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Abstract
This dissertation examines the way people acquire procedures from examples,
and provides a computational model of the results. In four experiments, people
learned an analog of algebra. For each experiment, the initial knowledge that
people had of the task was varied. In two experiments (Experiments 1 and 3), the
syntactic knowledge that people had concerning the task was manipulated. The
knowledge of syntax that participants had, particularly the ability to correctly
parse the character string, was found to be a major determiner in the way
participants acquired the rules. Experiment 2 explicitly manipulated participant’s
awareness as to how the task was related to their prior knowledge of algebra,
with the finding that another major determiner of how the participants learned
the task resting on how much of the task they can map to algebra. All three of
these experiments examined the rule generalization behavior of the participants,
with a fourth experiment specifically designed to examine this issue. The less
syntactic and other declarative knowledge that participants had, the less general
their rules. These findings, that people can learn from examples but that this
learning is tempered by their additional declarative knowledge, are captured by

an ACT-R model (Anderson, 1993).
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Chapter 1

Infroduction

How do people learn a new task, given the instructions and information
available to them? How do they bring their existing knowledge, when
appropriate, to bear in learning the new task? Furthermore, is there is a simple,
underlying mechanism which can account for this learning? These are the
questions which are at the heart of this dissertation. By examining people in—
depth as they learn a new task, and by manipulating the amount and kind of
knowledge that they have available with which to learn, answers can be given to
such questions.

Anderson’s ACT-R theory (1993) claims that all procedural knowledge
(knowledge of how to do things) has its origins in declarative knowledge
(knowledge of what things are). To be more concrete, and to use the terminology
of Newell and Simon (1972), declarative knowledge can be thought of as the
description of the problem states of a problem space, and procedural knowledge
as the description of the transitions between these problem states. A similar

distinction is made by Simon (1972). In the running system, ACT-R’s syntax
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Chapter 1: Introduction 2

makes this distinction apparent, with declarative memory realized as working
memory elements, and procedural memory realized as production rules. Past
researchers have made a similar claim concerning the transition of declarative to
procedural knowledge and have created models of this process (e.g., Neves, 1981;
Sikldssy, 1972; see the literature review in Chapter 2 for more information). The
ACT-R theory posits a simple mechanism, called the analogy mechanism, by
which declarative knowledge is proceduralized. This dissertation assumes this
underlying claim and mechanism of the ACT-R theory. The model, described
briefly in this chapter and more in—-depth in Chapter 5, initially contains only
declarative knowledge from which procedural knowledge is induced, via the
analogy mechanism.

This chapter summarizes the task used in the experiments, the model
developed within the ACT-R system, and the main contributions of this

dissertation.

The Task

The task used in all the experiments of this dissertation is called Symbol
Fun, and was used by Blessing and Anderson (1996) in their study of how people
learn to skip steps. It is composed of different symbols which represent operators
and operands, which are grouped together to form a character string. A sequence
of two, three, or four such character strings form a problem and its solution, with
legal steps in the sequence dictated by the application of particular rules. The
task has its basis in algebra, and so the main manipulations involved are
analogous to the algebraic manipulations of adding, changing, and deleting
symbols from these character strings. However, the task is not a direct mapping
of algebra, as can be seen in the sample problem displayed in Table 1.1. As in

algebra, the goal is to follow syntactical rules to produce a final line in which the
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Chapter 1: Introduction 3

Table 1.1
Sample of Problem in Symbol Fun

Step # Symbol Fun Corresponding Algebra
Given v pvDoHA —x—-A=*C
1 ¢ pvdedo#r®@d -X-A+A=*C+A
2 v POHAB®D -x=*C+A
(Answer) 3 PoiAvD x=*C-A

variable, g, is alone on the left of the string divider, «>. The beginning of
Chapter 3 contains a more complete description of Symbol Fun’s rules.

This task has two features which make it appropriate for examining how
people use examples together with other knowledge to solve novel problems.
First, because it is an artificial task, the information which participants have
when starting to learn the task can be controlled. All participants in every
experimental condition had the same set of examples to which to refer. However,
some conditions in the different experiments were given additional information
with which to learn the task. This additional information generally corresponded
to syntactical information, such as which symbols are operators and which are
operands, and also what makes a well-formed formula within the task. Second,
even though the task is artificial, it did have its basis in algebra, and so some
participants found it useful to use their knowledge of algebra in learning this
new task. In one experiment (Experiment 2, “Algebraic Symbols”), participant’s

awareness as to how the task is related to algebra was explicitly manipulated.

