ost difficulty

w ith the sign elimination steps (around 70% of the total errors).

Sign elimination errors. Examining the particular types of sign elimination

errors, like in Experim ent 1, one sees slight differences betw een these three

groups. First, the people in the Algebra(Low) and A lgebra(Interm ediate) groups

m ade a similar percentage of errors in confusing the ® and © elim ination rules

(the Algebra(Low) group m ade 48 errors of that type, or 34% of applicable errors,

and the Algebra(Intermediate) group made 26%, or 47 total). The Algebra(High)

group m ade 19% (34 total) of their errors on these types of problem s. Another

differentiating error m entioned in Experiment 1 was perseverating in switching

the operators w hen elim inating the #, as suggested by the m isleading example,

not inverting the related operators. The Algebra(Low) group m ade that error 36

tim es out of 88 total errors (41%) on # elimination steps, w hereas the other two

groups m ade the error m uch less: the Algebra(Intermediate) group 26 times out

of 103 (25%) and the Algebra(High) group 28 times out of 148 (19%).

Discussion

In all its form s, the algebra hint aided people in learning the task in

com parison to the Examples group from Experiment 1, w hich supports the claim

of the Prior Knowledge Contribution:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 50

2) One of the strongest predictors of success for learning Sym bol

Fun was if the learner w as able to access and use their

knowledge of algebra.

In its least detailed form, only four additional lines of text, 12 of 19 people

learned the task, in com parison to 12 of 23 in the Examples g roup . W hile the

percentage of people who learned the task is not statistically different, the time it

took the people who did learn the task (i.e., the people w ho tru ly grasped the

hin t) w as significantly quicker. This slight h in t allow ed peop le to access

p rev iously learned know ledge w hich they m ay or m ay not have accessed

otherwise.

W ith the addition of four m ore lines of text, the text seen by the

Algebra(Intermediate) group, resulted in everyone in that group being able to

learn the task in the allotted 2 hr. Those additional four lines of text contained

inform ation which w ould lim it the search space, the possible transform ations

and m anipulations allowed in the task, for those people. The add itional lines

clearly casted the problems in term s of the three basic m anipulations—addition,

cancellation, and sign elim ination—and enabled the participants to concentrate

on those types of potential rules. In sum , those lines allowed the participants to

h ighlight the algebraic know ledge m ost necessary to learn the task and to not

concentrate on the other aspects of algebra not necessary.

Finally, the Algebra(High) group actually saw a m apping betw een this

task and algebra, which resulted in all bu t one person learning the task and, for

the people who did, a suggestion that the learning was quicker than in the other

two algebra hint groups, particularly across the first 24 problems. The m apping,

on top of the hint seen by the Algebra(Interm ediate) group, provided additional

inform ation with which the participants in the Algebra(High) group could use to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 51

learn the task, bu t apparently the four lines of text was the more crucial piece of

inform ation in learning the task.

The algebra hint was as effective as it w as because it allowed the problem

solvers to m ap existing algebraic know ledge (e.g., adding the same th ing to both

sides of an equation, inverse operators, etc.) onto learning the new task. Initially

s tudied by Thorndike (1906; Thorndike & W oodw orth, 1901) and then u p d a ted

by Singley and A nderson (1989) to fit into A nderson 's ACT theory (1993), the

identical elements theory of transfer provides an explanation as to w hy and how this

happens. In as m uch as existing know ledge, both declarative and p rocedural,

overlaps w ith the know ledge needed to perfo rm the new task, transfer will

result. The m ore overlap that exists betw een the two tasks, the g rea te r the

transfer. In all conditions, the hint that the task w as based on algebra allow ed the

participants to consider how their algebraic know ledge could be applied to this

new task. The hint given to the Algebra(Interm ediate) and Algebra(High) group

as to w hat sort of m anipulations were involved in this task allowed a narrow ing

of their consideration as to how their existing knowledge of algebra could be

applied. Finally, the examples screen seen by the Algebra(High) group m ade the

m apping betw een their existing algebra know ledge and knowledge of this task

extremely explicit.

In analyzing the errors that people m ade in Experiment 1, it appeared that

the participants in the group with the m ost inform ation (the Syntax(Hint) group)

w ere m ore theory driven than the g roup w ith the least in form ation (the

Examples group), who were more data driven. In as much as people m ade use of

the algebra h in t in this experiment, everyone should have been operating w ith a

"theory," or set of related know ledge structures from algebra, of how the task

should w ork as they w ere attem pting to learn it. Therefore, the b e tte r this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Algebraic Symbols 52

additional information, the better the learning, as stated in the Over Specificity

Contribution:

3) Lack of adequate syntactic know ledge causes the analogy

mechanism to build over-specific rules from examples.

This is roughly w hat one sees in the results of this experim ent. The Algebra(Low)

g roup tended to try to over-genera lize the ru le set, m aking the error of

interchanging the ® and © sign elim ination rules 34% of the time on errors

involving those steps, w hereas the A lgebra(High) group, w ho could see the

m apping of the symbols and could perhaps better guess at the underlying rules

(e.g., for © elimination, sw itch the two operands) m ade those errors 19% of the

time. Also, the Algebra(Lowr) group repeatedly m ade the error of switching the

operators for # elim ination (41% of their errors on that step), w hereas the

Algebra(High) group, w ho could see the m apping betw een inverse operators,

m ore quickly learned tha t that w as not correct (25% of their errors). The

A lgebra(Interm ediate) g ro u p w as som ep lace in b e tw ee n w ith th e ir

understanding—confusing the ® and © rules 30% of the time, but only making

the # elimination error 18% of the time w hen they m ade on error on that step.

Based on the results of these two last two experim ents, an adequate model

of howr people learn this task, and w hat pieces of inform ation are necessary for

people to fully understand the task, can be constructed. The following chapter

discusses an ACT-R m odel of people learning this task.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5
The Model—ACT-SF______________

This chapter details an ACT-R model, ACT-SF, of people learning Symbol

Fun, as examined and analyzed in the previous tw o chapters. An im portant

distinction w ithin the ACT-R architecture is betw een declarative knowledge,

knowledge of facts (e.g., "W ashington DC is the capital of the United States")

and procedural knowledge, know ledge of how to perform actions (e.g., adding

num bers together). One of the claims of the ACT-R theory is that all knowledge

has declarative origins. That is, the only way new procedural knowledge, in the

form of production rules, enters the system is by the process of analogizing from

the cu rren t goal to som e p rev ious declarative know ledge. This mechanism

operates by forming an analogy from examples stored in declarative memory to

the current goal. Also, this m echanism accounts for how generalizations arise

from prio r know ledge. The analogy m echanism is b u ilt into the ACT-R

architecture.

The ACT-SF m odel initially contains no procedural know ledge (i.e., no

productions) that describe how to perform the m anipulations required within the

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 54

Symbol Fun task (the m odel does contain tw o p roductions that perform

"h o u sek eep in g " tasks). These p ro d u c tio n s are learned via the analogy

mechanism, based on its initial declarative knowledge.

The goal of the ACT-SF m odel is to provide a full account of how people

learn the Symbol Fun task, and then to com pare the predictions that the model

m akes against p artic ipan ts ' perform ance in the previous and also the later

experim ents. Also, this m odel serves as a test of ACT-R's analogy mechanism,

and, to som e degree, ACT-R's claim that all knowledge starts off declaratively,

since that is the w ay the analogy mechanism works. One of the ways this was

exam ined w as by rem oving or m odifying the m odel's declarative knowledge,

and this will be discussed in the last p art of this chapter. By such a process,

hum an failures at learning the task w ere modeled.

The m odel which will be described now is referred to as either ACT-SF or

the "Inform ed M odel." Initially it only has declarative know ledge— that is, no

procedural know ledge as to the m anipulations needed to perform the task—but

that know ledge is represented in such a w ay as to allow the best, m ost accurate

learning of th a t p rocedura l know ledge. This initial know ledge w ould be

extremely sim ilar to know ledge problem solvers had in the Syntax(Hint) group

described in Experim ent 1 ("Syntactic Symbols"): a representation of how' the

strings are parsed, and know ledge of inverse operators. All of this knowledge is

represented w ithin ACT-R's declarative memory.

As it s tands now , ACT-SF is only a qualitative model. It does not match

any quan tita tive data. Rather, it m odels the acquisition of the procedural

knowledge required to perform Symbol Fun in a m anner consistent with the way

hum ans do, as discussed in the preceding two chapters. It does not model the

slower, alm ost stage-like acquisition of this procedural know ledge as seen in

some of the g roups (e.g., the Example Only group of Experim ent 1). Parallels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 55

betw een the hum an data and ACT-SF will be highlighted in the next sections

w hen appropriate.

Representation in ACT-SF

Given that the declarative representation of the character strings are the

most im portant aspect for ACT-SF to learn the underlying rules of Symbol Fun, a

discussion and an example of that representation will be presented here. The last

half of this chapter contains a more in -dep th discussion of this representation.

ACT-R's analogy m echanism w orks by com paring the start sta te of a

problem to its so lution state. These s ta rt and solutions states are s to red as

separate declarative m em ory structures. Often there are constraints p laced on

how the solution state can be reached (e.g., certain other declarative structures

m ust be accessed, o r certain values m ust be generalized over). The s ta rt and

solution states, as well as any constrain ts, are recorded w ith in declarative

m em ory structures referred to as dependencies. Dependencies are predefined

working m em ory structures within ACT-R that already the contain the positions

("slots") needed to record pointers to the start and solution states, and any

constraints.

ACT-R chooses the examples it attem pts to analogize w ith based on the

activation of these dependency w orking m em ory elements (WMEs). Dependency

WMEs with higher activation (e.g., those that have been most useful in the past

or those that have been m ore strongly encoded) are chosen first. If the system 's

current goal m atches the goal type of the start state that the chosen dependency

WME points to, then an analogy is attem pted. If the production that is created

has no instantiation w ith the current goal, then the analogy m echanism will pick

another dependency WME to test.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 56

A. Example Problem

Examplel: * # A

Solutionl: ¥

B. A C T -R Representation

— RightHandSide 1

w |— O p l #
A rgl A

— Op2 nil
— Arg2 nil O

Solutionl
S '

— LeftH andSidel LeftHandSide2 —
■\

— SpecialOp ¥ ¥ SpecialOp —
— SpecialArg p p SpecialArg —
— O p l ¥ ^ ¥ O p l —
— A rgl <6 O A rgl —
— Op2 nil (7 \ ® Op2 —
— Arg2 nil Vi/ Arg2 — /

RightHandSide 2 —

O p l —
A A rgl —
® Op2 —

<t> Arg2 —

Figure 5.1: A C T -S F ’s Representation with Dependency Structure Highlighted

Figure 5.1 provides an example of how character strings are represented

within ACT-SF. Panel A show s the two lines being represented and Panel B

provides a schematic for how those two lines are represented w ithin ACT-R's

declarative memory. Each character string is com posed of tw o parts, a right side

and a left side. These two sides are then broken dow n into parts w hich contain

positions for each possible character that could occur on that side. Both the right

and left sides also have positions for a second operator and argum ent. W hen a

position is not filled in, its value is nil. The circled num bers highlight the way

three dependency WMEs have recorded how this exam ple is m arked up. Each

dependency co rresponds to one possible p ro d u c tio n (i.e., transform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 57

Table 5.1
Example for Use in Analogy

Step #__________ Symbol Fun Corresponding Algebra
Given - x - A = * C

1 *<J>®0«-*#A®<I> - x - A + A = * C + A
2 ¥ p<-»#A®<!> - x = * C + A

(Answer) 3 p<->#Av<P x = * C - A

betw een states), and this exam ple will be used later to illustrate how these

productions are actually created.

Operation of ACT-SF

When the first problem is presented to the system to solve, no productions

are available w ith w hich to match. Therefore the analogy m echanism is invoked

in order to try to induce the correct transformation. W hat follows is a description

of that induction process as the model tries to solve the problem:

v £?©A«->®Q

using an interpreted example exactly like the problem presented in Table 3.2, and

reproduced in Table 5.1.

ACT-SF has stored the eight examples all participants had available, as

show n in Table 3.3, and they are m arked-up (via the underly ing declarative

representation p ictured in Figure 5.1 and the dependency WMEs) to allow the

ACT-R analogy m echanism the opportunity to learn the best set of productions

that it could learn in o rder to do the task. The actual declarative m em ory

structures are listed in Appendix C, and the resulting productions of this process

are show n in A ppendix D. The following paragraphs give an illustration of that

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 58

A n Illustration

To begin, and as stated above, consider the situation w here the current

p rob lem is f and the first line of the reference exam ple is

vpvG><-»#A. At each step of this illustration, three things m ay be discussed.

First, in all cases the declarative representation that gives rise to the production

will be discussed and the production show n. Second, any predictions which

follow from this representation and production will be considered. Finally, if any

supporting protocol or other data supports the prediction, it will be presented.

Production 1: Appending the same string to both sides. This transform ation is

cap tu red by a dependency WME that the line that follow s ¥£?¥4x->#A is

¥ p ¥<£>®<I><-»#A®<I>. Or, to p u t that in perhaps an easier to understand form, one

could represent the situation as follows:

W hat the model needs to do is infer the production behind the action indicated in

the example. This transform ation, according to the way the exam ple is m ark ed -

up and recorded in the dependency WME, is accomplished using two subgoals,

one to add the proper thing to the left side, and the other to add the sam e thing

to the right side. This is illustrated in Figure 5.1 by the circled ones (see A ppendix

C to exam ine how this is accom plished in the code). Therefore the exam ple is

m arked in a way to make those subgoals explicit, and then those subgoals are

m arked so that the right side of the problem statem ent goes to the righ t side of

the first line in the solution and that the left side of the problem statem ent goes to

the left side of the first solution line. A production is created that em bodies the

creation of these two subgoals:

Current problem:
¥ p©A<r-»®£2

Current example:
¥ p ¥0<-»#A

¥ p ¥O®d><->#A®0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 59

IF the current goal has a left side and a right side (PI)
AND the left side has opl and conl

THEN set a subgoal to append to the left side based on
opl and conl
AND set another subgoal to append to the right side
based on opl and conl

Notice that the subgoals also store the im portant aspects of the left side necessary

to the addition step, the operator and constant. This is im portant for the subgoal

w hich transform s the righ t side, since it does no t have direct access to the

contents of the left side. This production is now applied to the current problem,

and so the system now has two subgoals it will have to solve. W hat ACT-R's

analogy mechanism needs to do next is to figure out how these transform ations

occur.

Production 2: Append an inverse-operator argument string to one side. The

next transformation, appending something to one side of the character string, is

indicated in Figure 5.1 by the circled two (for the left side) and the circled three

(for the right side). Examining the two left sides of the current exam ple show n

above, the first four sym bols are the same, and stay in their sam e positions.

However, the fifth sym bol in the solution line does not appear in the left side of

the problem statem ent. ACT-R m ust use its additional declarative knowledge to

determ ine the orig in of that symbol. Since the m odel has know ledge of the

inverse operators, and the ¥ appears earlier in the line, the dependency WME

records that © m ay aid in m aking the analogy, and the analogy m echanism

encodes in the created production that the ® appears because it is the inverse of

¥. Lastly, the sixth sym bol in the answer line, the <I>, also does not have a direct

m atch in the corresponding slot of the problem string, bu t since that symbol is

the same as one that appears elsewhere in the line, the m odel assum es that that

will always be the case. This production is now created:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 60

IF the current goal is to append something to one side (P2)
AND the goal is based on opl and conl
AND op2 is the inverse of opl

TH EN append op2 conl to this side
AND pop that subgoal

Prediction. Both this production and the first one will apply to all addition

steps for tw o - and three-step problem s; it is not specific to the case w here a v

appears as the third symbol, and nor is it specific to three-step problems. Rather,

they will app ly w hen any operator appears in the first operator position and

nothing has already been added. Furtherm ore, these productions will apply to

adding symbols to both the left- and right-hand side of the production.

Supporting data. W hen participants figure out the right rule for adding to

both side of the equation, they do indeed generalize to all the operators and to

both tw o - and three-step problem s. A ppendix E gives a sam ple protocol of a

typical partic ipan t in the Examples only group (a successful learner). Across

Problems 10 and 11 he acquires the rule for adding the inverse operator to both

sides of the string, and applies it equally afterwards to any operator and to both

tw o- and three-step problems.

Production 2 fires again. As before, P2 is applied to the curren t goal of

appending to the left side of the character string. That goal is then popped.

Figuring ou t w hat to do the right side now becomes the top goal of the system.

Since P2 can apply to this current goal, it is applied to the problem 's right side,

that subgoal is popped, and the system has successfully transform ed the current

problem statem ent into the next correct line in the problem 's solution:

*P© A#A h ®U#A

Production 3: Deleting symbols on one side. The above character string is

now the system 's goal, and, since no productions apply at this point either, the

process of selecting an example to analogize with begins again. Though it is not

constrained to, let us suppose that the system picks the second line of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 61

previous exam ple (w hat w as referred to as the solution line in the previous

paragraphs) to use as the new reference example. This line, ¥ p ¥0®0<->#A®0,

has marked that ¥ £?<->#A®<t> is the next correct line, and so that line becomes the

new solution line:

Current problem: Current example:
¥ p ©A#A<-^®Q#A ¥ p ¥ ct>@0<-»#A® O

li
¥ p<->#A®0

To get from the reference exam ple to the solution line, som ething only

needs to be changed on the left side, and the exam ple is m arked as such.

Furthermore, the transform ation is extremely easy—the first two characters are

the same, and then the next four characters are dropped, and the right side

remains the same. The production that gets created to account for this change

does not check that the operators are inverses:

IF the current goal has a left side and right side (P3)
AND both operator and operands slots on the
left side are filled in

THEN drop the four rightm ost symbols on the left side

Prediction. P artic ipan ts do not need to have know ledge of inverse

operators, and will sim ply think of this transform ation as deleting four symbols,

not canceling them. It also applies equally to tw o- and three-step problems.

Supporting data. It w as w ith these cancellation steps that people had the

least trouble, w ith only 10% of their errors com ing from this transform ation.

Listening to people give verbal protocols at this task, across all conditions, it is

evident that w hen people first do this step, they do not think of it as canceling

(i.e., that two of the sym bols being rem oved are inverses of one another), but

rather that the sym bols are m erely d ropp ing out. Problem 3 in A ppendix E

contains a good description of the acquisition of such a cancellation rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 62

As states, this cancellation rule does not depend on know ledge of inverse

operators. All 11 of the unsuccessful partic ipants in Experim ent l 's Examples

only group , except for one, after 4.0 problem s on average, learned this

cancellation rule. N one of these 11 partic ipan ts learned the inverse operators

(evident from their data files and exit interviews). Using the protocol participants

as a representative sample, it appears the rule they were learning w as just to

drop the four symbols.