Overview of ACT-SF

One of the main contributions of this dissertation is ACT-SF, an ACT-R
implementation of people learning Symbol Fun. As stated above, the ACT-R
theory claims that all knowledge begins in a declarative form, and that all
procedural knowledge arises from this declarative knowledge. This transition is

accomplished by the analogy mechanism. When ACT-R has a goal for which no
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Chapter 1: Introduction 4

procedures apply, it will attempt to find a declarative example of the successful
resolution of that goal, and then to infer the rule behind that resolution. It will
next apply that rule to the current goal. ACT-SF uses this mechanism to learn the
rules of Symbol Fun. The analogy mechanism of ACT-R was one of the least
tested claims of the theory, and over the course of this dissertation, as well as
through other research by different people, the mechanism has been refined.
Figure 1.1 provides a simple illustration of how the analogy mechanism
works within ACT-SF. Panel A shows the current problem the system has, and
for which no existing productions apply. Since no productions apply, ACT-SF
must find an example which demonstrates what the proper rule to use is.
Examples are chosen based on their similarity to the current goal and their
activation. The model finds an example, such as in Panel B (Lines 1 and 2 from
Table 1.1). Contained within that example is its “solution,” or the next correct line

in the solution sequence. ACT-R creates a new production rule which captures

(A. Current Problem h

Current Line PPBA®AYA-OTvA

B. Analogous Example
ExampleLine |v plvP@Do#A®D -

“RaEue o

SHA®D

Solution Line

C. Current Problem with result of induced rule
Current Line ®pPBO®AVYAl-SCTwA

1
\\ Apply
Rule
New Line @l [corvs €
\_ Y,

Figure 1.1: ACT-R’s analogy mechanism
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Chapter 1: Introduction 5

the transformation from the example to its solution, basically by matching the
symbols between the two lines, with a set way for variablizing or leaving as
constants the various symbols. If the matching of symbols is not obvious, ACT-R
can bring in other declarative knowledge with which to augment the rule, in
order to create a potential candidate rule. The rule created from Panel B can be
simple, such as “If you have a line that has all 11 symbols, then drop symbols 3
through 6 in the next line.” The system next attempts to apply the new rule to the
current line, as shown in Panel C. If it is successful, then it stores the rule for
future use. If unsuccessful, it discards the rule and attempts to find another
example to generate a different rule.

The full version of the model contains the necessary declarative
representations, including a parsed, syntactically correct, hierarchic organization
of each of the examples, to learn the correct procedural knowledge with minimal
error. This model corresponds to participants given the most amount of
information, before attempting to solve any problems. By removing pieces of that
representation, the model mimics either participants early in the learning of the
task who did not start out with the most information, or participants who were
unsuccessful at learning the task. Chapter 5 further discusses this feature of the

model.

Main Contributions of this Dissertation
This section outlines three main contributions of this dissertation. After
each contribution is a short phrase in parentheses which will be used throughout
the dissertation as an identifier for that contribution.
1) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are

influenced by knowledge of the task’s syntax, as well as other
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Chapter 1: Introduction 6

information particular to the task (e.g., knowledge of inverse
operators). (Syntactic Knowledge)

The experiments in this dissertation utilize examples as the main source of
information people had to learn the task. A subset of participants had additional
pieces of declarative information, about the task’s syntax, with which to learn. By
examining how people interact with these examples, and the extent to which
they interact with them, a better understanding of how people incorporate
examples in their learning of a new a task can be had. Furthermore, by
investigating example use across the various informational conditions, the
process by which people use this additional declarative information can be
examined. The hypothesis is that the more relevant declarative information
available at the time of learning, the more efficient the learning will be.

Experiment 1 (Chapter 3, “Syntactic Symbols”) tested this claim by
manipulating the amount of information participants had with which to learn the
task. One group of participants only had some examples to which to refer,
whereas two groups had, in addition to the examples, information regarding the
task’s syntax (e.g., a classification of the different symbols used, what makes a
well-formed formula, etc.). Also, one of these two groups was also given a key
piece of information (that two pairs of operators were related, or inverses, of one
another) to aid in learning the task. Since this task has its origins in algebra,
people may use their algebraic knowledge as a source for this syntactic
information. If this is the case, then the effects of the syntactic knowledge in
Experiment 1 will be attenuated. Experiment 2, discussed in the next
contribution, was designed to manipulate people’s awareness of how the task is
related to algebra, and Experiment 3, discussed below, was designed to eliminate

this attenuating factor.
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Chapter 1: Introduction 7

Experiment 3 (Chapter 6, “Prefix Symbols”) provided an even stronger
test of this contribution by greatly reducing the similarity between the version of
Symbol Fun used in Experiment 1 and algebra. The similarity was reduced by
using a prefix notation instead of the standard infix notation. The reduction was
necessary in order to provide a better picture of the benefit of syntactic
knowledge, free of any extraneous knowledge, above just examples. The version
of ACT-SF reported in Chapter 5 (“The ACT-SF Model”), as well as the ACT-R
analogy mechanism in general, predicts that within a particular experimental
condition (e.g., examples only or with syntax), learning across the two versions
(infix or prefix notation) of the task should be equal.

2) One of the strongest predictors of success for learning Symbol

Fun was if the learner was able to access and use their
knowledge of algebra. (Prior Knowledge)

Often a student attempts, or is told, to apply knowledge gained in
learning an old task to the learning of a new task. The old knowledge will
transfer to the new task. This issue of transfer has been studied by previous
researchers (e.g., Singley & Anderson, 1989; Kieras & Bovair, 1984), but the
manner and mechanism by which this prior knowledge interacts with a set of
examples used to learn a new task has not been sufficiently examined within the
context of the ACT-R theory. The hypothesis is that this prior information
constrains the knowledge space the participant needs to search, and so learning
will be more efficient when this transfer occurs, with the benefit being the
proportion to which the old information can be mapped onto the new task.

Experiment 2 (Chapter 4, “Algebraic Symbols”) explicitly manipulated
participants’ knowledge of how the task is related to algebra. Three levels of
hints were given, with each level providing additional explicitness in suggesting

the use of algebra as a source of task knowledge. One group of participants
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Chapter 1: Introduction 8

received only the first level hint, another group the first and second level hints,
and a third group received all three levels of hint. The more explicit the hint, the
better the learning should be.

3) Lack of adequate syntactic knowledge causes the analogy
mechanism to build over-specific rules from examples. (Over
Specificity)

When the procedural knowledge required to do a task is formed, that
knowledge must be constrained to only apply in certain contexts. Furthermore,
the procedural knowledge must encode the types of structures to which it
pertains (i.e., it must be variablized in some way). When given only examples
from which to learn, fewer generalizations can be formed than when additional
information may be available (such as the fact that two pairs of operators are
inverses). The hypothesis is that the generalizations of participants with more
syntactic information will be less constrained than those of participants given
only examples from which to learn. That is, the ability to bring in additional
declarative information when the analogy mechanism constructs a rule results in
more general rules.

The errors made in the various experimental conditions suggest how
participants generalize their rules, particularly the sign elimination steps
(eliminating the sign in front of the g, as in Line 2 to 3 in Table 1.1). By
examining the way in which participants switched and inverted, or did not
switch and invert, a line’s symbols, inferences were made as to the way they
variablized their analogized rules.

Experiment 4 (Chapter 7, “General Symbols”) explicitly examined how
participants variablized the rules they were learning and compared their
processes to ACT-SF. Participants initially learned only a subset of Symbol Fun,

just the sign elimination steps and simpler problems. They then transitioned to
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Chapter 1: Introduction 9

more complex problems, where a close examination of this generalization
process was obtained. Participants were good at generalizing the position in
which symbols appear and should change into other symbols, but were not good
at generalizing to higher-order relations, like among the inverse operators (even

if given the inverse operator pairs).

Dissertation Overview

The rest of this dissertation follows this format:

Chapter 2: Literature Review. Discusses the findings of past re-
searchers that bear on the issues contained within this
dissertation.

Chapter 3: Syntactic Symbols. Explains more fully the task used in
this dissertation’s experiments, and details the results of
the first experiment, which tested the claims of the
Syntactic Knowledge Contribution: the more relevant
declarative, syntactic information available, the better
the learning will be.

Chapter 4: Algebraic Symbols. Examines how people’s knowledge of
algebra aids in learning the task in relation to the Prior
Knowledge Contribution: the more a new task can be
mapped onto an old one, the better the learning will be.

Chapter 5: The ACT-SF Model. Contains a description and a
discussion of the full version of the ACT-R model, and
how by the removal of certain aspects of this model’s
representation that unsuccessful and beginning
participants can be modeled.

Chapter 6: Prefix Symbols. Similar to the first experiment in that it

tests the Syntactic Knowledge Contribution, but uses a
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Chapter 1: Introduction

modified version of the task in order to eliminate any
outside knowledge that a participant could use. The
experiment served as a strong test of the model, which
predicts similar performance between this experiment
and the corresponding groups of the first one.

Chapter 7: Generalized Symbols. Another strong test of the model, but
one that specifically examines the issue raised by the
Over Specificity Contribution, that of how the rules are
generalized and variablized.