Production 4: Sign Elimination. The above production (P3) gets applied to

the current goal, and the next step in the problem 's solution is produced and

becomes the top goal:

¥ A

Since the lead symbol (the ¥) is the same for the current problem and the

example, and this is the only example w hich has a ¥ out front, the system will

continue to use the same example, w here p<-»#A¥<I> is stored as the line that

comes after ¥ p<r->#A®Q:

Current problem: Current example:

¥ p <-»®£2#A ¥ p <->#A®0

p<->#A¥c&

Similar to the change between the problem statem ent and the first line in the

problem 's solution, transform ations need to be done to both the left and right

sides, and so the example is again m arked to create two subgoals, one that

m anipulates the left side and one that changes the right side:

IF the current goal has a left side and a right side (P4)
AND the left side has only a front operator and the scrip t-p

THEN set a subgoal to delete the operator on the left side
AND set another subgoal to do something to the right side
based on the front operator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 63

Notice that the frontm ost operator is stored, so that the righ t side knows the

proper transform ation to perform. Applying this production to the goal results in

the creation of two subgoals.

Production 5: Deleting the fron t operator. As in the transform ations that

occurred for the first step, the first subgoal is m arked in such a w ay to link the

left side of the reference exam ple to the left side of the solution. Here, the

difference is that the ¥ in front of the p is dropped:

IF the current goal is to do something to the left side (P5)
AND there's only an operator in front of scrip t-p and
the script-p itself

THEN drop that operator
AND pop subgoal

Prediction. This production is another that is not operator specific—it will

drop any operator that appears in front of the script-p.

Supporting data. In A ppendix E, on the second problem the participant

d ropped the initial symbol, and on the fourth problem (the second problem

which had a sign elimination step) specifically m entioned that "they lose the very

leftmost thing."

Production 6: Transforming the right side. After that production is applied,

the second subgoal rem ains, which links the right side of the reference example

to the right side of its solution. In the case of ¥ and # elim ination, the proper

thing to do depends on w hat appears on the right side. The related operators

need to be inverted, w hereas the non-related operators rem ain as is. In the case

of ® and © elimination, however, the transform ations are m ore straightforward.

Since ¥ elim ination depends on w hat operators are on the right, two more

subgoals need to be created, one for each right side o p era to r/o p eran d pair, and

so a production such as this created:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 64

IF the front operator is a m inus (P6)
THEN set a subgoal to invert the first operator/operand pair

recording that the front operator is a minus
AND set another subgoal to invert the second pair
recording that the front operator is a minus

Prediction. This production is particu lar to the operator o u t front. Three

other productions will need to be created to handle the other three operators.

Supporting data. To correctly learn the problem set, the partic ipan ts m ust

come to this conclusion. One can see this very clearly with the protocol par

ticipant in A ppendix E, problem 9 (though he is cueing off the w rong symbol).

Productions 7 and 8: Inverting symbols on the right side. In the case of the

p resen t exam ple, the ou tp u t of one of the tw o created subgoals will be a

production that inverts the operator:

IF the current goal deals w ith a particular front (P7)
operator and an o p era to r/o p eran d pair
AND the front operator is related to the pair

THEN invert the pair's operator
AND pop subgoal

and the o u tp u t of the other subgoal is a p roduction that does not invert the

operator:

IF the current goal deals w ith a particular front (P8)
operator and an o p era to r/o p eran d pair
AND the front operator is not related to the pair

THEN leave the pair the same
AND pop subgoal

P rediction . N either of these p ro d u c tio n s are location specific— the

opera to r/operand pair could either be the first or second pair that appear on the

right side.

Supporting data. As will be described in Experiment 4 (Chapter 7, "General

Symbols"), participants are quite good at abstracting over these positions, and so

this is sim ilar to w hat participants actually do (e.g., see Appendix E, problem s 12,

18, and 19).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 65

Conclusion. After app ly ing the last production, the system now has the

final line in the initial problem 's solution, that the last line of ¥ p © s h o u l d

be A. There w ere eight p roductions created in o rd er to m ake that

transform ation. On subsequent tw o - and three-step problems and problem s that

involve ¥ elim ination, the m odel has available to it these p roductions to use.

W hen these productions apply, how ever, they may or may no t fire, depending

on their strength. The analogy m echanism is in constant com petition w ith the

production m atching process, and if the strength of the m atching productions is

not high enough, the analogy m echanism will attem pt to execute. If the created

production is identical to an already existing production, the identity will be

noted, and strength will be added to that production. In such a way, the analogy

m echanism will create and streng then the productions so that eventually the

problem s will be solved solely by the application of productions.

G iven the declarative rep resen ta tion used in the Inform ed Model, a

m inim um of 13 productions need to be created for the model to solve all possible

problems. These are detailed in A ppendix D, in which a run of the m odel on

multiple problem s is given. It is possible, if not likely, for m ore productions to be

created due to spurious relations betw een the symbols in the character strings.

This will be discussed in the next sections.

ACT-SF M odel Discussion

The Informed Model Representation

The Inform ed ACT-SF M odel w hich was just illustrated captures the

im portant qualitative aspects of people successfully learning this task. People in

the Syntax(H int), A lgebra(Interm ediate), and Algebra(High) groups arguably

have such a representation at the outset of starting the task, or at lease quickly

acquire such a representation. Essentially all of the participants in these groups

are successful at learning the task.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 6 6

This chap ter con tinues by enum erating the exact features of th is

representation, and how it m aps on to the model. For each of the five points

listed below, a description of how each point is realized in the m odel and a short

d iscussion of the evidence th a t successful partic ipan ts have such a rep re

sentation is given. After those five representational points, the chapter continues

w ith discussing how such rep resen ta tio n s can be estab lished by those

participants in conditions w hich did not start out w ith the best representation,

and furtherm ore the consequences for w hen such rep resen ta tions are no t

established, as show n by both the m odel and participants. Finally, this chapter

concludes with a discussion of a few errors commonly m ade by participants for

which ACT-SF currently does not model.

The major representational features of the model are:

1) Definite left and right sides
2) Each line in a problem 's solution is separable
3) Within a line, the characters are separable
4) Inverse operators
5) Sign elimination depends on the operator being elim inated

Definite left and right sides. As show n in Figure 5.1, the m odel clearly

divides each character string into a left and a right side. The character strings are

represented as a hierarchical structure, w ith each string consisting of a left and a

right side, and then both of these sides formed of ind iv idual symbols. For

participants, the double arrow serves as a strong initial indicator that perhaps the

string should be divided at that point. M any participants in the Examples group

either make that assum ption from the start, or soon do so in their learning (this is

evident from their data files, and also from the participants that protocols were

collected from). Once that assum ption is m ade, m ost of the syntactic errors

disappear.

Each line in a problem's solution is separable. The m odel will consider the last

step of a three-step problem to help in solving a one-step problem (and vice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 67

versa), as well as consider d ifferent prob lem s in form ulating a m u lti-s tep

solutions. Participants w ho are clearly on their w ay to m astering the rule set do

this as well. This m ust be the case, since if given a one-step problem which

involves ¥ elim ination, using either of the one-step exam ples on the exam ple

screen (Examples 3 and 5; see Table 3.3) w ould result in an error.

Within a line, the characters are separable. W ithin a character string, the

m odel considers each sym bol individually, and it is not critical for an exact

m atch to occur betw een the curren t problem and the exam ple it selects to

perform an analogy. Participants who have no t yet started representing the

strings as such restrict their considerations or clum p symbols together to try to

find a match. For example, if the right side of the problem contains a ® A, they

will try to find an example w ith a ®A in it, hopefully on the right side, bu t may

consider an example that contains it on the left as well.

Inverse operators. Perhaps the m ost im portan t piece of inform ation in

representing this task, in term s of being able to learn all the correct rules and

finish the task, is the inverse operators. ACT-SF is given this at the outset, as are

the participants in the Syntax(H int) group. Participants in the Algebra(High)

group also are likely to infer this inform ation from the first time they examine

their annotated exam ples page (as in A ppendix B). Participants who w ere not

given this information and did not learn it on their own, simply did not leam the

task.

Sign elim ination depends on the operator being eliminated. This last

representational item concerns itself w ith the sign-elim ination steps. Participants

w ould often approach the sign-elim ination steps w ith the idea that there was

only one, perhaps two, m anipulations that w ere done to the right side (e.g., leave

it the same or sw ap the constants). However, as they became more experienced

with those steps, they began to realize that each of the four leading operators

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 6 8

m eant a different transform ation needed to be applied to the right side. Two of

those operators, the v and # elim ination steps, require add itional, indirect,

know ledge beyond w hat is contained in the character string (i.e., know ledge of

the inverse operators). Obviously people m ust first acquire this inverse operator

know ledge before they can fully appreciate the correct rules for perform ing v

and # elimination.

Degrading the Representation

W hen participants lack a representation which takes into account the five

points listed above, w hat are the consequences and how does the partic ipant

learn such a representation? U nder an analysis of the protocols, it appears that

the five poin ts of representation com e on -line in the o rder m entioned . As

m entioned already, A ppendix E contains a protocol of a successful participant in

the Examples group from Experim ent 1, and one can see in this protocol such a

progression. The discussion that follows centers m ostly on that particu lar group

(the Examples only group of Experim ent 1), since that is that group that started

off with the least am ount of inform ation, and so provides for the clearest picture

of how this inform ation can come on-line. The next section contains a short

discussion of a second m odel that w as created which degraded poin ts 1 and 3

from the last m ajor section (Definite left and right sides and W ithin a line, the

characters are separable). A discussion of degrading points 4 and 5 follows (Inverse

operators and Sign elimination depends on the operator being eliminated).

AC T-RC . A second, sim pler m odel was created that d id not initially know

about the difference between operators and constants, and that learned them by a

variation of the rational categorization algorithm (Anderson, 1991). Except for

learning that the lines are separable, this m odel w as equivalent to rem oving the

parsing know ledge discussed prev iously (definite left and righ t sides and

separable characters). In short, this m odel w orked by com paring across many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 69

different character strings, extracting w hich symbols appeared in w hich positions

m ost often. W hat it learned was tha t G reek sym bols alw ays appeared in a

particular set of positions, four operators appears in another set, and one position

always contained the double arrow. This m odel never fully learned the task, and

so could be com pared to those participants w ho did not learn the task as well.

This unsuccessful m odel took considerably longer, in term s of num ber of

p rob lem s a ttem p ted to solve and exam ples referred , to a tta in the sam e

proficiency as the unsuccessful partic ipan ts. There is still know ledge that

partic ipan ts have that is not being cap tu red by the m odels (e.g., p revious

know ledge of Greek symbols), and w hich w ould be challenging to m odel, but

beyond the scope of the current considerations.

Inverse operators. As previously alluded to, it is learning about the inverse

operators that w as a major determ iner if a person in the Exam ples group

successfully learned the task. All 12 people w ho learned the task in that group

acquired the inverse operator knowledge (apparent not only from their data files,

but also from the exit interview), but none of the 11 people who did not complete

the task did so (again, extrem ely a p p a re n t from the da ta files and exit

interviews). Rather, all except for 1 of the 11 people learned to separate the

character strings into left and right sides, bu t failed to learn the idea of inverse

operators. In observing their mistakes on the addition steps, w here knowledge of

inverse operators is critical, they obviously knew they had to add an operator

and a constant to both sides of the string, bu t d id not know w hich operator to

add. This is apparent from the protocol in A ppendix E over the first 8 problems.

It was on Problem 10 that he stated clearly the relationship betw een * and ®.

Prior to that, the participant was adding any operator and repeating the constant

to both side of the character string.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 70

Table 5.2
The Correct Production and Its Over-Specific Counterpart

(p change-production47
=subgoal6r2-variable>

isa change
operator =+-variable
argument =b-variable
string =right6-l-variable
result nil

=+-variable>
isa operator
inverse =--variable

=right6-l-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =/-variable
argl =c-variable
op2 nil
arg2 nil

=right6-2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =/-variable
argl =c-variable
op2 =--variable
arg2 =b-variable

=subgoal6r2-variable>
result =right6-2-variable

iPush! =right6-2-variable
! Pop!
!Pop!)

(p change-production5
=subgoallr2-variable>

isa change
operator =+-variable
argument =a-variable
string =rightl-l-variable
result nil

=rightl-l-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =*-variable
argl =b-variable
op2 nil
arg2 nil

=rightl-2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =*-variable
argl =b-variable
op2 -
arg2 =a-variable

=subgoallr2-variable>
result =rightl-2-variable

IPush! =rightl-2-variable
I Pop!
I Pop!)

If the inverse knowledge is taken out of the Informed ACT-SF Model, the

m odel becomes quite similar to these partic ipants who did not learn the task.

C onsider the productions displayed in Table 5.2. The one on the left is the same

as change-production47 shown in A ppendix D. The production on the right was

created from a version of ACT-SF w ith the inverse operator know ledge excised,

and is sim ilar to the rule the partic ipan t w as considering in h is protocol in

A ppendix E for Problems 4 and 6. The production on the right differs from the

left one in that it does not figure out the relation between the operators (indeed, it

cannot figure out the relation), bu t will alw ays add a m inus sign and repeat the

operand w hen adding the same thing to both sides of the equation— very similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 71

to w hat the protocol participant w as doing. The protocol participant does figure

out this inverse relation by at least Problem 10, bu t the unsuccessful participants

never do. They continue to think that it is specific things that you add. Indeed,

some participants (7 of the 24 total protocol participants across all conditions) did

believe that some variant of this rule was the correct rule at some point during

their learning.

C urrently the m odel has no w ay of inducing th is inverse relationship

between operators on its own. In the model, this w ould correspond to placing the

relevant inform ation into the p ro p er dependency WME. P erhaps in som e

instances partic ipan ts learned th is know ledge by b o rro w in g from their

know ledge of algebra and arithm etic, but in the three protocols collected from

the Examples group from partic ipan ts w ho successfully learned the task, it

appears that this know ledge comes about from trying to figure ou t where the

additional operator and constant comes from, and com paring across examples to

see that the ® and v occurred together and that the # and © occurred together.

Sign elimination depends on the operator being eliminated. Once knowledge of

inverse operators has been gained, all participants w ho gave verbal protocols

eventually leam all the sign elim ination steps. Indeed, som e participants who did

not leam the inverse operators had some idea of the p roper m anipulations for

these sign elim ination steps, bu t obviously not the correct ones for # and ©

elimination. Very often these individuals had not associated the proper thing to

do w ith the leading operator of the character string. This state of affairs can be

represented in the model by: 1) not m arking the # and © elim ination steps any

differently (indeed, the m ost com m on in te rp re ta tio n for the m odel of #

elim ination then becom es to sw itch the position of the tw o operators, as

m entioned previously an extrem ely com m on m istake by the participants in all

groups) than the other sign elim ination steps; and 2) no t indicating the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 72

symbol as the one that dictates the proper transform ation. These sign elim ination

steps, and how they should be marked up, are learned by the participants as they

set up hypotheses as to w hat the transform ation should be, try them out, and are

then surprised w hen the transformation does not w ork and they need to find any

other hypothesis.

Representational Differences

To conclude, I w ould like to m ention a couple of places w here the

represen tation , an d the process by w hich p ro d u c tio n s arise from those

representations, of the m odel does not m atch w ith th a t of the participants. The

m ost egregious of these occur when spurious relations occur betw een sym bols

that make up the character string being used by the analogy mechanism. This

results in overly-specific productions that partic ip an ts never produce. For

instance, if the inpu t to the analogy mechanism w as this:

Current example:
® p < -» # A # 0

11
p < -» # A # 0

the production that w ould be created to handle the right side for ® elim ination

steps would be:

IF the front operator is a ® (P9)
AND the right side is of the form opl conl opl con2

THEN d o n 't change anything on RHS and pop subgoal

That is, it w ould only apply when both the operators on the right side were the

same. This w ould only be the case in a sm all subset of the of the problem s.

Furtherm ore, if the m odel did not represent the character string as having tw o

sides, but rather as one w hole set of symbols, the chances that such spurious

relations occur are higher, and so more overly-specific productions are generated

in that case. This is one of the reasons w hy the hierarchical representation w as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 73

chosen, in addition to support from the protocols (notice how in A ppendix E's

protocol that he only mentions adding one thing, bu t in his actions he does it to

both sides). P articipants w ere very rarely caught up by these coincidental

relations. For the above problem, people w ould notice that nothing changed on

the right side of the problem, but probably w ould not encode the identity of the

two operators. For the model, this encoding specificity results in the creation of

additional, overly specific productions that partic ipants do not create or use.

These sorts of overly specific productions are the result of the ACT-R analogy

mechanism and how it considers the symbols w hen it creates the production. It

makes the usually sensible assum ption that symbols w hich are the same should

always be the same. However, that is not alw ays the case, and participants are

much better than the model in determ ining w hen that assum ption does not hold.

The second of the errors not rep resen ted in the m odel involves the

participants considering the key arrangem ent of the on-screen keypad as an

insight into w hat to add and how the sym bols change. The m odel has no

representation of this keypad, but it can provide some help in learning the task.

The keypad has three colum ns of four keys—one colum n contains all the

operators, another all the constants, and the last all the special keys (the double

arrow , the sc rip t-p , and the delete and check keys). P artic ipan ts w ould

som etim es consider this arrangem ent of keys, particu larly the arrangem ent

within a column, to be the deciding factor in w hat to type. For example, 3 of the

24 total protocol participants at some point considered the arrangem ent of the

constants in their colum n to determ ine w hat to do for © elim ination (where the

proper rule is to just switch the position of the tw o constants). Since the model

had no representation of the keypad, it could no t produce such a production and

so could not make such an error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 74

Conclusion

This chapter presented an ACT-R m odel of the participants and their data

presented in the previous two chapters. The m odel, using the constraint w ithin

the ACT-R architecture that all know ledge starts off declaratively and gets

p roceduralized via the analogy m echanism , p rov ides a full account of the

qualitative changes one sees as a person learns the task. W hile m ost of the

mechanisms by w hich a person's actual declarative representation changes (e.g.,

how the character strings are parsed) w ere not m odeled, by rem oving certain

pieces of the m odel's declarative knowledge, the m odel can mimic unsuccessful

participants.

To m ap this on to the m ain contributions of this dissertation, ACT-SF

provides a m odel of the second contribution:

2) In learning the rules of a task such as Symbol Fun, learners

construct internal declarative representations of the examples

presented to them. These declarative representations are

influenced by knowledge of the task's syntax, as w ell as other

information particular to the task.

The m odel is g iven a particular declarative representation of the character

strings. In its cu rren t state, it has no way of changing this representation over

time. W hen given the best possible represen tation (the Inform ed M odel), it

correctly and quickly learns the rules of the task. This is analogous to the

participants in the Syntax(Hint) group of Experim ent 1. W hen parts of that

representation is degraded, the model makes sim ilar mistakes as to people who

have not learned the task, like the people in the Example group of Experiment 1.

Where to go from here. Even in its curren t state, the m odel m akes some

predictions concerning participant's behavior, and these were highlighted in the

illustration of the m odel. At this tim e, only p relim inary evidence has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: ACT-SF 75

analyzed to support such predictions. W hen appropriate, such evidence w as

m entioned throughout the chapter. Better analyses of the protocol data w ould

provide better data to test these pred ictions. The next two chap ters discuss

further em pirical studies and test som e of the claims inherent in the m odel,

namely the contribution of syntax in learning Symbol Fun (Chapter 6, "Prefix

Symbols") and the way people generalize the rules they are learning (Chapter 7,

"General Symbols").