Chapter 8: Conclusions. Provides a summary of the experiments, the
model, and the findings of this dissertation. It also

discusses the implications of the findings for education.
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Chapter 2

Literature Review

A lot of learning, particularly of school-taught subjects, occurs by students
examining worked-out examples (Reed & Bolstad, 1991). When given a
homework assignment in math or physics, students will often forego actually
reading the chapter, but instead will turn to the assigned problems, then flip
through the chapter to find an analogous problem, and attempt to solve the
homework problem by doing the same transformations found in the analogous
worked-out example. Additional information is often provided with these
worked-examples to enable the students to better interpret those examples. One
of the main goals of this dissertation is to better understand how this additional
information allows the learner to interpret such examples.

Several researchers have shown that people can learn a new task quite
well with only examples, which they sometimes must generate themselves, to
guide them (Zhu & Simon, 1987; Shrager & Klahr, 1986). Zhu and Simon (1987)
had Chinese students learn factoring quadratics by studying a series of carefully

chosen worked-out examples. The students performed quite well at the task,

11
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Chapter 2: Literature Review 12

sometimes outperforming students who were taught by more conventional
means. These students who learned by examples understood the material, and
did not just superficially learn the actions needed to solve problems. The
students could state the rules of factoring, and moreover, could demonstrate
their understanding by checking their factoring work by multiplying, an aid not
directly taught them.

Shrager and Klahr (1986) had participants learn a complex device by not
giving the participants any instructions, but rather by having them interact with
the device. The goal that the participants had was to figure out the function of
one particular key on the keypad. Participants could write simple programs
using this keypad, and could watch as the device carried out its program. In a
sense, the people were generating their own examples with which to learn, these
combinations of programs and device actions. Most people learned the device
adequately in about thirty minutes, honing the hypotheses they were developing

as new evidence, in the form of these self-generated examples, was created.

Examples v. Procedures in Learning

As shown above, previous experiments have indicated the importance of
examples in learning a new task, and the reliance that students place in them. In
many of these experiments, however, learning from examples was pitted against
other ways of learning. That is, in a typical experiment there are three groups,
one where the people are given only examples to learn from, another where the
people only have a set of procedures to learn from, and a third group which has
both the examples and procedures with which to acquire a new skill (e.g.,
Sweller & Cooper, 1985; Reed & Bolstad, 1991). The examples usually take the
form of worked-out problems, whereas the procedures are an abstract “recipe”
for how to solve a certain class of problems. The general finding is that people

learn best when both procedures and examples are given and a little worse when
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Chapter 2: Literature Review 13

they just have the examples available to learn from. People who are just given a
list of procedures to learn from generally do not perform nearly as well as the
other two groups. Perhaps non-intuitively, the examples enable the students to
learn most of the “how-to” (procedural) knowledge, as opposed to the actual
procedures.

In one study, Reed and Bolstad (1991) taught groups of participants a
particular class of algebra word problem. Across two experiments the finding
was as mentioned above—the group that had both examples and procedures
performed best, followed closely by the group that only had the examples. The
group that only had the procedures performed worst. In acknowledging the poor
performance by the group who learned by procedures, they stated that
procedures in may work better for some tasks than they do for others (cf. Cheng,
Holyoak, Nisbett, & Oliver, 1986; Fong, Krantz, & Nisbett, 1986), and also that
they may not have written the best set of procedures for learning these problems.
The efficacy of examples needs to be more adequately explored, particularly
what it is that people extract from examples with which to learn and how
supporting declarative knowledge aids in that learning process. The Syntactic

Knowledge Contribution from the first chapter addresses this issue.

Schemata in Learning—Transfer

People often try to understand a new domain in terms of previously
learned knowledge, and studies have shown that it is often advantageous to do
so (Singley & Anderson, 1989). A common way of characterizing such knowledge
is in terms of schemata (Bartlett, 1932; Rumelhart & Ortony, 1977). Schemata are
knowledge structures that contain related information about a particular topic.
For example, a person may have a schema for a type of physics problem that
involves an inclined plane. This schema might contain information regarding the

typical diagram that is associated with such problems, as well as the formulae
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Chapter 2: Literature Review 14

usually used to solve that type of problem. Schemata help problem solvers to
organize the knowledge they possess about a particular topic for easy and quick
access. Furthermore, schemata allow people to make inferences about unknown
aspects of a situation, by providing default assumptions about it. Other
researchers have developed different conceptualizations of schemata (e.g., the
scripts of Schank & Abelson, 1977), but they all share the common framework of
related knowledge elements within a single memory structure. The Prior
Knowledge Contribution claims that a schema for an old domain can help a
learner interpret examples for a new domain. In ACT-R schemata can contain
both declarative and procedural knowledge, with the potential for both to
transfer, depending on the closeness of the target domain. In the model discussed
in Chapter 5, the transfer of procedural knowledge is not modeled.

Students are often told that a new concept that they are about to learn is
similar to a concept that they already know, and thus for which they already
possess a schema. For example, when learning about electricity, students are
often told to think of it as water running down a pipe, or when learning about
atoms, students are told they are similar to planets rotating around the sun in our
solar system. The students are then expected to interpret the new knowledge in
terms of their old knowledge, stored in a schema. How useful is this
information? Do students learn more or learn faster when they are told that new
information will be similar to previously acquired information, or are they better
off learning from scratch, as it were? One of the goals of this dissertation was to
examine these questions closely, particularly as it pertains to learning procedural
information from prior, declarative knowledge.

Researchers have shown that schemata can be used in order to more easily
learn and remember new, declarative material. By being able to place incoming

information within an existing schema aids the learning process. Bransford and
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Chapter 2: Literature Review 15

Johnson (1972) gave people a passage of text to memorize. The group of
participants who knew that the passage referred to doing laundry recalled more
of the text than the participants who did not know what the passage was
describing. People were able to use their knowledge about doing laundry, stored
in a schema, in order to help them remember the passage.

A few studies have shown that people can also use previously acquired
knowledge in order to help them learn new procedural skills. Kieras and Bovair
(1984) gave people an electrical device that they had to learn to operate. One
group of participants was instructed on how to use the device as if it were the
weapon system on a spaceship from Star Trek. The other group of participants
was shown how to use the device without reference to phasers, accumlators, and
other science fiction elements. The group who received the Star Trek-like
training learned to use the device in the same amount of training time, but
remembered the procedures more accurately, used more efficient procedures,
and executed them faster. Obviously, participants did not have a schema for how
to use a phaser weapon system, and probably not all participants were even
familiar with Star Trek and other science fiction works. However, the
information could be tied together with a simple schema for how electrical

1" u

systems should work (“shipboard power,” “energy source selector,” etc.), and so
was able to aid participants in learning about the system. While Kieras and
Bovair did not offer a mechanism to account for their finding, one explanation
could be that the Star Trek information elaborated and built redundancy into
their declarative knowledge of the system. These elaborations and redundancies
allow easier access to the necessary knowledge.

However, the different kinds of information given to a problem solver as

they are learning the task will not all be equally effective. Therefore it should not

be interpreted that providing additional, even apparently relevant, information
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Chapter 2: Literature Review 16

will always lead to better learning. In one experiment of their study, Kieras and
Bovair gave different groups of participants different information, all of it related
to either a Star Trek-theme or to electronics. They found that the given
information was most effective when it contained useful, lower-level knowledge
(i.e., specific descriptions of the parts and knowledge of what parts were
connected to one another) about the internal workings of the system that allowed
the learner to infer exactly how to operate the device. Information that was
overly general—that did not talk about the system in particular—was of no use.
However, the lower-level knowledge did not have to be complete or set in a

fantasy setting in order to be useful.

Generalizations in Learning

In developing a theory of how task instructions and prior knowledge are
used in learning a new task, it is important to also examine how such knowledge
either generalizes or constrains the rules that are being learned to do the new
task. For instance, when learning by example, how does one decide which
aspects of the problem are essential for solving it, and which aspects can be
glossed over or variablized?

Many researchers have demonstrated that people just learning a task or
domain often pay much attention to the superficial aspects of the problem (Chi,
Feltovich, & Glaser, 1981; Novick, 1988; Holyoak & Koh, 1987; Ross, 1984).
Instead of depending on how the problem is actually solved, they will often use a
problem’s content in determining its solution. For example, people will describe
problems in terms of their typical contents (e.g., “riverboat” problems in algebra,
or “spring” problems in physics), and will base their initial categorizations on the
presence of such contents (Hinsley, Hayes, & Simon, 1977). It is only as they
become more expert in the domain that they begin to focus more on the

structural aspects of a problem (Cummins, 1992), such as its underlying
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equations. However, even experts place at least some importance on content
(Blessing & Ross, 1996; Hardiman, Dufresne, & Mestre, 1989), since content is
often predictive of how the problem is solved.