O utside of m ore in -dep th analyses to better test the predictions of the

current m odel, ACT-SF should be augm ented to better predict the quantitative

data. This augm entation w ould entail tw o things. First, a learning m echanism

which changes the m odel's declarative representation of the character strings

should be added so that the model could progress like a successful participant in

the Examples only group of Experim ent 1 (i.e., like the participant in A ppendix

E). Second, inform ation should be ad d ed concerning the average partic ipan t's

knowledge of algebra so that it could be used in support of learning the rules of

Symbol Fun. Such inform ation w ould probably take both a declarative and a

procedural form, but on account of that, attem pting such an addition m ight bring

about more testable predictions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6
Experiment 3—Prefix Symbols

The following two experim ents test particular claims that follow from the

ACT-R m odel d iscussed in the p rev ious chapter. Experim ent 3 fu rther

investigates the effect of provid ing syntactical inform ation in add ition to the

exam ples. Experim ent 4 exam ines m ore closely the w ay in w hich people

generalize the rules they are learning w ith respect to the m anner in which the

model generalizes its rules.

In Experim ent 1 a large effect w as found betw een p rov id ing only

exam ples to partic ipan ts versus p rov id ing them syntactical inform ation in

addition to the sam e exam ples. M ore people learned the task w hen syntactical

inform ation was available, and they did so m uch m ore quickly (the Syntactic

K nowledge Contribution). They also m ade som ew hat fewer errors, and their

pattern of errors across the different types of transform ations was different (the

O ver Specificity Contribution). How ever, across both groups who successfully

learned the task (the Exam ples and the Syntax(Hint) groups), a m ajority of

people were rem inded of algebra (the Prior Know ledge Contribution). This

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 77

indicates they were calling upon other knowledge w ith which to leam the task—

not only specific algebraic knowledge (e.g., adding the same thing to both side of

an equation), b u t probably also m ore general arithm etic know ledge (e.g., how

equations are structured). This experim ent a ttem pts to elim inate the benefit of

being able to use not only algebraic know ledge, bu t also this m ore general,

e q u a tio n know ledge, in o rd e r to b e tte r test the Syntactic K now ledge

Contribution:

1) In learning the rules of a task such as Sym bol Fun, learners

construct internal declarative representations of the examples

presented to them. These declarative representations are

influenced by knowledge of the task's syntax, as w ell as other

information particular to the task (e.g., know ledge of inverse

operators).

This experim ent modified the task used in Experiments 1 and 2 in order to

rem ove the sim ilarity between it and standard arithm etic and algebra. This task

is form ally equivalent to the old one, bu t w hereas the old one used an infix

notation (i.e., the relevant operator is betw een its tw o operands), this one used a

prefix notation (i.e., the relevant operator is in front of its two operands). The

hypothesis is that people's ability to draw upon their arithm etic know ledge

w ould be nullified. In such a way, a better test of how the syntactical information

influenced learning the new task could be assessed. The prediction of the model

is that, since the two systems are form ally equivalent, the learning of the two

g ro u p s in th is experim ent shou ld be sim ilar to the learn ing of the two

corresponding groups in Experiment 1.

M ethod

Participants. Tw enty-six C arneg ie M ellon U niversity underg raduates

participated in this experiment for partial course credit and pay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 78

Table 6.1
Examples used in Experiment 3

Example 1
<->®p<I>®A

Example 4
fp r><i>

<-»®v prr®¥cDr
< -> p ® v o r

Example 7
<-»#£? r©A
<-»©##? rr© © A T
<-»£>©©AT

Example 2
r*<i>

<-»©#* p r r © v o r

Example 5
<->##? © #T A

<-»£?#©ta

Example 8
<->®©pT®Q
<->v® © £?n>® Q r

Example 6
<->®®pA©r
< -> ¥ ® ® p A A ¥ © T A

< -> ® p v © T A

<->£> V © T A

< -> © p V ® Q T

q

Example 3
< -» © p ® # T A

< -» p ® # A T

Materials. The task used in the this experim ent is a m odified version of the

one used in Experim ents 1 and 2. Instead of an infix notation, a prefix notation

was used. The two system s are formally equivalent, and a sim ple transformation

exists to change a character string from one version of the task into the same

equation in the other version. Table 6.1 contains the eight examples available for

reference to the participants (this can be com pared w ith the examples displayed

in Table 3.3 in order to gain some idea of w hat the syntactic difference is between

the two tasks). As in the previous two experiments, the task w as implemented as

a HyperCard 2.2.1 stack (A pple C om puter, Inc., 1994) w hich was run on an

accelerated Apple M acintosh Ilci com puter connected to a tw o-page monitor.

Procedure. W ith one difference, the procedure used in this experiment was

identical to Experim ent l 's procedure. All participants initially saw two screens

th a t con ta ined som e in tro d u c to ry com m ents ab o u t the experim ent and

instructions on the task's interface (the same two screens as used in the previous

tw o experim ents). A t this point, one of the two g roups received inform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 79

relating to the task's syntax and goal structure, as well as a hint. This information

is equivalent to the inform ation given to the people in the Syntax(Hint) group of

Experim ent 1, and the inform ation is d isp layed in A ppendix F. The only

difference is that one of the items in the Goal inform ation from Experim ent 1, "If

a connector appears in front of the the last step is to rem ove that connector

from it," does not have a easy, direct correspondence in this experim ent, and so

was dropped. The group of people who received this additional inform ation was

in the Syntax(Hint) group, and the other group w as the Examples group. Again,

these two groups are analogous to the liked-nam e groups in Experim ent 1.

At this point, a s ligh t change w as m ade from the procedure used in

Experim ent 1. The Syntax(Hint) group has received the additional information,

and the Examples group has only seen the initial two in troductory screens. A

sheet of paper on which contained the eight exam ple problem s (Table 6.1) was

given to each participant. At the top of this paper was these instructions:

There are two basic types of symbols (I m ay already have told you
this. If that's not the case, I call them object symbols and connector
symbols). For each line below, circle each symbol that you think is
an object symbol and u n d e rlin e each sym bol you believe to be a
connector symbol (every symbol does not have to have som ething
done to it). Then d raw one vertical line to separate each line into
two parts. There's no need to spend a lot of time on these.

The partic ipants w ere then expected to follow these instructions using the

example problems. The people in the Syntax(Hint) group was able to refer back

to the screens that contained the additional information. The purpose of this form

w as to ensure that the Syntax(H int) g roup fully un d ersto o d the parsing

information, and did not sim ply dismiss it.

After the participants completed filling out this sheet, they continued with

interacting w ith the com puter. Both groups next w ent to the screen that had the

eight examples, and then w ent to the screen on which problem s w ere presented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 80

for them to solve. The com puter program acted the same as the one used in the

first two experim ents. A t any point, the partic ipants could refer back to the

exam ple screen, and the Syntax(Hint) group could refer back to the syntax

information.

Each partic ipant w as asked to solve 32 of each of the three types of

problem s (one-, tw o-, and three-step problems) for a total of 96 problems. Each

partic ipan t had 2 h r w ith w hich to solve all 96 problem s. There w ere 14

partic ipants in the Syntax(H int) group and 12 partic ipants in the Examples

group.

Background and General Residts

Table 6.2 contains sum m ary in form ation about the perform ance of

participants in this experim ent for easy reference. No difference is detected in the

SAT scores of the participants in the two groups (t < 1), either w hen examining

the groups as a w hole o r just the successful participants. W ith regards to the

form that both groups filled out before presented with the screen of examples on

Table 6.2
Prefix Symbols At-a-Glance

Results

Syntax(Hint) Examples Only

Self-reported m ath SATs 693a 681a

3.15b

0.65b

1 o f1 2 b

Reading Instructions (min)

Examining Examples (min)

6.21a

1.65a

Successful Participants

Self-reported m ath SATs

Example References

Total Time (min)

12 of 14a

706

63.83

92.71

First Block (12 problems) 34.46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 81

the com puter, both groups spent the sam e am ount of tim e filling it out (1(24) =

-.751, p > .1), w ith the Syntax(Hint) group taking 6.58 m in on average, and the

Examples g roup taking 7.47 min. Of the 14 Syntax(Hint) participants, 9 of them

m arked the exam ples exactly right. The other 5 had the objects and connectors

correctly circled and underlined, b u t had m ism arked the separating line (4

always p u t the line right after the p , and the o ther participant pu t it after all of

the connector symbols). For the 12 participants in the Examples group, no clear

pattern em erged. Participants did have a slight tendency to group all the G reek

symbols together (either underlining or circling all of them), and then, w ithin a

single participant, have a consistent set of sym bols to w hich they w ould perform

the other action. There was no clear pattern for w here they divided a line.

Preparation times. N ot surprisingly, the two groups differed in the am ount

of time they spen t study ing the instruc tions (f(24) = 2.96, p < .01). The

Syntax(Hint) group spent a mean of 6.21 m in, and the Example group spent 3.15

min on average. The groups also d iffered on the am oun t of tim e initially

examining the exam ples (after already m arking them up on the form), 1(24) =

2.17, p < .05, w ith the Syntax(Hint) group spending 1.65 m in on average and the

Examples group 0.65 min.

Successful and unsuccessful participants. As in the first two experim ents, a

distinction needs to be m ade between those people finishing the task and those

who did not finish in the 2 hr time limit. Twelve participants com pleted the task

in the Syntax(Hint) group and one person in the Examples group. Two people

did not leam the task in the Syntax(Hint) group, and eleven people did not finish

in the Exam ples group. Significantly few er people (p < .01) finished in the

Examples g roup . The tw o people in the Syntax(H int) g roup w ho did no t

complete the task m ade it to Problem 40 in one case and Problem 38 in the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 82

The eleven people in the Examples group w ho d id not complete the experiment

m ade it to problem 49.02 on average.

Remindings. Participants at the end of this experim ent w ere asked if the

task rem inded them of anything. In the Syntax(Hint) group 6 of 14 people were

rem inded of algebra, and 3 of 12 people in the Examples group were. Of the two

people w ho did not finish in the Syntax(Hint) group, one of them thought it was

sim ilar to algebra. The one person who finished in the Exam ples group was

rem inded of algebra. The most common answ er to this question, across both

groups, (besides "nothing") was "pattern finding." Participants w ere also asked

at the end of the experim ent if they had ever used a prefix or postfix notation for

arithm etic before. None had.

Learning

Accessing information. Com paring the total num ber of references back to

the example page by both groups and including both successful and unsuccessful

partic ipan ts , no difference was detected (f(24) = 1.32, p > .1), w ith the

Svntax(Hint) group referring back to the examples screen 63.83 tim es on average

and the Examples group a mean of 86.00 times (but remember, participants in the

Examples g roup only m ade it through an average of half the problem set).

However, com paring the successful participants in the Syntax(Hint) group of this

experim ent to the successful Syntax(H int) partic ipan ts of Experim ent 1, a

difference is detected (f(22) = -3.67, p < .01), w here the Experiment 1 Syntax(Hint)

participants referred back to the example screen an average of 23.67 times. The

Syntax(H int) partic ipan ts of this experim ent also referred back to the Goal

inform ation page slightly more often (t(22) = -2.37, p < .05; 0.5 tim es versus 1.25

tim es on average), b u t the references back to the Syntax and H int inform ation

pages did not differ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 83

1-Step Problems

2-Step Problems

200 n
Exp. 1: Syntax(Hint)

Exp. 3: Syntax(Hint)150-

100 -

50-

7 854 6321
Blocks

200 n
Exp. 1: Syntax(Hint)

Exp. 3: Svntax(Hint)150-

\Z 100-

50-

7 85 63 421
Blocks3-Step Proble\

200
Exp. 1: Syntax(Hint)

Exp. 3: Syntax(Hint)150-

iZ 100-

50-

7 852 3 61 4
Blocks

Figure 6.1: Overall time by block for each problem type (Experiment 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 84

Completion time. Since m ost partic ipan ts in the Examples g roup did not

com plete the task, it makes it difficult to com pare their total time at solving the

task to the total tim e of the Syntax(Hint) group. However, the total tim e of the

Syntax(H int) g roup can be com pared to the total tim e of E xperim ent l 's

Syntax(Hint) group. The Syntax(Hint) group from Experiment 1 took a m ean of

64.09 m in to solve all the problem an d the Syntax(H int) g roup from this

experim ent spent 92.71 min on average, a significant difference (t(22) = -5.31, p <

.001). Figure 6.1 plots the perform ance of these two groups. The Syntax(Hint)

group perform ed som ewhat worse, in term s of time to solve the problem s, to the

Examples group of Experiment 1, w here the successful participants of that group

spent 81.54 min on average.

Errors

All together, the participants in the Examples group of this experim ent

m ade a lot of erro rs—a total of 1454 or a m ean of 121.17 per partic ipant.

Considering the num ber of lines that each partic ipant attem pted to click out,

about 96 on average, 1.19 errors were m ade per line. Essentially all of these errors

w ere syntactic in nature, w ith the partic ipants never learning any of the correct

transformations. Six of the participants d id apparently leam the cancellation step,

and a subset of these learned some of the sign elim ination transform ations (e.g.,

leave it the same or swap the operands) bu t not w hen to correctly apply them.

The Syntax(Hint) group fared m uch better. Their results are d isplayed in

Table 6.3, w hich can be com pared w ith Tables 3.5 and 4.2. The Syntax(Hint)

group from Experim ent 1 perform ed m uch better than this Syntax(Hint) group

(f(22) = -2.72, p < .05). The profile of the percentages are not different, however,

from previous groups. Most errors are sem antic in nature and there are very few

errors on the cancellation step. C om paring the percentage error profile of this

Syntax(Hint) group to the Examples and Syntax(Hint) group of Experiment 1, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 85

Table 6.3

Experiment 3 Errors Per Participant

Syntax(Hint)

Syntax Semantics Total
Addition
Cancellation
Sign Elimination

7.50(11%)
1.67 (2%)
2.17 (3%)

13.75 (20%)
6.17 (9%)

39.00 (56%)

21.25 (30%)
7.83 (11%)
41.17 (59%)

Total 11.33 (16%) 58.92 (84%) 70.25

Syntax(Hint) groups are slightly m ore sim ilar to one another (.96) than this

Syntax(Hint) group is to the Experiment l 's Examples group (.91). Looking at the

top 50% of partic ipants in both groups (six partic ipan ts in each), one sees a

sim ilar result (f(10) = -2.57, p < .05), w ith the Syntax(H int) group from this

experim ent m aking a m ean of 32.00 errors com pared w ith 16.17 errors for the

Experiment 1 Syntax(Hint) group.

Sign elimination errors. The participants in the Syntax(Hint) condition of

this experim ent m ade sim ilar errors as to the partic ipants in previous groups.

That is, they sw apped operands or operators, left everything the sam e, or

inverted one of the operators w hen those transform ations were not appropriate.

Incorrect transform ations that m ight have been peculiar to the prefix notation

were not observed, at least not in significant num bers. That being the case, the

expectation is that the Syntax(Hint) group of this experim ent w ould be sim ilar to

Experiment l 's Syntax(Hint) group in terms of the sign elim ination errors, and

one does find this. This experim ent's Syntax(Hint) group confused the ® and ©

elimination rules 82 times (34% of those errors), com pared to 42% of Experim ent

l 's Syntax(Hint) g roup (the Examples group of Experim ent 1 only m ade this

error 14% of the time). Furtherm ore, this experim ent's Syntax(Hint) group only

m ade the swap operators error for # elimination 41 tim es (24% of # elim ination

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 86

errors), w hich is m ore sim ilar to the 18% of Experiment l 's Syntax(H int) group

than it is to the 41% of that experim ent's Examples group.

Discussion

A lthough this task is formally equivalent to the task used in Experiment 1,

it is m ore difficult for participants to leam , a result contradicted to w hat would

be predicted by the ACT-SF m odel, bu t predicted by the Syntactic Knowledge

Contribution:

1) In learning the rules of a task such as Symbol Fun, learners

construct internal declarative representations of the examples

presented to them . These declarative representations are

influenced by know ledge of the task's syntax, as w ell as other

information particular to the task (e.g., know ledge o f inverse

operators).

If given only examples to leam from, almost no one learning the prefix version

learned the task, com pared to alm ost a 50% success rate w ith the infix version

used in Experiment 1. If those exam ples are augm ented w ith syntactic and other

inform ation, people learning either version of the task even tually learn it.

However, the people learning the prefix version needed m ore references back to

the examples, took longer, and m ade m ore errors. What m akes the prefix version

more difficult to leam?

As m entioned in the introduction, the prefix version of the task eliminates,

or at least reduces greatly, the benefit of being able to parse the character strings

in a s tan d ard , arithm etic w ay (i.e., operators to the im m ediate left of their

operands and an obvious divider betw een the left- and rig h t-h an d sides of the

equation). This is part, if not m ost, of the know ledge contained w ith in the

syntactic information given to the participants in the Syntax(Hint) group. Instead

of p erh ap s relying on p as t know ledge of how equations are struc tu red ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Prefix Symbols 87

participants were forced to use the provided inform ation to help them parse the

strings, in the case o f the Syntax(H int) group, or to induce th a t parsing

information in the case of the Examples group (and with disastrous results).

The ACT-SF M odel has some of this syntactic knowledge of arithm etic not

only explicit in its representation, bu t also implicit as well. The m odel, w ith its

hierarchic organization, uses the double arrow as a divider between the character

string's left and right sides. However, a flat representation could also have been

used, which w ould co rrespond to hav ing each sym bol that m ade up the

character strings contained w ithin a separate slot in a single working m em ory

element. (As noted in C hapter 5, such a representation was not used in order to

avoid spurious relations betw een the symbols during the analogy process and to

also allow for the creation of a m ore compact production system.) Once created,

this basic, flat representation w ould have equal difficulty learning either the infix

or the prefix version of the task. In its analogy process, ACT-R merely matches

up the symbols on the left-hand side of the created production with the symbols

on the right-hand side of the production, regardless of order. However, as seen

in the data, partic ipan ts have a m uch m ore difficult tim e m atching up the

symbols when they are in prefix order. Some aspect of the infix notation is easier

for the participants to grasp. This differential betw een the infix and prefix

conditions is not part of the m odel and is w hat is im plicit w ithin the ACT-SF

Model as it stands. This aspect corresponds to a familiarity the participants have

in dealing with equations in an infix order.

The final experim ent investigates the rule generalization process (in

accordance to the Over Specificity Contribution) in a m ore detailed m anner than

the previous experim ents have attem pted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7
Expertment 4—General Symbols

Experiment 4 examined m ore closely the rule generalization process, as

m entioned in the third main contribution of the introduction:

3) Lack of adequate syntactic know ledge causes the analogy

mechanism to build over-specific rules from examples.

Specifically, this experim ent investigated the process by w hich structures in a

rule are variablized and the relations that people believe hold betw een those

structures. This is a finer level than w hat the generalization process has been

studied at before. The ACT-R m odel, as described in C hap ter 5, m akes some

plain predictions for process in this task. The analogy process in ACT-R is quite

simple. If it can directly m ap symbols on the left-hand side of a production with

symbols on the right, those symbols are linked and variablized to be the same. If

m ultiple instances of that symbol appear, on either the left or the right, then

ACT-R assumes that that m ust always be the case. If a symbol cannot be m apped

betw een sides, bu t ACT-R has supporting inform ation to m ake the m apping

(e.g., know ledge of inverse operators), the link is m ade and that relation is

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 89

em bedded w ithin the production. If, however, no supporting inform ation can be

found, the symbol is assum ed to be a constant.