This reliance on superficial content features make people very
conservative in the generalizations they make while learning a new skill (Ross &
Kennedy, 1991). Research by Bassok and Holyoak (1989; Bassok, 1990)
investigated people learning physics. When tested for transfer on analogous
problems in algebra, they performed poorly, since the original physics problems,
as is typical for such problems, were presented in a very content~dependent
manner. People originally taught algebra, on the other hand, did exhibit transfer
to the physics problems. Bassok (1990) further examined this finding, and found
that participants are sensitive to the type of variables (e.g., intensive vs.
extensive) used to solve the problems. Ross (1989) has also demonstrated in his
work with probability problems that people will generalize to categories of
animate objects and inanimate objects, but when the current problem requires
that an inanimate object take the role of an animate object in a previous problem,
they are hesitant to do so. In recent work, however, Bassok, Wu, and Olseth
(1995) found evidence that suggests people generalize by inducing semantic
knowledge from the problems and creating “interpreted structures” that encode
the relation between the objects in the problems. Lastly, Bernardo (1994) found
that people tend to keep around problem-specific information in their schemata.
He argues that this problem-~specific information affords access to more abstract
information during transfer.

In many respects, then, the problem of forming generalizations in the
service of creating, or perhaps modifying, rules for a new task can be thought of
as trying to decide which example to refer to, or what the applicable instructions

are, and then deciding which aspects of the example or instruction is relevant to
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the current situation. Once that determination is made, the solver must decide
what is the proper level of generalization. Each experiment in this dissertation
examined how people generalize the rules they are learning given their prior
instructions, with one experiment (Experiment 4, “General Symbols”) specifically
designed to examine this issue (the Over Specificity Contribution of the last
chapter: Lack of adequate syntactic knowledge causes the analogy mechanism to build

over—specific rules from examples).

Previous Models of Learning by Example

Several past researchers have put forward the idea of learning procedural
knowledge by declarative instruction with some computer simulations having
been implemented (e.g., the UNDERSTAND program of Hayes & Simon, 1974;
the Aptitude Test Taker of Williams, 1972). Perhaps the most ambitious effort,
and the one most similar to the model presented in this dissertation, was a
simulation by Neves (1978, 1980), who developed a computer model, called Alex,
that learned simple linear algebra by having available only examples. Alex
learned by examining pairs of lines for similarities and differences, and then
constructing a rule that would account for the change. His system started with
knowledge of arithmetic and a representation of algebraic structure, and then
learns the rules of algebraic manipulations. It is remarkable in that it is still one of
the few computer models that takes as its goal to account for learning by example
essentially the whole of a real domain, but Neves does not present any empirical
work to check if the processes used by Alex resembled the processes used by
humans to learn the same material.

Siklossy (1972) also developed a computer model, referred to as ZBIE, that
learned natural language by being presented with sentences in the target
language along with representations of those sentences (e.g., a picture which is

described by the sentence). By comparing across these representations and then
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to the paired sentences, ZBIE learned the language’s lexicon and syntax. Like
Neves, however, Sikléssy did not report any empirical evidence to check if the
processes ZBIE used to learn a language this way was similar to the way a
human would do it. Indeed, Sikléssy anecdotally stated that he himself had
difficulty learning a language through this method (a picture book series called
Language through Pictures), more so than ZBIE would predict. Other cognitive
architectures have also addressed language learning by example (e.g., Anderson,
1983; Rumelhart & McClelland, 1986)

In modeling how people supposedly generalized rules while learning,
both Alex and ZBIE would sometimes create rules that would be either over- or
under-specified. Over the course of learning, these rules would be replaced by
more correct versions. Both systems had their own method of dealing with how
that process occurred. A few computer models have examined explicitly how
generalizations are formed while learning from specific examples. Hofstadter,
Mitchell, and French (1987) have developed a computer system, called Copycat,
that attempts to find generalizations from a given pair of letter strings. Copycat
has limited knowledge of the Roman alphabet (e.g., what comes before and after
each letter) and the idea of sameness. When given a string transformation pair
like abc —> abd and asked what ijk should be transformed into, it will probably
respond (it is non—-deterministic) with #jl. It develops its rule by noticing in the
given pair what letters are the same, or proceed or succeed one another. When
given a more challenging transformation, like ssskkoooo —> oopokkkss, it can use
the notions of rightmost or left-neighbor in order to produce a generalization
that is “robust”—a rule that takes structural features into account. Little empirical
work has been done to see if the transformations that Copycat tends to produce

are similar to the rules that humans would produce.
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Lewis (1988), however, did examine empirical evidence in order to
validate the kinds of generalizations that his computer model, EXPL, made.
Lewis described a handful of heuristics that aided people in making their
generalizations. Two of these were the identity heuristic and the loose-ends
heuristic. The identity heuristic asserts that when a component of a system
response has occurred earlier in a user action, that user action specified that
component of the system response. For example, if clicking a mouse on an object
is followed by the disappearance of that object, then the identity heuristic would
lead one to conclude that it was the clicking on the object that led to its
disappearance. The loose-ends heuristic states that if an unexplainable response
occurs in the presence of an action for which it cannot account, then that action is
linked to the unexplained response.

Lewis performed an experiment in which he presented participants
several scenes of a person interacting with a computer. Lewis asked the
participants several questions concerning this interaction. For example, one scene

7

has the words “alpha,” “beta,” “gamma,” and “epsilon” in a bar at the top of the
screen, and a star in the lower part of it. The user touches the star, then touches
beta, and then touches the left side of the screen. The star then moves to the left
part of the screen. For this scene, Lewis asked the question: “If a person tried to
move the star to the bottom of the screen this way: 1) Touch “beta”, 2) touch the
star, 3) touch a place near the bottom of the screen, would it work. If not, why
not?” For this particular item, most people (67%) replied that the attempt would
not work, since the order was wrong. From an analysis of such responses across
similar stimuli, Lewis found support for the identity (the one illustrated by the
example) and loose~ends heuristics.

He further analyzed how people generalized from the given scenes, and

characterized the generalizations as either as rational or superstitious. A
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superstitious generalization will normally preserve the order of steps, and will
also leave unchanged any unexplained steps. A rational generalization, on the
other hand, will accept step reorderings, assuming that no logical constraint,
such as removing a floppy disk before it is ejected, is violated in the reordering,
and will get rid of any unexplained step. Lewis found that people make both
types of generalizations, but tend to make more superstitious than rational
generalizations. However, it is possible for the same person to make a
superstitious generalization in one instance and then a rational generalization in
another. It is still an open question as to what influences a person to make either
a rationalistic or superstitious generalization in a particular instance, and what

the role of prior knowledge may be in making these sorts of generalizations.

Summary

Previous researchers have shown the importance of examples in learning a
new task. However, while models of the mechanisms by which the examples and
other supporting declarative information are used to infer rules have been
developed, their relation to the processes by which humans do it is not clear. The
goal of this dissertation is to closely study this process empirically, and to model
the results, including how people generalize the rules, within an existing

cognitive architecture.
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Chapter 3

Experiment 1—Syntactic Symbols

The initial experiment tested how crucial examples are in the learning
process, and to see the benefit and importance of various pieces of declarative
knowledge in interpreting those examples, such as the task’s syntax and how the
operators are related to one another. This is in accordance with the first main
contribution of this dissertation:

1) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are
influenced by knowledge of the task’s syntax, as well as other
information particular to the task (e.g., knowledge of inverse
operators).

The more relevant declarative knowledge that can be brought to bear in
interpreting the examples, the more efficient the learning will be. As stated
previously, the ACT-R theory claims that through these interpreted examples

new procedural knowledge arises, through a process dictated by the analogy

22
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Table 3.1
How the Symbols Used in this Task Map onto Algebraic Symbols (All Experiments)

Algebraic Symbol + - * / Operands X =
Symbol in Task ® v # © AT, D, Q 0 ©

mechanism. By varying the amount and kind of information available to people
as they try to the task, some measure of the contribution of the various pieces of
declarative knowledge can be assessed and modeled.

As mentioned earlier, the task used in this dissertation, called “Symbol
Fun,” was designed to be an analog of algebra. In place of the standard four
operators and Roman letters, Greek and various other symbols were used in
order to mask the similarity to algebra. Table 3.1 lists the symbols used, and how
they map onto the standard algebraic symbols. In most of the examples to be
presented in this dissertation, the standard algebraic symbols were used, so that
the reader may use previous knowledge in order to decode parts of the task.

The manipulations used in the task correspond to the algebraic
manipulations of adding the same thing to both side of the character string,
canceling symbols, and eliminating signs in front of the g. All of these
manipulations make use of the fact that there are two pairs of inverse operators.
Table 3.2 contains an example of one of the hardest problems, with all of the
steps needed to solve the problem made explicit. The first step in solving this

problem is to add ®® to both sides of the character string (the « divides the

Table 3.2
Sample of Problem in Symbol Fun
Step # Symbol Fun Corresponding Algebra
Given v O YDOHA -x-A=*C
1 vpvd@dotsod  ~Xx-A+A="C+A
2 v O OHARD -x="C+A
(Answer) 3 POEAVD x=*C-A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3: Syntactic Symbols 24

string into left and right halves). For the second step, the ®®® is canceled from
the left hand side. For the final step, a rule is applied in order to eliminate the
from in front of the p. It should be noted that the underlying rules were
constructed such that each problem only had one solution path—there is no

branching.