In each of the past experim ents, analyses have been done th a t shed some

light on the generalization process. The error data from the experim ents provide

m ost of the evidence. The hypothesis p u t forw ard has been th a t the m ore

inform ation initially given to people w ith which to leam a task, the m ore liberal

they w ill be in th e ir generaliza tions. For exam ple, p a rtic ip a n ts in the

Syntax(Hint) conditions attem pted to m eld the ® and © elim ination rules, like

the w ay the v and # elim ination rules are sim ilar to one another. People in the

Examples group did not attem pt this blending of rules. A sim ilar phenom enon

occurs w ithin the # elim ination rule. People in the Syntax(Hint) group quickly

see through the m isleading example that seems to indicate the p roper rule is to

sw ap the position of the two operators, and not necessarily invert them. The

conservative Examples group persisted in m aking this error. In large part this

distinction can be seen as the groups w ith m ore information being m ore theory-

driven, since they could, see the bigger picture, whereas the g roups w ith less

information were m ore data-driven.

This experim ent investigated such issues. By using a slightly m odified

version of the task used so far, one that just contained the one-step problem s

(those that deal w ith the sign-elim ination steps), significantly m ore data was

gathered to test how peop le generalized the rules they w ere learn ing .

Furtherm ore, these sign elim ination steps have been the m ost inform ative in the

past experim ents in studying this process. The task has also been m odified so

that people first solved sim pler problem s than w hat have been used thus far, and

then in the latter p art of the problem set solve the standard sign elim ination

problem s that partic ipan ts in the previous experim ents have solved. These

sim pler problems involved only one opera to r/operato r pair on the righ t-hand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 90

side, as opposed to the tw o pairs seen in the one-step problem s used in the

previous experim ents. This transition from sim ple to complex problem s shed

further light on how people generalize the rules they are learning. In keeping

w ith the analyses done so far, the prediction was that the participants w ith less

inform ation will be m ost conservative in their generalizations, w hereas the

people w ith more information will be m ore liberal. In the model, this liberalness

arises from being able to au g m en t the learned rules w ith the add itio n al

declarative information, such as the inverse operators. W hen such additional

inform ation is not available, the rules form ed m ust perforce be conservative and

specific to only that situation.

M ethod

Participants. T h irty C a rn eg ie M ellon U n iv ersity u n d e rg ra d u a te s

participated in this experim ent for partial course credit.

Materials. The task used in the this experim ent was a modified version of

the one used in the previous experim ents. For this experiment, only one-step

problem s were used. F u rtherm ore , the first p a rt of the experim ent w as

com prised of sim pler problem s, ones that had only two symbols on the rig h t-

hand side (an o p e ra to r/o p eran d pair). Table 7.1 provides exam ples of these

sim pler problems. The rules of this sim pler task were largely the same as for the

m ore complex version , except for the rule for © elimination. Since the right side

only had one o p e ra to r/o p e ran d pair, there w ere not two operands to be

switched. The rule for © elim ination in this sim pler version was to just leave the

Table 7.1
Example Simple Problems Used in Experiment 4

Example 1 Example 2 Example 3 Example 4
A ¥p<->®0 ©p<-»#T #p<-»*r

p<-»v a p<-»# r p<-»*r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 91

Table 7.2
The eight simple problems participants sazv

®p<-»v£2
® p < -»© A

v p<->®A ©p<->®Q
©p«-»#r

r ig h t-h an d side the sam e (thus m irro rin g the ® elim ination rule). The

elim ination rules for * and # elim ination w ere the same as in the com plex

version, invert related operators and leave the same any unrelated operators.

As in the previous experim ents, every partic ipant received the sam e

problem set. The first 64 problems were all of the sim pler type, and then the last

128 were all of the complex type. The first 64 w ere grouped into 8 sets of 8

problems. Table 7.2 contains all 8 of these problem s (the operand was random ly

picked). W ithin each set, each operator appeared as the first symbol (the symbol

to be eliminated, hereafter referred to as the "elim ination symbol") twice. Each

elim ination symbol was paired with two operators (e.g., ® w as paired w ith *

and ©, w hereas v w as paired w ith ® and #). W hen an operato r w as an

elim ination symbol, one of the operators it w as paired w ith appeared in the

right-hand side of the character string. The next time that operator appeared as

the elim ination symbol, its other paired operator w ould be on the right. The

pairings were chosen such that half of the sym bols that appeared w hen v and #

was the elim ination sym bol w ould be related, and thus need to be inverted.

However, for both of those two symbols, participants would only see half of the

possible inversions (i.e., they w ould see © paired with # as the elim ination

symbol, but not # when # was the elimination symbol).

A similar pattern was used for the last 128 problems, which were grouped

into 4 sets of 32 problems. For these problems, tw o operators appear in the rig h t-

hand side. For each elim ination symbol, the first operator on the righ t w as

chosen from one of the two operators that it d id not appear w ith during the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 92

64 problems (e.g., w hen ® w as the elim ination sym bol, the first operator w ould

either be a ® or a #, w hereas if ¥ was the elim ination symbol, the first operator

w ould be either a ¥ or a ©). The second operator could be any of the four. This

results in eight combinations for each of the four elim ination symbols, or 32 total

different problems. This m ildly complicated schem e of generating problems was

used in order to test how participants w ould generalize to seeing other symbols

in the same position, as well as to the second operator position at the start of the

complex problems.

Procedure. O utside of the different problem set, the procedure for this

experim ent was sim ilar as to the previous ones. Like Experim ent 3, this

experim en t w as com prised of tw o g ro u p s, an Exam ples g roup and a

Syntax(H int) group. Both groups in itially w en t th rough two screens of

introductory material (the same as all previous g roups saw). The Syntax(Hint)

group next received the syntax, goal, and hint inform ation that Experiment l 's

Syntax(Hint) group received (see Appendix A). Both groups next went through a

screen of examples (the four examples displayed in Table 7.1), and then started

solving the 192 that m ade up the problem set. They w ere told that at some point

the problem s w ould get m ore com plicated , b u t no t exactly w hen. The

participants interacted w ith the program the sam e w ay as participants in the

previous experim ent—clicking out their solutions, having the com puter check

their line, and then receiving feedback. Participants had two chances per problem

to enter the right character string. If both guesses w ere incorrect, the com puter

w ould display the right answ er before giving them the next problem. As before,

the participants were able to refer back to the exam ples screen at any time. When

they m ade it to the complex problems, the exam ples d id not change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 93

Each participant had 1 h r w ith which to solve all 192 problem s. There

w ere 16 partic ipants in the Syntax(H int) group and 14 partic ipan ts in the

Examples group.

Results

Background and General Results

Table 7.3 contains su m m ary inform ation abou t the perform ance of

participants in this experm ent for easy reference. No difference is detected in the

SAT scores of the participants in the two groups (f < 1), either w hen examining

the groups as a whole or just the successful participants. The two groups differed

in the am ount of time they spent studying the instructions (f(28) = -4.23, p < .001).

The Syntax(Hint) group spent a m ean of 4.43 min, and the Example group spent

2.99 min on average. The groups, however, did not differ on the am ount of time

initially examining the examples, f(28) = -1.27, p > .1, w ith the Syntax(Hint) group

spending 0.83 min on average and the Examples group 0.68 min.

Successful and unsuccessful participants. A s in the p rio r experim ents, a

distinction can be made betw een those people finishing the task and those who

did not finish in the 1 hr time limit. Twelve participants completed the task in the

Table 7.3
General Symbols At-a-Glance

Syntax(Hint) Examples Only

Self-reported m ath SATs 695a 674a

Reading Instructions (min) 4.43a 2.99b

Examining Examples (min) 0.83a 0.68a

Successful Participants 12 of 16a 12 of 14a

Self-reported m ath SATs 690a 672a

Example References 3.92a 9.75a

Total Time (min) 48.013 49.15a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 94

both the Syntax(Hint) and Examples groups. This m eans that four people did not

learn the task in the Syntax(Hint) group, and tw o people did not finish in the

Examples group. This difference in proportions is no t statistically significant. The

four people in the Syntax(Hint) group who did not com plete the task com pleted

an average of 101.75 problems. One person in the Examples group w ho did not

finish m ade it to Problem 100, and the other person actually did complete all the

problems. However, this partic ipant made 156 errors over the course of the 128

complex problems.

Remindings. After the experim ent, the partic ipan ts were asked w hat the

task rem inded them of (as in Experiments 1 and 3). In the Examples group, 3 of

14 people answ ered algebra. In the Syntax(Hint) g roup , 5 of 16 people replied

algebra (this is no t a significant difference, p > .1). A lm ost everyone else was not

rem inded of anything. None of the people w ho d id not complete the task were

rem inded of algebra.

Rule learning. A nother question asked of the partic ipan ts after the

experim ent was for them to relate the rules of the task. Of the people who

successfully com pleted the task, only 6 p a rtic ip an ts in each group could

successfully enunciate the rules. Success was indicated by knowing the two pairs

of inverse operators and when they were needed (for # and ¥ elimination, and by

knowing the rules for ® and © elimination). Four people in the Examples group

and 5 people in the Syntax(Hint) group had a "fractu red" set of rules (either

incom plete or they w ent m ostly by specific instances). The rem aining three

participants could not formulate an answer to the question.

Learning

Accessing information. The exam ples av ailab le for the p a rtic ip an t's

reference in the experim ent w ere not as useful as the exam ples available in the

prior experiments. There w ere only four examples, and they were all w ithin the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 95

sim ple version of the task. No difference w as detected betw een the num ber of

times the Syntax(Hint) group referred back to the examples versus the Examples

group 's references (f(22) = -1.29, p > .1). The Syntax(Hint) group referred back to

the examples screen a mean of 3.92 times, and the Examples group referred back

to that screen 9.75 times on average. No one in the Syntax(Hint) group referred

back to the hint screen, bu t they did refer back to the syntax screen 2.33 times on

average and to the goal screen 1.33 times.

Completion time. In term s of total time to com plete the problem set, the two

groups did not differ (f < 1). F igure 7.1 plots the perform ance of the Examples

and Syntax(Hint) group across the problem set, w ith the da ta blocked into

groups of 16 problem s. The perform ance of the Syntax(H int) group from

Experiment 1 is plotted for com parison purposes (this group only received a total

of 32 one-step problem s). Even w hen the com plex problem s are com pared

separately, no difference exists (f < 1). The Syntax(Hint) group took a mean of

48.01 min to solve all the problem s, and the Examples group took an average of

49.15 min.

50-,
Example

— Syntax(Hint)

■*— Exp. 1: Syntax(Hint)

40-

! 301
« 20 - a*c

H
10 -

51 2 3 74 8 9 10 11 126
Blocks

Figure 7.1: Average time spent per problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 96

Table 7.4
Experiment 4 Errors Per Participant

Examples

Syntax Semantics Total
Simple 3.92 (23%) 13.33 (77%) 17.25
Complex 5.50 (6%) 81.92 (94%) 87.42

Syntax(Hint)

Syntax Semantics Total
Simple 1.25 (8%) 14.33 (92%) 15.58
Complex 4.67 (5%) 82.00 (95%) 86.67

Errors

Table 7.4 displays the m ean num ber of errors per participant, split into the

tw o different groups. The num bers for the earlier, sim ple problem s are listed

separately from the later, com plex problem s. Since there w as only one-step

problem s, there w ere no addition or cancellation steps—every line was a sign

elim ination step. In term s of total num ber of errors, there is no difference

betw een the tw o groups (t(22) = -1.57, p > .1). Looking a t the various

subgroupings (e.g., syntax errors on sim ple problems), no significant differences

were found.

Sign elimination errors. The lack of difference in the total num ber of errors

w as surprising, bu t a difference in the type of errors could still exist. Table 7.5

separates the errors m ade on the com plex problems by the four operators that

could appear as the elimination symbol. For each elimination, the m ean num ber

of errors made for each error type is listed, along w ith the percent of errors for

that elim ination sym bol's to tal errors. Leave Same errors occurred w hen

participants did not do anything to the right-hand side of the character w hen

elim inating the elimination symbol (that is the proper thing to do for eliminating

a ©). A Switch Operators (or Switch O perands) error was w hen the participant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 97

Table 7.5
Experiment 4 Errors in Complex Problems by Sign Elimination Type

Examples
Leave
Same

Switch
Operators

Switch
Operands

Invert 1st
O perator

Invert 2nd
O perator

Invert
Both

O ther Total

¥ 5.17 1.42 6.92 0.58 2.50 0.08 5.00 21.67
(24%) (7%) (32%) (3%) (12%) (1%) (23%) (25%)

6.25 2.42 6.08 1.00 2.92 0.08 4.83 23.58
(27%) (10%) (26%) (4%) (12%) (1%) (20%) (27%)

© 11.67 4.08 2.67 1.92 1.42 4.17 25.92
(45%) (16%) (10%) (7%) (5%) (16%) (30%)

® 3.08 6.17 1.67 0.83 1.00 3.50 16.25
(19%) (38%) (10%) (5%) (6%) (22%) (19%)

Syntax(Hint)
Leave
Same

Switch
Operators

Switch
Operands

Invert 1st
O perator

Invert 2nd
O perator

Invert
Both

O ther Total

¥ 6.50 2.33 6.83 0.83 2.08 0.17 2.58 21.33
(30%) (11%) (32%) (4%) (10%) (1%) (12%) (25%)

6.33 0.83 5.25 1.08 3.08 0.00 4.75 21.33
(30%) (4%) (25%) (5%) (14%) (0%) (22%) (25%)

© 14.42 2.17 3.42 3.17 1.17 4.67 29.00

cn o c (7%) (12%) (11%) (4%) (16%) (34%)
® 1.33 5.75 2.17 1.58 0.58 3.58 15.00

(9%) (38%) (14%) (11%) (4%) (24%) (17%)

sw itched the operators, (or O perands) w hen elim inating the leading operator.

Switching operators was a common m istake in the last experiments, because of

one of a m isleading example (Exam ple 5). Sw itching operands is the righ t

transform ation for © elimination. The th ree inversion errors (Invert 1st, Invert

2nd, and Invert Both Operators) refer to w hen a participant inverted an operator

(either the first, the second, or p erhaps both) incorrectly. D epending on the

operators on the right-hand side, inverting is sometim es the right thing to do for

¥ and # elimination. Finally, there is an O ther category for errors that did not fall

into one of the other six. These included the syntax errors and also errors in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 98

clicking (e.g., clicking delta instead of omega). The percentage under the columns

labeled Total are the num ber of errors for that particular elimination symbol over

the total num ber of errors.

Overall, the correlation betw een the percentages of the Exam ples group

w ith those of the Syntax(Hint) group is 0.87, indicating that there are m ore

sim ilarities betw een the two groups than differences. There are m ain effects of

elim ination symbol (F(3,66) = 14.78, M SE = 6.08, p < .001) and error type (F(6,132)

= 23,12, M SE = 12.46, p < .001). The interaction of group by elim ination symbol is

not significant (F(3,66) = 1.48, M SE = 6.08, p > .1), indicating that w ith in the two

groups, the partic ipan ts m ade a sim ilar p a tte rn of errors across the four

elimination symbols. The interaction of elim ination symbol by error type and the

th ree -w ay in teraction of opera to r by erro r type by group are significant

(F(18,396) = 30.31, M SE = 4.32, p < .001 for the tw o-w ay, and F(18,396) = 1.84,

M S E = 4.32, p < .05 for the three-w ay), m eaning that the different elim ination

symbols elicited different types of errors, and that those errors differed at least

slightly betw een the Syntax(Hint) and Exam ples participants. H ow ever, the

interaction of group by error type is not significant (F(6,132) = 1.64, M SE = 12.46,

p > .1), indicating that the two groups, on the whole, m ade similar erro r patterns

overall.

Variablization. One of the m ain interests in this experim ent w as to see how

people variablized the rules they are learning and how they generalized symbol

position and type. The best m easurem ent of this is to look at transfer from the

sim ple to the complex problems. Table 7.6 displays percentages relating to the

first time participants had the opportunity to transfer knowledge to the complex

problem s. It displays data collapsed across » and # sign elim ination problem s,

which both involve inverting operators. The first colum n, Same O perator in 2nd

Position, refers to w hen participants correctly inverted the same operator they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 99

Table 7.6
Transfer from simple to complex problems

Same O perator Related O perator Related Operator
in 2nd Position in 1st Position in 2ndPosition

Examples 71% 25% 17%
Syntax(Hint) 88% 13% 13%

had seen inverted in the simple problems, bu t in the second position, not the first

(e.g., a ® in second position w hen it was v elimination). The other two columns

refer to correctly inverting the related operator when it appeared either in first or

second position (e.g., a v in first or second position w hen it was v elimination).

Only the Syntax(Hint) group knew that these two pairs of operators were related.

A test of the proportions show that the two groups are not significantly different

from one another, but both groups were m uch better at generalizing the same

operator than the related operator (p < .01).

Discussion

The m ain m anipulation of this experim ent, betw een the Examples group

and the Syntax(Hint) group, d id not appear to m ake a difference. Only slight

differences existed in the error data, and people in the Syntax(Hint) group were

no different at transferring, in either position, to the related operator w hen it

needed to be inverted. Based on participants' answ ers to w hat they thought the

rules of the task were, the tw o groups w ere su rp ris in g ly equal. Several

participants in the Syntax(Hint) group could not articulate w hy the hint of the

inverse operators was im portan t to the task. Due to this lack of difference

betw een the groups, only w eak evidence w as found for the O ver Specificity

Contribution in this experiment:

3) Lack of adequate syntactic know ledge causes the analogy

mechanism to build over-specific rules from examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: General Symbols 1 0 0

The m anipulations used in this experiment, transferring from the sim ple

to the complex problem s and having just the sign elim ination steps, m ight not

have been sufficient to elicit the effects seen in the previous experim ents. An

informal examination of three protocol participants in the Syntax(Hint) condition

reveals that w hen transitioning from the simple to the com plex problems, all of

participants felt that the two types of problems were disjoint, and one even felt

that the rules had radically changed. When solving the complex problems, two of

them did not fully reflect on how the hint m ight be able to help. All three of the

participants, and this was true of m any of the other participants as expressed in e

exit in terview , felt that w hen they were first try ing to solve the com plex

problems, that m any rules existed.

The sign elim ination steps by themselves m ight not be enough to engage

m any participants in the right m indset to correctly learn the task. These steps

may be far enough rem oved from algebra that participants do not see it as such,

and so do not make use of that knowledge. Furtherm ore, the transform ations

appear strange enough that even up-fron t knowledge of the inverse operators

helps. Perhaps it is only in combination with the addition and cancellation steps

that the differences in sign elim ination between the Exam ples groups and the

Syntax groups seen in p rev ious experim ents em erge. The add ition and

cancellation steps depend heavily upon the knowledge of inverse operators. The

sign elim ination steps, while the m ost succinct set of rules use inverse operators,

can be adequately learned either by remembering a set of specific incidences or

by learning w hat m any partic ipants referred to as "heuristics" (e.g., "if a v

appeared out front, and a * appeared later, it tended to change to a ®").

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8
Conclusions

I began this dissertation by asking three questions: 1) How do people leam

a new task, given the instructions and inform ation available to them? 2) How do

they bring their existing knowledge, w hen appropriate, to bear on learning the

new task? and 3) Is there is a simple, underlying m echanism which can account

for this learning? The preceding chapters have provided four experiments and an

ACT-R model which attem pted to shed light on these questions. In this chapter I

will summarize and discuss the results. In the first chapter I presented three main

points I wanted to m ake in this dissertation. In sendee to answ ering the three

questions m entioned above. I will sum m arize the results of this dissertation in

the context of these three points, as well as how the model bears on these issues.

1) In learning the rules of a task such as Symbol Fun, learners

construct internal declarative representations of the examples

presented to them. These declarative representations are

influenced by know ledge of the task's syntax, as w ell as other

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Conclusions 102

information particular to the task (e.g., knowledge of inverse

operators).

Experim ents 1 and 3 clearly dem onstra ted this point. Both of these

experim ents had groups that w ere only given exam ples and groups th a t w ere

given syntactical inform ation w ith the examples. The groups given the additional

inform ation perform ed better across m ost m easures, even though in m ost cases

they only referred to the additional inform ation once, at the time of initial

instruction. People w ould only refer back to the exam ples screen while actually

learning the task, b u t these exam ples are being in terpreted th ro u g h the

additional declarative inform ation that the problem solver has. This declarative

knowledge could either be given to them, in the case of the syntax groups, or it

could be induced, in the case of the exam ples only groups. This in terpretive

process results in a rich elaboration of the examples by which the rules of the task

can be more easily and accurately learned by the problem solver.

The full ACT-SF m odel presented in C hapter 5 has the best representation

possible w ith w hich to learn the task. That is, the elaborations it has of the

examples enables it to learn the correct rules of the task with little difficulty. It

represents each character string as having a left- and right-hand side and that

each symbol within the character is separate from the others. It knows about the

inverse operators, and the exam ples are m arked to allow the m ost efficient

learning of the sign elim ination steps. This roughly corresponds to the elaborate,

declarative inform ation that the Syntax(Hint) group had at the beginning of the

task, or the rep resen ta tio n th a t successful Exam ples group p a rtic ip an ts

eventually build. The m odel takes into account the additional information it has

w hen it forms the rules, and the learning is better w hen such inform ation is

available. If that inform ation is taken out of the m odel (e.g., the know ledge of

inverse operators, or the underlying equation representation that the m odel uses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Conclusions 103

is sim plified), the model m im ics perform ance of unsuccessful participants, or

participants w ho are just beginning to learn.

2) One of the strongest predictors of success for learning Symbol

Fun was if the learner was able to access and use their

knowledge of algebra.

In Experim ent 1, the people in the Examples group had a significantly

better chance of learning the task if, while in the process of learning the task, they

w ere rem inded of algebra. Of the 23 people in that condition, 12 learned the task.

Of those 12,11 were rem inded of algebra. Of the 11 people w ho did not leam the

task, only 1 person was rem inded of algebra. In both the syntax groups, 9 of the

12 people w ho finished were rem inded of algebra. People's knowledge of algebra

was affecting how (and if) they learned this task, and Experiment 2 m anipulated

people's awareness as to how the task was related to algebra.

Experiment 2 directly tested this claim. Three levels of hint were provided,

each level subsum ing the one below it. Twelve of 19 participants successfully

com pleted the task in the Algebra(Low) group (the group with the least verbose

hint), and 12 of 12 participants in the Algebra(Interm ediate) and 12 of 13 in the

Algebra(High) groups did likewise. The latter two proportions are significantly

different from the Examples group (p < .05). All three of the algebra hint groups

completed the task in significantly shorter time (p < .05) than the Examples group

of Experim ent 1. The algebra h in t helped the participants considerably, w ith the

suggestion that the more explicit the hint, the better the learning.

The m odel does not explicitly represent people's knowledge of algebra. A

safe assum ption w ould be th a t all partic ipants in these experim ents had the

know ledge and representations of basic algebra that Symbol Fun utilizes, bu t

som e participants may have been m ore practiced w ith it than others. Inasm uch

as Sym bol Fun m akes use of the sam e (or, at least, sim ilar) u n d erly in g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Conclusions 104

representations, p rov id ing people the inform ation that the task is based on

algebra upfront should increase the levels of activation of those structures and

m ake them prim ed to be used. The Algebra(Interm ediate) and Algebra(High)

groups were m ore successful than the Algebra(Low) group because their hint

specified better which parts of their algebraic knowledge w ould be needed.

3) Lack of adequate syntactic know ledge causes the analogy

mechanism to build over-specific rules from examples.

Experiment 4 was designed to directly test this claim, b u t the first three

experim ents each provided some additional evidence. In these three experiments,

the m ore information people w ere given, the more liberal their generalizations.

The syntax groups w ere m ore likely to attem pt to m eld the ® and © sign

elim ination rules together, and they did not perseverate in m aking the error of

sw itching the operators around for # elimination. These participants appeared to

be m ore theory-driven, w hereas the participants in the Examples groups were

m ore data-driven. That is, since the participants in the syntax groups had more

declarative information w ith which to elaborate their rule formation, they did so.

The Examples groups were m ore conservative.

Unfortunately, this particular finding did not appear in Experim ent 4. The

Syntax(Hint) group m ade sim ilar errors as the Examples group. The m ain reason

for this lack of effect was that participants perceived the scaled-dow n version of

the task used in this experim ent (which only used one-step problem s) as less

algebra-like than the full version of the task used in the previous experim ents.

This resulted in a num ber of participants not fully learning the rules of the task,

and instead either relying on specific instances or partial rules to do the task.

However, one can still use the results of this experim ent to exam ine how

people variablize the rules of a task they are learning. Participants are extremely

likely to transfer to different positions. That is, for this task they w ould the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Conclusions 105

thing to the same operator w hen it appeared in a different position. They w ould

not, though, transfer to related operators. The partic ipants in the Syntax(Hint)

group, w ho knew about the related operators, w ere no m ore likely than the

Exam ples group partic ipan ts to invert the related operator, either w hen it

appeared in the same or a different location.

The model can account for these effects. It has supporting declarative

inform ation, such as the syntax and hint inform ation, w hich the examples are

filtered through. The m odel will use these m arked-up exam ples in forming the

rules it is learning. These em bellished rules can be m ore general in their

application, since they can take into account that a symbol is being inverted, and

that is w hy that change occurs. In the case of m is-m ark e d -u p exam ples,

m isgeneralizations occur. In Experim ent 4, participants w ere not using, in the

case of the Syntax(Hint) group, the inform ation p rov ided to them to the best

advantage. Both the Exam ples and Syntax(Hint) g roups had a sparse, n o n -

algebraic representation of the task, and so neither g roup transferred to the

related operator quickly. The model accounts for this by not using its knowledge

of inverse operators when given those kinds of transfer problems.

Implications

Psychological. Perhaps the m ain feature of this dissertation is in bringing

together several threads of past psychological research— learning from examples,

transfer of cognitive skill, and forming generalizations— and providing a model

of those processes w ithin an existing unified theory of cognition, A nderson's

ACT-R theory. As d iscussed in C hapter 2, few m odels of learning have

attem pted to model the acquisition of a large part of a dom ain. Those that have,

Alex and ZBIE for example, have largely been separate m odels of learning, not

tied to any existing theory. Inasm uch as that indicates the generality of the

approach, that is good. However, hum ans have a specific implementation of such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Conclusions 106

learning m echanism s, and ACT-R has been used to successfully m odel hum ans

in m any other domains. Furthermore, both Alex and ZBIE, as well as m any of the

other m odels discussed in C hapter 2 w ere no t com pared to em pirical results

obtained from humans..

The m odel developed in C hapter 5 w as created on the basis of the

empirical results of the first two experim ents (Chapters 3 and 4), and had testable

p red ic tions (C hapters 6 and 7). It can therefore stand as a s trong test of

A nderson 's claim that all know ledge begins in a declarative form, and that

procedures arise ou t of that declarative know ledge. The m odel cap tures the

im portant aspects of people learning the task in all the conditions, and contains

explanations for w hy people in certain conditions are facilitated in their learning.

The only notable exception is the com plete failure to learn the task in the

Examples group in the prefix version of the task (Chapter 6). Specifically, the

model, and the ACT-R analogy mechanism in general, is very good at m atching

symbols between lines of a problem 's solution. Given the formal equivalence of

the prefix and infix version of the task, the m odel w ould predict the Examples

groups in both versions to perform the same. O ne could provide an explanation

w ithin ACT-R, that the declarative representations that underlie infix notation

are stronger than those for a prefix notation (due to more previous exposure to

infix notation), and so the learning, and also the probability of being rem inded of

algebra, is increased. This fact is not captured by the current model.

Pedagogical. I w ould like to conclude w ith a short discussion of the

im plications of this research on educational issues. This dissertation lends itself

to such a discussion, even though it focused on m odeling the initial learning of a

task, and not necessarily on retention of that know ledge. A future study w ould

bring back participants six m onths or a year later and m easure how well they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Conclusions 107

rem em bered the task. However, due to the moderately sim plistic nature of it, this

task m ay not be the best one to u se .1

The empirical results, and the m odel which was based on them, argue that

the best learning occurs w hen w hat is created w ith in the s tu d en t's m ind is an

appropriate representation of the examples used to illustrate the dom ain. Or put

another w ay, students can learn by example, b u t to be m ost effective, these

examples need to be em bellished w ith additional declarative knowledge. For this

dom ain, this additional declarative inform ation could be either telling the

student that the task is based on algebra (and how it is related), or by telling the

task 's syntax, including the fact that two pairs of sym bols are related to one

another. This points to the im portance of doing a careful task analysis of the

dom ain to be taught, and to use that task analysis in design ing instructional

material. This has been argued before by other researchers (e.g., Resnick, 1973).

However, in the case of this dissertation, the m odel prov ides an explanation of

the im portance of each piece of additional declarative inform ation, and can

provide clues in diagnosing a studen t's deficiency in learning the task.

A n ecdotally , once learned, people remember this task. Out of the m any Carnegie Mellon
University Subject Pool participants who have learned this task, three have mistakenly signed up
for different versions of this task conducted across different semesters. All three remembered the
task sufficiently well as soon as they started that they were able to perform the task with few
errors (though unmeasured).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

A nderson, J. R. (1983). The architecture o f cognition. C am bridge, MA:
H arvard University Press.

A nderson, J. R. (1991). The adaptive nature of hum an categorization.
Psychological Review, 98,409-429.

Anderson, J. R. (1993). Rules o f the mind. Hillsdale, NJ: Erlbaum.
Bartlett, F. C. (1932). Remembering: A study in experimental and social

psychology. Cambridge: Cam bridge University Press
Bassok, M. (1990). T ran sfe r of dom ain -specific p ro b lem -so lv ing

procedures. Journal o f Experimental Psychology: Learning, Memory, and Cognition,
16(3), 522 - 533.

Bassok, M., & H olyoak, K. J. (1989). In terdom ain transfer betw een
isom orphic topics in algebra and physics. Journal o f Experimental Psychology:
Learning, Memory, and Cognition, 25(1), 153-166.

Bassok, M., W u, L., & Olseth, K. L. (1995). Judging a book by its cover:
In terpretative effects of con ten t on p rob lem -so lv ing transfer. M em ory &
Cognition, 23(3), 354-367.

Bernardo, A. B. I. (1994). P rob lem -specific in fo rm ation and the
developm ent of p ro b lem -ty p e schem ata. Journal o f Experimental Psychology:
Learning, Memory, and Cognition, 20, 379-395.

Blessing, S. B. & A nderson, J. R. (1996). How people learn to skip steps.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 792-810.

Blessing, S. B. & Ross, B. H. (1996). C on ten t effects in problem
categorization and problem solving. Journal o f Experimental Psycholog]/: Learning,
Memory, and Cognition, 22, 792-810.

Bransford, J. D. & Johnson, M. K. (1972). C ontextual prerequisites for
understanding: Some investigations of com prehension and recall. Journal o f
Verbal Learning and Verbal Behaviour, 11, 717-726.

Cheng, P. W., H olyoak, K. J., N isbett, R. E., & O liver, L. M. (1986).
Pragmatic versus syntactic approaches to training deductive reasoning. Cognitive

Psychology, 1 8 ,293-328.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). C ategorization and

representation of physics problem s by experts and novices. Cognitive Science, 5,
121-152.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References 109

Cummins, D. D. (1992). The role of analogical reasoning in the induction
of problem categories. Journal o f Experimental Psychology: Learning, Memory, &

Cognition, 1 8 ,1103-1124.
Fong, G.T., Krantz, D. H., & Nisbett, R.E. (1986). The effects of statistical

training on thinking about everyday problems. Cognitive Psychology, 1 8 ,253-292.
Hardim an, P. T., Dufresne, R., & Mestre, J. P. (1989). The relation between

problem categorization and problem solving am ong experts and novices. Memory

& Cogtution, 17 ,627-638.
Hayes, J. R., & Sim on, H. A. (1974). U nderstand ing w ritten problem

instructions. In Lee W. G regg (Ed.), Knoivledge and Cognition, H illsdale, NJ:
Erlbaum.

H insley, D. A., H ayes, J.R., & Simon, H.A. (1977). From w ords to
equations: Meaning and representation in algebra w ord problem s. In M. A. Just
& P. A. C arpenter (Eds.), Cognitive Processes in Comprehension, H illsdale, NJ:
Erlbaum.

Hofstadter, D. R., Mitchell, M. & French, R. M. (1987). Fluid concepts and
creative analogies: A theory and its computer implementation (Tech. Rep. No. 10). Ann
Arbor, MI: University of M ichigan, Cognitive Science and M achine Intelligence
Laboratory.

Holyoak, K. J., & Koh, K. (1987). Surface and s tructu ra l sim ilarity in
analogical transfer. Memory £r Cognition, 15 ,332-340.

HyperCard 2.1.1 [C om puter software]. (1994). C upertino , CA: Apple
Computer.

Kieras, D. E. & Bovair, S. (1984). The role of a mental m odel in learning to
operate a device. Cognitive Science, 8, 255-273.

Lewis, C. (1988). W hy and how to learn w hy: A n alysis-based
generalization of procedures. Cognitive Science, 12, 211-256.

Neves, D. M. (1978). A com puter program that learns algebraic procedures
by examining examples and by w orking test problem s in a textbook. Proceedings

o f the Second National Conference o f the Canadian Society for Computational Studies of
Intelligence.

Neves, D. M. (1981). Learning procedures from exam ples. U npublished
doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood
Cliffs, NJ: Prentice-Hall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References 1 1 0

Novick, L. R. (1988). A nalogical transfer, problem sim ilarity , and
expertise. Journal o f Experimental Psychology: Learning, M emory, and Cognition,

14(3), 510-520.
Reed, S. K., & Bolstad, C. A. (1991). Use of examples and procedures in

problem solving. Journal o f Experimental Psychology: Learning, M emory, and

Cognition, 17(4), 753-766.
Resnick, L. B., W ang, M. C., & K aplan, J. (1973). Task analysis in

curricu lum design: A h ierarchically sequenced in troducto ry m athem atics
curriculum. Journal o f Applied Behavior Analysis, 6, 679-710.

Ross, B. H. (1984). Rem indings and their effects in learning a cognitive
skill. Cognitive Psychology, 16, 371-416.

Ross, B. H. (1989). Distinguishing types of superficial similarities: Different
effects on the access and use of earlier problem s. Journal o f Experimental
Psychology: Learning, Memory, and Cognition, 1 5 ,456-468.

Ross, B. H., & Kennedy, P. T. (1991). Generalizing from the use of earlier
exam ples in problem solving. Journal o f Experimental Psychology: Learning,
Memory, and Cognition, 26(1), 42-55.

Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of
English verbs. In J. L. M cClelland & D. E. Rum elhart (Eds.), Parallel Distributed
Processing: Explorations in the M icrostructure o f Cognition (Vol. 2, pp. 216-271).
Cambridge, MA: MIT Press.

Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in
memory. In R. C. A nderson, R. J. Spiro, & W. E. M ontague (Eds.), Schooling and
the acquisition ofknoivledge. Hillsdale, NJ: Erlbaum.

Schank, R. C., & Abelson, R. (1977). Scripts, plans, goals, and understanding.
Hillsdale, NJ: Erlbaum.

Shrager, J., & Klahr, D. (1986). Instructionless learning about a complex
device: the paradigm and observations. International Journal o f M an-M achine
Studies, 2 5 ,153-189.

Siklossy, L. (1972). N atu ra l language learning by com puter. In H. A.
Simon and L. Siklossy (Eds.), Representation and Meaning. Englew ood Cliffs, NJ:
Prentice-Hall.

Simon, H. A. (1972). The Heuristic Compiler. In H. A. Simon & L. Siklossy
(Eds.), Representation and Meaning. Englewood Cliffs, NJ: Prentice-Hall.

Singley, M. K., & A nderson, J. R. (1989). The transfer o f cognitive skill.
Cambridge, MA: H arvard University Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References 1 1 1

Sweller, J., & C ooper, G. A. (1985). The use of w orked exam ples as a
substitute for problem solving in learning algebra. Cognition and Instruction, 2(1),
59-89.

Thorndike, E. L. (1906). Principles o f teaching. N ew York, NY: A. G. Seiler.
Thorndike, E. L., & W oodw orth , R. S. (1901). The in fluence of

im provem ent in one m ental function upon the efficiency of o ther functions.
Psychological Review, 8, 247-261.

Williams, D. S. (1972). C om puter program organization induced from
problem examples. In H. A. Simon and L. Siklossy (Eds.), Representation and
Meaning. Englewood Cliffs, NJ: Prentice-Hall.

Zhu, X. & Simon, H. A. (1987). Learning m athem atics from examples and
by doing. Cognition and Instruction, 4 , 137-166.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A: Additional Information
Information available to both the Syntax(Hint) and Syntax(No Hint) groups:

The problem takes the form of a string of characters. The characters
are selected from the following:

The character serves to divide the character string into a left-
hand side and a right-hand side.

Object symbols always have a connector to their left, and may
appear on either the left or right side of the character string.

The ' p ' , which only appears on the left side, may or may not have
a connector to its left.

Goal
Your goal is to isolate the ' p ' character on the left-hand side.

A set of rules exist that dictates how you can change the current
character string into a new character string.

Only one rule is applicable for any particular character string.

If a connector appears in front of the ' p ' , the last step is to remove
that connector from it.

Information available only to the Syntax(Hint) group:

The ® and the v symbols, as well as the © and the # symbols, are
associated w ith one another.

Syntax

©, ®, #, v

a. r, a, o
<->, p

Are the connector symbols
Are the object symbols
Are special symbols

Hint

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: The Annotated Examples
Example 1

£?®0<->®A

P<r+® A ¥ 0

X+A—+C
X+A-A=+C-A
X=+C-A

Example 2
-X*B=-A

¥p#r© r<->¥0© r - x*b+b= -a -j-b
¥ p < ^ ¥ 0 © r
p<-»®<i>©r

Example 3
©p<-»#r®A
p ^ # A ® r

-X =-A-B
X=+A-B

-X=*B+C
X=*C+B

Example 5
#̂ o«->#r©A
p<->©r#A

Example 6
®p®A<->©r
®£?®A¥A<->©r¥A
®p<-»©I>A
p<->©T¥A

Example 7
p#r<->©A
p#r©n->©A©r
p<->©A©r

Example 4
p¥T<->¥CD

p ¥ r@ r^ ¥ < D ® r
p<-»¥<t®r

X-B=-A
X-B+B=-A+B
X=-A+B

Example 8
©p®r<-̂ ®n
© p ® r¥ r< ^ ® Q ¥ r
©^<->®Q ¥r
P<-4® f ¥ Q

*X=*B+C
X=-B*C

+X+C=-B
+X+C-C=-B-C
+X=-B-C
X=-B-C

X*B=+C
X *B-B=-O B
X = -O B

-X+B=+D
-X+B-B=+D -B
-X =+ D -B
X=+B-D

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model
(clearall)

(sgp :ea 'restricted :at nil)

(wmetype transform-string left
right)

(wmetype expression specop specarg
opl argl op2 arg2)

(wmetype change operator argument
string result)

(wmetype invert operator opl argl)
(wmetype setup operator argument

string result left right)
(wmetype operator inverse type)

(addwm
; Problem 1

X - A = * C
(Probleml
isa transform-string
left ProblemlLeft
right ProblemlRight)
(ProblemlLeft
isa expression
specop blankl
specarg X
opl -
argl A)
(ProblemlRight
isa expression
specop blankl
specarg blank2
opl *
argl C)

; Problem 2
+ X = - 3 / D

(Problem2
isa transform-string
left Problem2Left
right Problem2Right)
(Problem2Left
isa expression
specop plus
specarg X)
(Problem2Right
isa expression
specop blankl
specarg blank2
opl -
argl B
op2 /
arg2 D)

; Problem 3
/ X * D = + B

(Problem3
isa transform-string
left Problem3Left
right Problem3Right)
(ProblemsLeft
isa expression
specop divide
specarg X
opl *
argl D)
(Problem3Right
isa expression
specop blankl
specarg blank2
opl +
argl 3)

; Problem 4
: - X = - D * A
(Problem4
isa transform-string
left Problem4Left
right Problem4Right)
(Problem4Left
isa expression
specop minus
specarg X)
(Problem4Right
isa expression
specop blankl
specarg blank2
opl -
argl D
op2 *
arg2 A)

Problem 5
* X = * A + C

(Problem5
isa transform-string
left Problem5Left
right Problem5Right)
(Problem5Left
isa expression
specop multiply
specarg X
opl +
argl C)
(Problem5Right
isa expression
specop blankl
specarg blank2

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 115

opl *
argl A)

(NewLeft
isa expression)
(NewRight
isa expression)

(*
isa operator
inverse /
type multiplication)

(/
isa operator
inverse *
type multiplication)

(-
isa operator
inverse +
type addition)

(*
isa operator
inverse -
type addition))

Example 1
; ; X + A = * B

(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Examplei-Dependency
isa dependency
goal ExamplelLinel
subgoals (SubgoallLl SubgoallRl)
modified (Newgoall-i)
constraints (Leftl-1)
dont-cares (blankl blank2 X))
(ExamplelLinel
isa transform-string
left Leftl-1
right Rightl-1)
(Leftl-1
isa expression
specop blankl
specarg X
opl +
argl A)
(Rightl-1
isa expression
specop blankl
specarg blank2
opl *
argl B)
(SubgoallLl
isa change
operator +

argument A
string Leftl-1
result NewLeft)
(SubgoallRl
isa change
operator +
argument A
string Rightl-1
result NewRight)
(NewGoall-1
isa transform-string
left NewLeft
right NewRight)

;Adds a - A to the left hand side
;of the equation
(Subgoal1L2-Dependency
isa dependency
goal SubgoallL2
subgoals (Leftl-2)
modified (SubgoallL3)
constraints (+ Leftl-1)
dont-cares (addition)
generals (blankl X)
success 1
actions ((!pop!)))
(Subgoal1L2
isa change
operator +
argument A
string Leftl-1
result nil)
(Leftl-2
isa expression
specop blankl
specarg X
opl +
argl A
op2 -
arg2 A)
(SubgoailL3
isa change
operator +■
argument A
string Leftl-1
result Leftl-2)

;Adds a - A to the right hand side
;of the equation
(SubgoallR2-Dependency
isa dependency
goal SubgoallR2
subgoals (Rightl-2)
modified (SubgoallR3)
constraints (+ Rightl-1)
dont-cares (addition)
generals (blankl blank2)
success 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 116

actions ((!pop!)))
(Subgoal1R2
isa change
operator +
argument A
string Rightl-1
result nil)
(Rightl-2
isa expression
specop blankl
specarg blank2
opl *
argl B
op2 -
arg2 A)
(SubgoallR3
isa change
operator +
argument A
string Rightl-1
result Rightl-2)

;Cancels the + A - A on the left
;side of the equation
(ExamplelLine2-Dependency
isa dependency
goal ExamplelLinel
subgoals (Leftl-3)
modified (SubgoallL4)
constraints (Leftl-2)
success 1
generals (+ - A))
(ExamplelLinel
isa transform-string
left Leftl-2
right Rightl-2)
(Leftl-3
isa expression
specop blank!
specarg X)
(SubgoallL4
isa transform-string
left Leftl-3
right Rightl-2))

Example 2
- X * C = - A

(addwm
,-Used by analogy mechanism to set
the initial 2 subgoals of adding
;to both sides
(Examp le2Linel-Dependency
isa dependency
goal Example2Linel
subgoals (Subgoal2Ll SubgoaURl)
modified (Newgoal2-l)

constraints (Left2-1)
dont-cares (minus blankl blank2

X))
(Example2Linel
isa transform-string
left Left2-1
right Right2-1)
(Left2-1
isa expression
specop minus
specarg X
opl *
argl C)
(Right2-1
isa expression
specop blankl
specarg blankl
opl -
argl A)
(SubgoallLl
isa change
operator *
argument C
string Left2-1
result NewLeft)
(SubgoallRl
isa change
operator *
argument C
string Right2-1
result NewRight)
(NewGoal2-l
isa transform-string
left NewLeft
right NewRight)

;Adds a / C to the left hand side
;of the equation
(Subgoal2 L2-Dependency
isa dependency
goal Subgoal2L2
subgoals (Left2-2)
modified (Subgoal2L3)
constraints (* Left2-1)
dont-cares (multiplication)
generals (minus X)
success 1
actions (((pop!)))
(Subgoal2L2
isa change
operator *
argument C
string Left2-1
result nil)
(Left2-2
isa expression
specop minus
specarg X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 117

opl '
argl C
op2 /
arg2 C)
(Subgoal2L3
isa change
operator *
argument C
string Left2-1
result Left2-2)

,-Adds a / C to the right hand side
;of the equation
(Subgoal2R2-Dependency
isa dependency
goal Subgoal2R2
subgoals (Right2-2)
modified (Subgoal2R3)
constraints (* Right2-1)
dont-cares (multiplication)
generals (blankl blank2)
success 1
actions ((!pop!)))
(Subgoal2R2
isa change
operator *
argument C
string Right2-1
result nil)
(Right2-2
isa expression
specop blankl
specarg blank2
opl -
argl A
op2 /
arg2 C)
(Subgoal2R3
isa change
operator '
argument C
string Right2-1
result Right2-2)

Cancels the * C / C on the left
;side of the equation
(Example2Line2-Dependency
isa dependency
goal Example2Line2
subgoals (Left2-3)
modified (Subgoal2L4)
constraints (Left2-2)
success 1
generals (* / C))
(Example2Line2
isa transform-string
left Left2-2
right Right2-2)

(Left2-3
isa expression
specop minus
specarg X)
(Subgoal2L4
isa transform-string
left Left2-3
right Right2-2)

;Used by analogy mechanism to set
;the subgoals of eliminating the
;sign in front of X, then doing
;correct thing to the RHS
(Example2Line3-Dependency
isa dependency
goal Example2Line3
subgoals (Subgoal2L5 Subgoal2R4)
modified (NewGoal2-2)
constraints (Left2-4))
(Example2Line3
isa transform-string
left Left2-4
right Right2-2)
(Subgoal2L5
isa change
operator minus
string Left2-4
result NewLeft)
(Left2-4
isa expression
specop minus
specarg X)
(Subgoal2R4
isa setup
operator minus
string Right2-2
result NewRight)
(NewGoal2-2
isa transform-string
left NewLeft
right NewRight)

; Remove sign in front of X
(Subgoal2L6-Dependency
isa dependency
goal Subgoal2L6
subgoals (Left2-5)
modified (Subgoal2L7)
constraints (Left2-4)
generals (minus)
success 1
actions ((!pop!)))
(Subgoal2L6
isa change
operator minus
string Left2-4
result nil)
(Left2-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 118

isa expression
specop nil
specarg X)
(Subgoal2L7
isa change
operator minus
string Left2-4
result Left2-5)

; Set up RKS for possible
; inversion, subgoaling on the two
; pairs
(Subgoal2R5-Dependency
isa dependency
goal Subgoal2R5
subgoals (Right2-3 Right2-4)
modified (Subgoal2R6)
constraints (Right2-2)
specifics (minus))
(Subgoal2R5
isa setup
operator minus
string Right2-2
result nil)
(Right2-3
isa invert
operator minus
opl -
argl A)
(Right2-4
isa invert
operator minus
opl /
argl C)
(Subgoal2R6
isa setup
string Right2-2
result Right2-2
left Right2-3
right Right2-4)

; Invert the first op
(Right2-3-Dependency
isa dependency
goal Right2-3
modified (Right2-5)
constraints ()
success 1)
(Right2-5
isa invert
opl +
argl A)

; Leave the second one
(Right2-4-Dependency
isa dependency
goal Right2-4
modified (Right2-6)

constraints (/)
dont-cares (*)
success 1)
(Right2-6
isa invert
opl /
argl C))

Example 3
; ; / X = * C + B

(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
; to both sides
(Example3Linel-Dependency
isa dependency
goal Example3Linel
subgoals (Subgoal3Ll Subgoal3Rl)
modified (NewGoal3-l)
constraints (Left3-1))
(Example3Linel
isa transform-string
left Left3-1
right Right3-1)
(Subgoal3Ll
isa change
operator divide
string Left3-1
result NewLeft)
(Left3-1
isa expression
specop divide
specarg X)
(Right3-1
isa expression
specop blankl
specarg blank2
opl ’
argl C
op2 +
arg2 B)
(Subgoal3Rl
isa setup
operator divide
string Right3-1
result NewRight)
(NewGoal3-l
isa transform-string
left NewLeft
right NewRight)

; Remove sign in front of X
(Subgoal3L2-Dependency
isa dependency
goal Subgoal3L2
subgoals (Left3-2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model

modified (Subgoal3L3)
constraints (Left3-1)
success 1
actions ((!pop!)))
(Subgoal3L2
isa change
operator divide
string Left3-1
result nil)
(Left3-2
isa expression
specop nil
specarg X)
(Subgoal3L3
isa change
operator divide
string Left3-1
result Left3-2)

; Switch the two operands around
(Subgoal3 R2-Dependency
isa dependency
goal Subgoal3R2
subgoals (Right3-2)
modified (Subgoal3R3)
constraints (Right3-1)
success 1
actions ((!pop!)))
(Subgoal3R2
isa setup
operator divide
string Right3-1
result nil)
(Right3-2
isa expression
specop blankl
specarg blank2
opl *
argl B
op2 +
arg2 C)
(Subgoal3R3
isa setup
string Right3-1
result Right3-2))

Example 4
; ; X - C = - A

(addwm
,-Used by analogy mechanism to set
; the initial 2 subgoals of adding
;to both sides
(Example4Linel-Dependency
isa dependency
goal Example4Linel
subgoals (Subgoal4Ll Subgoal4Rl)

modified (Newgoal4-l)
constraints (Left4-1)
dont-cares (blankl blank2 X))
(Example4Linel
isa transform-string
left Left4-1
right Right4-1)
(Left4-l
isa expression
specop blankl
specarg X
opl -
argl C)
(Right4-1
isa expression
specop blankl
specarg blank2
opl -
argl A)
(Subgoal4Ll
isa change
operator -
argument C
string Left4-1
result NewLeft)
(Subgoal4Rl
isa change
operator -
argument C
string Right4-1
result NewRight)
(NewGoal4-l
isa transform-string
left NewLeft
right NewRight)

;Adds a + C to the left hand si<
;of the equation
(Subgoal4L2-Dependency
isa dependency
goal Subgoal4L2
subgoals (Left4-2)
modified (Subgoal4L3)
constraints (- Left4-1)
dont-cares (addition)
generals (blankl X)
success 1
actions ((!pop!)))
(Subgoal4L2
isa change
operator -
argument C
string Left4-1
result nil)
(Left4-2
isa expression
specop blankl
specarg X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 1 2 0

opl -
argl C
op2 +
arg2 C)
(Subgoal4L3
isa change
operator -
argument C
string Left4-1
result Left4-2)

;Adds a + C to the right hand side
;of the equation
(Subgoal4R2-Dependency
isa dependency
goal Subgoal4R2
subgoals (Right4-2)
modified (Subgoal4R3)
constraints (- Right4-1)
dont-cares (addition)
generals (blankl blank2)
success 1
actions ((!pop!)))
(Subgoal4R2
isa change
operator -
argument C
string Right4-1
result nil)
(Right4-2
isa expression
specop blankl
specarg blank2
opl -
argl A
op2 +
arg2 C)
(Subgoal4R3
isa change
operator -
argument C
string Right4-1
result Right4-2)

.-Cancels the - C + C on the left
;side of the equation
(Example4Line2-Dependency
isa dependency
goal Example4Line2
subgoals (Left4-3)
modified (Subgoal4L4)
constraints (Left4-2)
success 1
generals (- + C))
(Example4Line2
isa transform-string
left Left4-2
right Right4-2)

(Left4-3
isa expression
specop blankl
specarg X)
(Subgoal4L4
isa transform-string
left Left4-3
right Right4-2))

Example 5
; ; * X = * C / D

(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Example5Linel-Dependency
isa dependency
goal Example5Linel
subgoals (Subgoal5Ll Subgoal5Rl)
modified (NewGoal5-i)
constraints (Left5-1))
(Example5Linel
isa transform-string
left Left5-l
right Right5-1)
(Subgoal5Ll
isa change
operator multiply
string Left5-1
result NewLeft)
(Left5-l
isa expression
specop multiply
specarg X)
(Right5-1
isa expression
specop blankl
specarg blank2
opl *
argl C
op 2 /
arg2 D)
(Subgoal5Rl
isa setup
operator multiply
string Right5-1
result NewRight)
(NewGoal5-l
isa transform-string
left NewLeft
right NewRight)

; Remove sign in front of X
(Subgoal5L2-Dependency
isa dependency
goal Subgoal5L2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 1 2 1

subgoals (Left5-2)
modified (Subgoal5L3)
constraints (Left5-1)
success 1
actions ((!pop!)))
(Subgoal5L2
isa change
operator multiply
string Left5-1
result nil)
(Left5-2
isa expression
specop nil
specarg X)
(Subgoal5L3
isa change
operator multiply
string Left5-1
result Left5-2)

;Set up RHS for possible
;inversion, subgoaling on the two
;pairs
(Subgoa15 R2 -Dependency
isa dependency
goal Subgoal5R2
subgoals (Rig'nt5-2 Right5-3)
modified (Subgoal5R3)
constraints (Right5-1)
specifics (multiply))
(Subgoal5R2
isa setup
operator multiply
string Right5-1
result nil)
(Right5-2
isa invert
operator multiply
opl *
argl C)
(Right5-3
isa invert
operator multiply
opl /
argl D)
(Subgoal5R3
isa setup
string Right5-1
result Right5-1
left Right5-2
right Right5-3)

; Invert the first op
(Ri ght 5-2-Dependency
isa dependency
goal Right5-2
modified (Right5-4)
constraints (*)

success 1)
(Right5-4
isa invert
opl /
argl C)

; Invert the second op
(Right 5-3-Dependency
isa dependency
goal Right5-3
modified (Right5-5)
constraints (*)
success 1)
(Right5-5
isa invert
opl ’
argl D))

Example 6
+ X + B = / C

(addwm
;Used by analogy mechanism to set
; the initial 2 subgoals of adding
; to both sides
(Exampie6Linel-Dependency
isa dependency
goal Example6Linel
subgoals (Subgoal6Ll Subgoal6R1)
modified (Newgoal6-l)
constraints (Left6-1)
dont-cares (plus blankl blank2

X))
(Example6Linel
isa transform-string
left Left6-1
right Righto-l)

(L e ft6 -i
isa expression
specop plus
specarg X
opl +
argl B)
(Right6-1
isa expression
specop blankl
specarg blank2
opl /
argl C)
(Subgoal6Ll
isa change
operator +
argument B
string Left6-1
result NewLeft)
(Subgoal6R1
isa change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 122

operator +
argument B
string Right6-1
result NewRight)
(NewGoal6-l
isa transform-string
left NewLeft
right NewRight)

;Adds a - B to the left hand side
;of the equation
(Subgoal6L2-Dependency
isa dependency
goal Subgoal6L2
subgoals (Left6-2)
modified (Subgoal6L3)
constraints (+ Left6-1)
dont-cares (addition)
generals (plus X)
success 1
actions ((!pop!)))
(Subgoal6L2
isa change
operator +
argument B
string Left6-1
result nil)

(L eft6-2
isa expression
specop plus
specarg X
opl +
argl B
op2 -
arg2 3)
(Subgoal6L3
isa change
operator +
argument B
string Left6-1
result Left6-2)

;Adds a - B to the right hand side
;of the equation
(Subgoal6R2-Dependency
isa dependency
goal Subgoal6R2
subgoals (Right6-2)
modified (Subgoal6R3)
constraints (+ Right6-1)
dont-cares (addition)
generals (blankl blank2)
success 1
actions ((!pop!)))
(Subgoal6R2
isa change
operator +
argument B

string Right6-1
result nil)
(Right6-2
isa expression
specop blankl
specarg blank2
opl /
argl C
op2 -
arg2 B)
(Subgoal6R3
isa change
operator +
argument B
string Right6-1
result Right6-2)

;Cancels the * C / C on the left
,-side of the equation
(Example6Line2-Dependency
isa dependency
goal Example6Line2
subgoals (Left6-3)
modified (Subgoal6L4)
constraints (Left6-2)
success 1
generals (+ - B))
(Example6Line2
isa transform-string
left Left6-2
right Right6-2)
(Left6-3
isa expression
specop plus
specarg X)
(Subgoal6L4
isa transform-string
left Left6-3
right Right6-2)

;Used by analogy mechanism to set
;the subgoals of eliminating the
;sign in front of X, then doing
;correct thing to the RHS
(Example6Line3-Dependency
isa dependency
goal Example6Line3
subgoals (Subgoal6L5 Subgoal6R4)
modified (NewGoal6-2)
constraints (Left6-4))
(Example6Line3
isa transform-string
left Left6-4
right Right6-2)
(Subgoal6L5
isa change
operator plus
string Left6-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 123

result NewLeft)
(Left6-4
isa expression
specop plus
specarg X)
(Subgoal6R4
isa setup
operator plus
string Right6-2
result NewRight)
(NewGoal6-2
isa transform-string
left NewLeft
right NewRight)

; Remove sign in front of X
(Subgoal6L6-Dependency
isa dependency
goal Subgoal6L6
subgoals (Left6-5)
modified (Subgoal6L7)
constraints (Left6-4)
generals (plus)
success 1
actions ((!pop!)))
(Subgoal6L6
isa change
operator plus
string Left6-4
result nil)
(Left6-5
isa expression
specop nil
specarg X)
(Subgoal6L7
isa change
operator plus
string Left6-4
result Left6-5)

;Nothing happens to the RHS for
;plus elim
(Subgoal6R5-Dependency
isa dependency
goal Subgoal6R5
subgoals (Right6-3)
modified (Subgoal6R6)
constraints (Right6-2)
success 1
actions ((!pop!)))
(Subgoal6R5
isa setup
operator plus
string Right6-2
result nil)
(Right6-3
isa expression
specop blankl

specarg blank2
opl /
argl C
op2 -
arg2 B)
(Subgoal6R6
isa setup
string Right6-2
result Right6-3))

Example 7
; ; X * C = / B

(addwm
Used by analogy mechanism to set
the initial 2 subgoals of adding
to both sides
(Example7Linel-Dependency
isa dependency
goal Example7Linel
subgoals (Subgoal7Ll Subgoal7Rl)
modified (Newgoal7-i)
constraints (left7-l)
dont-cares (blankl blank2 X))
(Example7Linel
isa transform-string
left left7-l
right right7-l)
(left7-l
isa expression
specop blankl
specarg X
opl *
argl C)
(right7-l
isa expression
specop blankl
specarg blank2
opl !
argl B)
(Subgoal7Ll
isa change
operator *
argument C
string left7-l
result NewLeft)
(Subgoal7Rl
isa change
operator *
argument C
string right7-l
result NewRight)
(Newgoal7-l
isa transform-string
left NewLeft
right NewRight)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 124

;Adds a / C to the left hand side
;of the equation
(Subgoal7 L2-Dependency
isa dependency
goal Subgoal7L2
subgoals (left7-2)
modified (Subgoal7L3)
constraints (* left7-l)
dont-cares (addition)
generals (blankl X)
success 1
actions ((!pop!)))
(Subgoal7L2
isa change
operator *
argument C
string left7-l
result nil)
(left7-2
isa expression
specop blankl
specarg X
opl *
argl C
op2 /
arg2 C)
(Subgoal7L3
isa change
operator -
argument C
string left7-l
result left7-2)

;Adds a / C to the right hand side
;of the equation
(Subgoal7R2-Dependency
isa dependency
goal Subgoai7R2
subgoals (right7-2)
modified (Subgoal7R3)
constraints (* right7-l)
dont-cares (addition)
generals (blankl blank2)
success 1
actions ((!pop!)))
(Subgoal7R2
isa change
operator *
argument C
string right7-l
result nil)
(right7-2
isa expression
specop blankl
specarg blank2
opl /'
argl B
op2 /

arg2 C)
(Subgoal7R3
isa change
operator -
argument C
string right7-l
result right7-2)

.•Cancels the * C / C on the left
;side of the equation
(Example7 Line2-Dependency
isa dependency
goal Example7Line2
subgoals (left7-3)
modified (Subgoal7L4)
constraints (left7-2)
actions ((!pop!))
success 1
generals (* / C))
(Example7Line2
isa transform-string
left left7-2
right right7-2)
(left7-3
isa expression
specop blankl
specarg X)
(3ubgoal7L4
isa transform-string
left left7-3
right right7-2))

Example 8
/ X + C = + D

(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Examp1e6Line1-Dependency
isa dependency
goal Example8Linel
subgoals (SubgoalSLl Subgoal8Rl)
modified (Newgoal8-l)
constraints (left8-l)
dont-cares (divide blankl blank2

X))
(Example8Linel
isa transform-string
left left8-l
right right8-l)
(left8-l
isa expression
specop divide
specarg X
opl +
argl C)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model 125

(right8-l
isa expression
specop blankl
specarg blank2
opl +
argl D)
(Subgoal8L1
isa change
operator +
argument C
string left8-l
result NewLeft)
(Subgoal8R1
isa change
operator +
argument C
string rightS-1
result NewRight)
(Newgoal8-l
isa transform-string
left NewLeft
right NewRight)

;Adds a - C to the left hand side
;of the equation
(Subgoal8L2-Dependency
isa dependency
goal Subgoal8L2
subgoals (left8-2)
modified (Subgoal8L3)
constraints (+ left8-l)
dont-cares (addition)
generals (divide X)
success 1
actions ((!pop!)))
(Subgoal8L2
isa change
operator +
argument C
string left8-l
result nil)
(left8-2
isa expression
specop divide
specarg X
opl +
argl C
op2 -
arg2 C)
(Subgoal8L3
isa change
operator +
argument C
string left8-l
result left8-2)

;Adds a - C to the left hand side
;of the equation

(Subgoa18 R2-Dependency
isa dependency
goal Subgoal8R2
subgoals (right8-2)
modified (Subgoal8R3)
constraints (+ right8-l)
dont-cares (addition)
generals (blankl blank2)
success 1
actions ((!pop!)))
(Subgoal8R2
isa change
operator +
argument C
string right8-l
result nil)
(right8-2
isa expression
specop blankl
specarg blank2
opl +
argl D
op2 -
arg2 C)
(Subgoal8R3
isa change
operator +
argument C
string right8-l
result right8-2)

/Cancels the + C - C on the left
,-side of the equation
(Example8Line2-Depender.cy
isa dependency
goal Example8Line2
subgoals (left8-3)
modified (Subgoal8L4)
constraints (left8-2)
success 1
generals {+ - C))
(Example8Line2
isa transform-string
left left8-2
right right8-2)
(left8-3
isa expression
specop divide
specarg X)
(Subgoal8L4
isa transform-string
left left8-3
right right8-2)

Used by analogy mechanism to set
the subgoals of eliminating the
sign in front of X, then doing
correct thing to the RHS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The ACT-SF Model

(Example8Line3-Dependency
isa dependency
goal Example8Line3
subgoals (Subgoal8L5 Subgoal8R4)
modified (Newgoal8-2)
constraints (left8-4))
(Example8Line3
isa transform-string
left left8-4
right right8-2)
(Subgoal8L5
isa change
operator divide
string left8-4
result NewLeft)
(left8-4
isa expression
specop divide
specarg X)
(Subgoal8R4
isa setup
operator divide
string right8-2
result NewRight)
(Newgoal8-2
isa transform-string
left NewLeft
right NewRight)

; Remove sign in front of X
(Subgoal8L6-Dependency
isa dependency
goal Subgoal8Lo
subgoals (left8-5)
modified (Subgoal8L7)
constraints (left8-4)
generals (divide)
success 1
actions ((!pop!)))
(Subgoal8L6
isa change
operator divide
string left8-4
result nil)
(left8-5
isa expression
specop nil
specarg X)
(Subgoal8L7
isa change
operator divide
string left8-4
result left8-5)

; Switch the two operands around
(Subgoal8R5-Dependency
isa dependency
goal Subgoal8R5

subgoals (Right8-3)
modified (Subgoal8R6)
constraints (right8-2)
success 1
actions ((!pop!)))
(Subgoal8R5
isa setup
operator divide
string right8-2
result nil)
(right8-3
isa expression
specop blankl
specarg blank2
opl +
argl C
op2 -
arg2 D)
(Subgoal8R6
isa setup
string right8-2
result right8-3))

(wmfocus probleml)

(p glue
=subgoal>

isa setup
result =original
left =partl
right =part2

=partl>
isa invert
opl =opl
argl =argl

=part2>
isa invert
opl =op2
argl =arg2

=original>
isa expression
opl =opl
argl =argl
op2 =op2
arg2 =arg2

!pop!)

(p detectgoaistate
=goal>

isa transform-string
left =left

=left>
isa expression
specop nil
specarg X

= = >

!pop!)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Model Run
Below is a listing of the model solving five problems. These five problem s are:

1) X - A = * C
2) + X = - B / D
3) / x * d = + b

4) - x = - d * a

5) * x = * a + c

In the actual runs (the cycle statem ents), the productions that are being created
by the analogy mechanism are bolded. After the model has solved the problem ,
those productions w hich w ere new ly created are titled and d isp layed. The
notation in the parentheses (like PI) refers to the production num bers in Chapter
5, which illustrate how those particular productions arose.

The model is solving the problem:
X - A = * C

7 (run)
cycle 0 time 0.000: transform-

string-production42
action latency: 0.050

cycle 1 time 0.050:
change-production4 7

action latency: 0.050

cycle 2 time 0.100: change-
production47

action latency: 0.050

cycle 3 time 0.150: transform-
string-production4 8

action latency: 0.050

1) Production that sets up either a
tw o - or three-step problem (Pi):

(p transform-string-production42
=example81inel-variable>

isa transform-string
left =left8-l-variable
right =right8-l-variable

=left8-l-variable>
isa expression
opl =+-variable
argl =c-variable
op2 nil
arg2 nil

=subgoal8ll-variable>
isa change
operator =+-variabie
argument =c-variable
string =left8-l-variable
result =newleft-variable

=subgoal8rl-variable>
isa change
operator =+-variable
argument =c-variable
string =right8-l-variable
result =newright-variabie

=example81inel-variable>
left =newleft-variable
right =newright-variable

!Push! =subgoal8rl-variable
!Push! =subgoalSll-variable)

2) Production adds the proper
operator and operand to one side of
the equation (P2):

(p change-production47
=subgoal6r2-variable>

isa change
operator =+-variable
argument =b-variable
string =right6-l-variable
result nil

=+-variable>
isa operator
inverse =--variable

=right6-l-variable?
isa expression
specop =blankl-variable
specarg =blank2-variable

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Model Run 128

opl =/-variable
argl =c-variable
op2 nil
arg2 nil

=right6-2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =/-variable
argl =c-variable
op2 =--variable
arg2 =b-variable

=subgoal6r2-variable>
result =right6-2-variable

!Push! =right6-2-variable
! Pop !
!Pop!)

3) Production that eliminates four
symbols from the LHS (P3):

(p transform-string-production48
=example81ine2-variable>

isa transform-string
left =left8-2-variable
right =right8-2-variable

=left8-2-variable>
isa expression
specop =divide-variable
specarg =x-variable
opl =+-variable
argl =c-variable
op2 =--variabie
arg2 =c-variable

=left8-3-variable>
isa expression
specop =divide-variable
specarg =x-variable
opl nil
argl nil
op2 nil
arg2 nil

=example81ine2-variable>
left =left8-3-variable

!Push! =left8-3-variable
!Pop!)

The model is solving the problem:
+ X = - B I D

Cycle 4 time 0.2 00: transform-
string-production49

Action latency: 0.050

cycle 5 time 0.250:
change-product ion4 9

action latency: 0.050

cycle 6 time 0.300: setup-
production50

action latency: 0.050

Cycle 7 time 0.350:
detectgoalstate

Action latency: 0.050

Top goal popped.
Run latency: 0.200

4) Production that sets up the sign
elimination step (P4):

(p transform-string-production49
=example81ine3-variable>

isa transform-string
left =left8-4-variable
right =right8-2-variable

=left8-4-variable>
isa expression
specop =divide-variable
specarg x
opl nil
argl nil
op2 nil
arg2 nil

=subgoal815-variable>
isa change
operator =diviae-variable
argument nil
string =left8-4-variable
result =newleft-variable

=subgoalSr4-variable>
isa setup
operator =divide-variable
argument nil
string =right8-2-variable
result =newright-variable
left nil
right nil

=example81ine3-variable>
left =newleft-variable
right =newright-variable

!Push! =subgoal8r4-variable
!Push! =subgoal815-variable)

5) Production that deletes the sign in
front o f X (P5):

(p change-production49
=subgoal816-variable>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Model Run

isa change
operator =divide-variable
argument nil
string =left8-4-variable
result nil

=left8-4-variable>
isa expression
specop =divide-variable
specarg =x-variable
opl nil
argl nil
op2 nil
arg2 nil

=left8-5-variable>
isa expression
specop nil
specarg =x-variable
opl nil
argl nil
op2 nil
arg2 nil

=subgoal816-variable>
result =left8-5-variable

!Push! =left8-5-variable
I Pop!
!Pop!)

6) Production that does plus (®)
elimination:

(p setup-production50
=subgoal6r5-variable>

isa setup
operator plus
argument nil
string =right6-2-variable
result nil
left nil
right nil

=right6-2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =/-variable
argl =c-variable
op2 =--variable
arg2 =b-variable

=right6-3-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =/-variable
argl =c-variable
op2 =--variable
arg2 =b-variable

=subgoal6r5-variable>

operator nil
result =right6-3-variable

!Push! =right6-3-variable
Pop!
!Pop!)

The model is solving the problem:
/ X * D = + B

Cycle 8 time 0.400: transform-
string-production42

Action latency: 0.050

cycle 9 time 0.450:
change-production47

action latency: 0.050

cycle 10 time 0.500: change
production47

action latency: 0.050

Cycle 11 time 0.550: transform
string-production4 8

Action latency: 0.050

Cycle 12 time 0.600: transform
string-production4 9

Action latency: 0.05 0

cycle 13 time 0.650:
change-production49

action latency: 0.050

cycle 14 time 0.700: setup-
production51

action latency: 0.050

Cycle 15 time 0.750:
detectgoalstate

Action latency: 0.050

Top goal popped.
Run latency: 0.400

7) Production that does divide (©)
elimination:

(p setup-production51
=subgoal8r5-variable>

isa setup
operator divide
argument nil
string =rignt8-2-variable
result nil
left nil
right nil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Model Run 130

=right8-2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =+-variable
argl =d-variable
op2 =--variable
arg2 =c-variable

=right8-3-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =+-variable
argl =c-variable
op2 =--variable
arg2 =d-variable

=subgoal8r5-variable>
operator nil
result =right8-3-variable

!Push! =right8-3-variable
! Pop!
!Pop 1)

The model is solving the problem:
- X = - D * A

Cycle 16 time 0.800: transform
string-production49

Action latency: 0.050

cycle 17 time 0.850:
change-production49

action latency: 0.050

cycle 18 time 0.900: setup-
production56

action latency: 0.050

cycle 19 time 0.950:
invert-production59

action latency: 0.050

cycle 20 time 1.000:
invert-production62

action latency: 0.050

cycle 21 time 1.050: glue
action latency: 0.050

Cycle 22 time 1.100:
detectgoalstate

Action latency: 0.050

Top goal popped.
Run latency: 0.350

8) Production that does minus (v)
elimination (P6):

(p setup-production56
=subgoal2r5-variable>

isa setup
operator minus
argument nil
string =right2-2-variable
result nil
left nil
right nil

=right2-2-variable>
isa expression
specop blankl
specarg blank2
opl =--variable
argl =a-variable
op2 =/-variable
arg2 =c-variable

= = >

=right2-3-variable>
isa invert
operator minus
opl =--variable
argl =a-variable

=right2-4-variable>
isa invert
operator minus
opl = .'-variable
argl =c-variable

=subgoal2r5-variabie>
operator nil
result =right2-2-variable
left =right2-3-variable
right =right2-4-variable

IPush! =right2-4-variable
IPush! =right2-3-variabie)

9) Production that inverts for minus
(¥) elimination (P7):

(p invert-production59
=right2-3-variable>

isa invert
operator minus
opl =--variable
argl =a-variable

=+-variable>
isa operator
inverse =--variable
type addition

=right2-3-variable>
operator nil
opl =+-variable

!Pop!)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Model Run 131

10) Production th a t does not invert for
minus (¥) elimination (P8):

(p invert-production62
=right2-4-variable>

isa invert
operator minus
opl =/-variable
argl =c-variable

=/-variable>
isa operator
type multiplication

= = >

=right2-4-variable>
operator nil

!Pop!)

The model is solving the problem:
* X = * A + C

Cycle 27 time 1.350: transform-
string-production49

Action latency: 0.050

cycle 2 8 time 1.400:
change-production49

action latency: 0.050

cycle 29 time 1.450: setup-
production64

action latency: 0.050

cycle 30 time 1.500:
invert-production64

action latency: 0.050

no instantiation found,
run latency: 0.400

11) Production tha t does multiply (#)
elimination (P6):

(p setup-production64
=subgoal5r2-variable>

isa setup
operator multiply
argument nil
string =right5-l-variable
result nil
left nil
right nil

=right5-l-variable>
isa expression
specop blankl

specarg blank2
opl =*-variable
argl =c-variable
op2 =/-variable
arg2 =d-variable

= = >

=right5-2-variable>
isa invert
operator multiply
opl =*-variable
argl =c-variable

=right5-3-variable>
isa invert
operator multiply
opl =/'-variable
argl =d-variable

=subgoal5r2-variable>
operator nil
result =right5-l-variable
left =right5-2-variable
right =right5-3-variable

IPush! =right5-3-variable
!Push! =right5-2-variable)

12) Production that inverts for
multiply (#) elimination (P7):

(p invert-productionS4
=right5-3-variable>

isa invert
operator multiply
opl =/'-variable
argl =d-variabie

=*-variable>
isa operator
inverse =/-variable
type multiplication

=right5-3-variable>
operator nil
opl =*-variable)

Note that the m ain 8 Examples (Table
3.3) do no t have an exam ple of a sign
not in v ertin g d u rin g # elim ination.
G oing off these exam ples, A C T-R
cannot generate the last p roduction
necessary to do all problems. One way
a ro u n d th is is to have the m odel
rem em ber the past problem s it has
solved, and have those as reference as
well (such a m odel is trivial and has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Model Run

b e en im p le m e n te d) . T h is la s t
production looks like this:

13) Production that does not invert for
multiply (#) elimination (P7):

(p invert-production64
=right5-3-variable>

isa invert
operator multiply
opl =/-variable
argl =d-variable

=+-variable>
isa operator
type addition

=right5-3-variable>
operator nil)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol
This protocol is from Participant #22 and was taken on M arch 15,1995. He was in
the Examples group of Experim ent 1. In the following transcrip tion, P is the
Participant, E is the Experim enter, and C is the C om puter. Lines that are
asterisked and italicized indicate e ither w hat the p a rtic ip an t typed , w hat
in form ation the com puter gave, or specific exam ples referred to by the
partic ipan t. The second colum n (appearing th rough Problem 19) contains
com m ents concerning the partic ip an t's acquisition of the rules of the task,
including references to rules in A ppendix D.

Problem 1: p®T<->©<I>

_____________________ Protocol_______________________________ Notes_________
P: Problem #1. Workspace. Right now I'm just

putting in the exact same thing they have.
* Participant typed p®r<->©<t>
C: Try again.
P: Okay. Umm. Examples 1. Going to the examples.

Umm m um ble Click on a box to reveal the whole
problem. Umm.

E: This up here is showing you the last correct thing
that has been typed in.

P: Oh, okay. Okay. So I'm going to look for a match.
With the first three characters. I d on 't see one.
Okay, for the next two? See. No. We have
som ething like, something similar. So I'll try...
Umm, Example 7, the last correct line, everything
is the same except for this R comes this num ber
symbol, and this phi, I guess, becomes a delta. So,
if R is a num ber symbol...

* Participant typed ®++#
C: H ere's the correct line.
* Com puter responded p ® rv r< -» © O v r
P: No. Okay. Heart, heart that, heart that. Okay. Well.

Umm. Okay, so they just added on to w hat they
had. So m aybe I'll try adding on to it. You got the
heart, and it's not clear to m e... Example 1, R and
heart. That's w hat I had before. So next line, well,
we'll try that.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 134

* Participant referred to Example 1
P: W e're just going to go by Example 1, m um ble
* Participant typed p<~>©<P*r
C: Excellent.
P: Oh, okay.

Problem 2: #p<->#A©T

P: All right, I'll try w hat they did, on the first
problem. Oops.

* Participant typed t i p v p<->tiA©r* p
C: Try again.
P: Okay. Go back to the examples. Select this one.

Swap those. We'll try exam ple 3.
* Participant referred to Example 1
* Participant typed p<-*tir©A
C: H ere's the correct line.
* Computer responded p ® r ¥ F<-»©<&¥ F
P: This is the correct line? Okay. Oh, they sw apped...

H m m , okay. Sw apped those two. Go to next
problem.

* Participant referred to Example 3

Problem 3: p¥r<-»©<J>

P: So heart, C. This one is exactly like, three
characters, two. And that one is three. So example
1 and example 4 and exam ple 7 have the same
form, 3 characters, w ith arrow , 2 characters. So,
I'm going to assume, you can solve it by one of the
these examples. Using one of these examples.

* Participant referred to Example 4
P: Umm, C. Okay, w e'll try, w e'll try it by example 4.

R, w e just add R.
* Participant typed p v r®r<->©&®r
C: Good.
P: It worked! Okay. Now click the arrow. Umm, so

example 4 works, so w e'll keep going w ith it. It
keeps the first character, and everything else is the
same order. So w e'll go this, arrow C phi R

* Participant referred to Example 4
* Participant typed p<-^©<P®r
C: Excellent.

Participant has no
understanding of the
inverse relation of the ®
and ¥ b u t rather simply
deletes the four symbols.

Participant recognizes
that in som e cases the
same thing needs to be
added to both sides of
the string, bu t has no
idea of w hen that is
appropriate or w hat
exactly to add.

Participant assum ed the
operators have swapped,
not inverted.

Participant picked an
exam ple based on
num ber of symbols on
either side of the
character string.

No real understanding of
w hy ® w as added (a
lucky guess in this case).

Again, no understanding
of w hy the symbols can
be elim inated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol

Problem 4: * £?©r<-»©<I>

P: Okay, problem 4. Has 4 characters and 2 character,
so I'm looking for something 4,2. Four, 2 ,4 ,2 . This
is 3 of the same, on the left hand side, so we'U try
this one. Umm, see here. Keeps the heart, should
add a C and last character.

* Participant referred to Examples 2 and 6
* Participant typed v p©r©r<->©<P©r
C: Try again.
P: Okay. Well, w e'll try example 6 then, since it has

one similar character, and what does it do? It adds
a heart to the end, and last character. Try this, if
this doesn 't w ork...

* Participant referred to Examples 2, 6 and 8
* Participant typed ¥ p© r*r< -> © (P vr
C: H ere's the correct line.
* Computer responded ¥ p ©T#T<-4©4>#T
* Participant referred to Examples 2, 6 and 8
P: A num ber. Okay. N um ber symbol. W hy did it add

a num ber symbol? So it added a C?. N um ber
symbol. D on't know why it added a num ber
symbol. It's 2, that's 3.

* Participant referred to Examples 2, 6 and 8
P: Okay, I guess we'U go on. Num ber symbol. This is

on at the beginning, keeps the back the same.
Okay. According to the three examples, they keep
the first 2 characters, and lose everything else on
the left-hand side of the arrow, and keep the
right-hand side the same.

* Participant typed ¥p<->©<P#r
C: Good.
* Participant referred to Examples 2, 6 and 8
P: Good, and next, w hat do they do. They lose the

very leftmost thing, and flop a ro u n d ... O r do they?
This one flops, this with that, so... H m m . Okay.
Ahh, we'll stick this thing to the left-hand side,
arrow , after that, and R in there, a C here. C just
stays the same, the R flops things around, so w e'll
see w hat the C one does. C phi num ber this.

* Participant referred to Examples 2, 6 and 8
* Participant typed p <->©&#r
C: Excellent.
P: Okay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 136

Problem 5: ®p<-»©r>A

P: Two, 4. We need som ething w ith a 2,4. There's a 2,
4. It goes to 1,4. It goes to 1,4. Loses the leftmost
thing, umm. H as a C, doesn 't have a C. So this has
a C, I'll just follow this example. Umm, instead of a
C there, wait, it flopped it. If the C is at the front,
I'm going to keep it the same. Okay. Arrow', let's
see.

* Participant referred to Examples 3, 5, and 6
* Participant typed p<->©r*A
C: Excellent.

Problem 6: ©£>#<Ih -»®A

P: A 4, 2. So, a 4,2; 4, 2. H ere we go. There's a R, that
has a C. So this has a C at the front, go by that.
And example 8. Stick a heart w ith the last, yeah,
and last symbol on left side. C this, num ber, phi,
heart, phi, arrow , R triangle, heart phi.

* Participant referred to Examples 1,2,6, and 8
* Participant typed © p#(pv& < -^® Av&
C: Try again.
P: Hmm. That R has anything to do with it. No, it

shouldn't. Triangle. Ends w ith a triangle. That
shouldn't do anything. N um ber symbol, does it do
anything. Maybe try a C, since that num ber
symbol is there, m aybe that m eans you 're
supposed to add a C. Let's try that. C num ber phi

* Participant referred to all examples
* Participant typed © p#<t>©&<->®A©&
C: Good.
P: Okay, umm. Follow example 7. Sort of. Okay, after

that, all the ones that start out w ith 4 on the left
and two on the right, um m , after they add
something, they lose everything, and just keep the
two characters on he left side, the two leftmost
ones. Umm, so w e lose all that, and w hat do we
put on the right? Since it starts w ith a R, w e'll
follow this example, example 8. We'll just keep
that and that, and R triangle C phi.

* Participant referred to Examples 2, 6, 7, and 8
* Participant typed ©p<-*®A©&
C: Good.

The participant is paying
attention to the w rong
symbol—to the first
symbol of the righ t-hand
side, not the frontm ost
symbol.

The participant m ight
have made a connection
between the # and the ©.

The participant used a 2 -
step problem to help
with a 3-step problem.

Again, though, paying
attention to the w rong
symbol.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 137

P: And the R at the front, you flip things around. Flip
the second, so w e have arrow R phi C delta.

* Participant referred to Example 8
* Participant typed p<->®<P©A
C: Excellent.
P: Okay, got that right.

Problem 7: ©p<->#r#<P

P: Got two and four. Two and four. Well, just lose it.
Hmm. It's a C, since there's a C in front, we'll go
by this one. Keep the num ber, flop those two
around. Okay, I'll try that. Arrow, keep the
num ber symbol, phi.

* Participant referred to Examples 1,2, 3,4, 5 and 7

* Participant typed p<->#<t>#r
C: Excellent.

Problem 8:

P: Got it right. Three and 2. Umm, a heart. You add a
R. R delta. So let's try this. R delta.

* Participant referred to Examples 1 and 4
* Participant typed p®A®A<->¥&®A
C: Try again.
P: What do I do now? R delta. Okay. So since it's a R,

maybe w e'll try this. We need three. Go by
example 1. W ith a heart. Triangle heart delta.

* Participant referred to Examples 1 ,3 ,5 , 6, 7, and 8
* Participant typed p®AvA<h>v& *A
C: Good.
P: Okay, so it's like example 1. And for example 1,

lose everything except for the very first character
on the left, keep the right the same. Okay, we'll try
that. Arrow heart phi, heart delta.

* Participant referred to Example 1
* Participant typed p< -> v0¥A
C: Excellent.

Problem 9 #p<->vO#T

P: Okay, we have a 2 and 4. That flops those two.
We'll try by exam ple 5. N um ber symbol, phi heart,
this.

* Participant referred to Example 5
* Participant typed p <-»#<!> vT

How ever, here he did
use the correct symbol to
figure out the proper
rule.

Even here, though,
believed first symbol of
the right-hand side
dictates w hat should be
done.

M ade the common
m istake of sw apping
operators for #
elimination.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 138

C: Try again.P: It's not by exam ple 5. T w o... Keep it
the same? Or we could ... Six. Two, 2,2. There's a
heart there. W hat does it do? Changes the heart to
a R. We'll try by the last two steps of example 2.
Change the heart to a R.

* Participant referred to all examples
* Participant typed p<->®<t>#r
C: Here's the correct line.
P: No, don 't change the heart, change the num ber to

a C. Okay, why do we change the num ber sign to a
C? Change a num ber sign to a C—that confuses
me. R over heart, num ber symbol's over C I think
that's w hat it says. Okay. We always end up w ith
that. Okay.

* Participant referred to all examples

ProblemlO p*Q*-»©<I>

P: Three to 2. Since it's a C w e'll add a, maybe we'll
add a C omega. C omega. C phi C omega.

* Participant referred to Examples 2, 4, and 7
* Participant typed p ¥Q©Q<->©<P©Q
C: Try again.
P: Okay, so it's not like example 7. So m ost likely add

a heart or a R. If you have a heart there you add a
R, and if you have a R you add a heart. So if you
have a heart you 'd add a R. R omega.

* Participant referred to Examples 1 and 4
* Participant typed p vQ®Q<->©<t>®Q
C: Good.
P: Okay. Next w hat do we do? Just lose everything

now? And keep it all the same. Okay. Simple
enough.

* Participant referred to Example 4
* Participant typed p<->©&®Q
C: Excellent.

Problem 11 ® $?#$<-># A

P: Starts out w ith a R. Starts out w ith this. Okay,
umm. Start out w ith a R at the beginning. But it
has a num ber symbol there. So w hat does the
num ber symbol mean? N um ber symbol means
you write a C. N um ber symbol means you add a
C. Num ber phi, add a C phi, delta, oops, delete,
delete, arrow, C, delete, triangle, C phi.

This is clearly w here the
participant figured out
the inverse relation
betw een v and ®.

And here the relation
betw een # and ©.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 139

* Participant referred to Examples 2, 6, and 8
* Participant typed ® p #<&©&*->#A©&
C: Good.
P: Okay, knowing that, then you lose everything

except for the R and that. And we keep them all
the same. Keep the R, that the same, num ber
triangle.

* Participant referred to Example 6
* Participant typed ®p<-*#A©&
C: Good.
P: And we got left, the R, keep everything the same.
* Participant referred to Example 6
* Participant typed p<->#A©&
C: Excellent.

Problem 12 v p©Q<-»®A

P: Starts out with heart and has a C. H aving a C,
probably add a num ber symbol. Let's try it.
N um ber symbol, R triangle.

* Participant typed vp©Q#Q<->®A#Q
C: Good.
P: Yup, I was right. You lose everything, except for

the heart and that funny symbol. Arrow, and w hat
does heart imply? Keep everything the same w hen
you change it to a R. That was a R already.

* Participant referred to Example 2
* Participant typed v p<->®A#Q
C: Good.
P: Should be this. Triangle.
* Participant typed p*-+®A#Q
C: Try again.
P: Maybe exchange all Rs and hearts. Try that. Heart

triangle.
* Participant referred to Example 2
* Participant typed p<r*vA#Q
C: Excellent.
P: Okay.

Sign elim ination for ®.

Sign elim ination for v .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 140

Problem 13 p©r<-»©12

P: Umm, I got 3 and 2. It starts ou t w ith the symbol
you solve for, and has a C. W hat does the C mean?
C m eans you add a num ber symbol.

* Participant typed p©r#r<->©Q#r
C: Good.
P: Okay, then you're supposed to lose everything

and leave it like it is. Is that right? That's right.
D on 't change anything.

* Participant referred to Examples I, 4, and 7
* Participant typed p<->©Q#r
C: Excellent.

Problem 14 ® p vQ<-»®T

P: This one starts out with a R and a heart. A heart
should be, okay. R heart, omega, R omega, arrow,
R.

* Participant typed ® p vQ®Q<->®r®Q
C: Good.
P: Hm m , and the R at the beginning. Shouldn 't do

anything yet.
* Participant typed ®p<->®r®Q
C: Good.
P: And this means replace all Rs w ith hearts or

som ething like that. R, so replace all hearts w ith
Rs. The R means delete. We'll try to just p u t it in
the way it is.

* Participant referred to Examples 2, 3, and 6
* Participant typed p*->®r®Q
C: Excellent.
P: Okay.

Problem 15 v p<->#A#Q

* Participant typed p<->#MQ
C: Excellent.

Initially confused w ith v
elimination, but figured
out the correct rule again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 141

Problem 16

P: Okay, umm. The R m eans to add a heart phi. And
then, on both sides.

* Participant typed. p®&v<P<-*vAv&
C: Good.
P: Then we lose everything, and just keep that the

way it is.
* Participant typed p<->vAv<P
C: Excellent.

Problem 17 ©£?<-»©A®Q

P: The C means, w hat does the C mean? Lose
everything and exchange. Delta w ith those.

* Participant referred to Example 3
* Participant typed p<->©r®Q
C: Try again.
P: D idn 't think so. C, see if just sw apping them

makes any sense. It probably w on't, but.
* Participant typed p<->©Q®A
C: Excellent.
P: Okay, it did.

Problem 18 #p#A<-»©<!>

P: Has a num ber symbol, and a num ber symbol, so I
believe you add a C. C phi C Delta.

* Participant typed #p#A©A<->©G>©A
C: Good.
P: Then you lose everything on that side. And you

should keep this side the same.
* Participant typed #p<->©<P©A
C: Good.
P: And the num ber symbol means. Swap, but they're

the same. Maybe you switch it w ith a num ber
symbol. I think you do.

* Participant referred to Example 5
* Participant typed p<->#&#A
C: Excellent.

H e m ight have thought
that inverses existed for
the G reek letters as well.

G uesses at w hat the right
rule for # elimination is.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 142

Problem 19 v p<-»®A©T

P: Okay, umm. A heart m eans you, something to do
w ith the R. Put all, for all hearts p u t in a R, but
there are no hearts, so.

* Participant referred to Example 2
* Participant typed p<->®A©f
C: Try again.
P: That means pu t the heart in here.
* Participant typed p* -> vA © r
C: Excellent.

Problem 20 p©A<-»M>
P: Delta, the C m eans you add a num ber symbol, the last character, add a

num ber symbol delta.
* Participant typed p©A#A<->#&#A
C: Good.
P: And you just keep it the same.
* Participant typed p <->#$>#A
C: Excellent.

Problem 21 #£?#A«-»©T
P: N um ber symbol, delta, so the num ber symbol m eans you add a C, delta,

arrow, C, add a C delta.
* Participant typed # p#A©A<->©r©A
C: Good.
P: You lose everything else. That side stays.
* Participant typed #p<->©r©A
C: Good.
P: N um ber symbol, pu t num ber symbols in for Cs.
* Participant typed p<->#r#A
C: Excellent.
P: Yeah.

Problem 22 © p<->#0©Q

P: Okay, umm. This should be C is swap, right? C, sw ap the, yeah. Same for the
R, right. No. R you keep the same. Okay the C swaps. Umm, on the right side,
that, then that. Oops.

* Participant referred to Example 6
* Participant typed p<->#Q©0
C: Excellent.

The participant
apparently d id n 't
generalize inverting ®s to
vs from inverting vs to
®s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 143

Problem 23 ® p®r<-*®Q

P: Okay, R symbol, R, this, second R m eans you add a heart.
* Participant typed ® p ® rvr< -+ ® Q * r
C: Good.
P: Then you lose everything to the right of that symbol. Umm, yeah, always keep

this side the same.
* Participant typed ® p<->® Q *r
C: Good.
P: A nd then, the R means you keep everything the same. It means you don 't

switch the R and the heart. No, it m eans you keep everything the same.
* Participant typed p<->® Q *r
C: Excellent.
P: Yeah.

Problem 24

P: Okay, phi, the heart means you add a R phi.
* Participant typed p ¥&®@<->®A®&
C: Good.
P: Then you lose everything, keep everything the same on the right.
* Participant typed p*-*®A®<P
C: Excellent.

Problem 25 ®p<->©T©A

P: R means you keep everything the same.
* Participant typed p<->©r©A
C: Excellent.

Problem 26 p® 0<-»vr

P: Okay, R phi. R m eans you add a heart phi.
* Participant typed p® @ ¥@ < -> vr*0
C: Good.
* Participant typed p<->vr*@
C: Excellent.

Problem 27 ©p#Q«->#T

P: N um ber symbol means you pu t a C there. Phi arrow, num ber symbol, C
omega.

* Participant typed © p#Q©Q<->#r©£2
C: Good.
P: Drop off that stuff.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: Example Protocol 144

* Participant typed ©p<->#r©Q
C: Good.
P: And the C m eans you, the C means you sw ap. The C means you sw ap, yeah.

The C means you swap the omega and that symbol.
* Participant referred to Example 8
* Participant typed p<->#Q©r
C: Excellent.

Problem 28 #p<->©Q©A

P: A num ber symbol means you replace Cs w ith num ber symbols and vice versa.
* Participant typed p*->#Q#A
C: Excellent.

Problem 29 pvO<-»©r

P: Phi, heart m eans you add a R. R phi.
* Participant typed p ¥ 0 ® 0 < -> © r® 0
C: Good.
P: And then just pu t everything.
* Participant typed p<->©r®0
C: Excellent.

Problem 30 ¥ £?©T<-»¥<I>

P: Heart, that thing, the C means num ber symbol.
* Participant typed ¥ p © r# r< -> ¥ 0 # r
C: Good.
P: Now, drop everything, keep everything the same.
* Pa rt icipa n t typed vp<-> v 0#I~
C: Good.
P: And the heart m eans you replace all hearts w ith R and vice versa.
* Participant typed p<->® 0#r
C: Excellent.

Problem 31 ® A

P: This means replace all hearts with a R.
* Participant typed p<->®0®A
C: Try again.
P: Oh, the R you keep the same. No, yeah. R keeps, R you keep the same. I forgot.
* Participant typed p< -> ¥0¥A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F: Additional Information II
Inform ation available to both the Syntax(Hint):

Syntax
The problem takes the form of a string of characters. The characters
are selected from the following:

©, ®. #, ¥ Are the connector symbols
A. T. £2, Are the object symbols

p Are special symbols

The <-» character always comes first.

After the <-», either 0,1, 2, or 3 connector symbols will appear. Next
comes the p , followed by either 0 ,1 , or 2 object symbols. Consider
this part 1 of the string (if there are any object symbols after the p ,
they belong to this part).

Part two of the string consists of either one connector and then one
object symbol, or two connectors and then two object symbols.

Goal
Your goal is to make the p character the second symbol of the
string.

A set of rules exist that dictates how you can change the current
character string into a new character string.

Only one rule is applicable for any particular character string.

H in t
The ® and the ¥ symbols, as well as the © and the # symbols, are
associated with one another.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