Method

Participants. Forty-nine Carnegie Mellon University undergraduates
participated in this experiment for partial course credit and pay.

Materials. I constructed an algebra analog for this experiment. Differences
existed between this task and algebra, and so the mapping was not perfect. For
example, the division/multiplication operator pair acted more like the
addition/subtraction operator pair than in standard algebra. Also, this task had a
more limited order of operations. Parentheses were not used, and some of the
allowable manipulations would look strange in algebra. Also, any operator was
allowed in front of x, so it was possible to end up with an equation which looked
like *x = * A + B. The order of operations was constrained so that at each step in
any problem, only one rule was applicable. That is, at any intermediate step in
solving a problem, only one operator can be used to achieve the next step in the
problem. There was never a choice between operators.

Thirteen rules are sufficient to do all problems (see the model in Chapter
5). These rules corresponded to adding the same symbols to both sides of the
character string, canceling symbols when appropriate on one side of the
equation, and eliminating the sign in front of the g when one occurred.
However, these rules were never presented to the participants. Instead,
participants had to infer the rules from the information that was available to

them and by interacting with the task. Depending upon condition, the initial
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Table 3.3
Examples available to all participants in Experiments 1 and 2

Example 1 Example 4 Example 7
P ODHBA perovwd P#l0A
PODPYDOHB®AVD PV Br—vd®T P#IOIre-0ACT
PoOB®AvD Peovder P —OCAOT
Example 2 Example 5 Example 8
v il[ovd # 0 >#TOA © PBI'-®Q
v #[OrvdOT O OTHA ©pOI'vI-BQel
| FoXol LGl © o B®Qel
PP Example 6 PoBrvQ
®pBACI
Example 3 ® P OAVAOT WA
© p>#I'®A ® poClvA
o O#ABT PoOTYA

information available to the participants differed. All participants had a screen of
eight completely worked-out examples available to them, as presented in Table
3.3. They could refer to this screen at any point as they tried to solve problems. In
picking this set of examples, the only rubric used was that each underlying rule
had to be represented at least once. Some of the conditions received additional
information, to be described shortly.

Procedure. The task was implemented as a Hypercard 2.2.1 stack (Apple
Computer, Inc., 1994) which was run on an accelerated Apple Macintosh Ilci
computer connected to a two—-page monitor. All participants initially saw two
screens that contained some introductory comments about the experiment and
instructions on the task’s interface. After this point, the information that
participants subsequently received depended on what condition they were
placed (Appendix A contains the information that the two syntax groups had):

Examples: This group only saw the screen with the eight examples

(shown in Table 3.3)
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Syntax(No Hint): Before seeing the examples screen, both syntax

groups (Syntax(Hint) and Syntax(No Hint)) received
information concerning the task’s syntax and goal structure.
The syntax information classified the symbols used in this
task as either “object” or “connector” symbols, roughly
corresponding to constants and operators in algebra, and
also explained what constituted a well-formed formula in
the task. The goal structure simply indicated that the goal for
each problem was to “isolate” (i.e., solve for) the script-p
character, that a set of rules existed for solving the problems,
and that only one rule was applicable at any step in solving
the problem.

Syntax(Hint): Between seeing the syntax information screens and
the example screen, this group received a hint for learning
the task. This hint told the participants that two pairs of
operators were “related” to one another. In algebra, this
would correspond to the fact that plus and minus, and times
and divide, are inverses.

Once participants started to solve problems, they could refer back to any
of the information they had already seen by clicking on-screen buttons. It should
be emphasized that for this experiment no mention of algebra was made to the
participants, and the terminology used tried to distance the task as much as
possible from algebra (e.g., using “isolate” instead of “solve for”).

Each problem was presented in a box near the top of the screen. The
participant then used an on-screen keypad which contained all the symbols used
in the task to click out, with the mouse, the next correct step which would follow

from either the problem, or from one of the lines the participant had already
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clicked. A delete key was available to erase any character they had clicked. The
participant’s lines appeared in a box below the problem. Once the participant
had clicked out a step, he or she clicked a special button to have the computer
check the answer. If the step they had clicked out was the next correct one, the
computer would respond, “Good,” and the participant could continue with the
problem. If the line clicked out was the problem’s solution, then the computer
would respond, “Excellent,” the box containing the participant’s lines would
clear and a new problem would appear. If the line was correct, but the
participant had skipped a step (possible on the two— and three-step problems), a
dialog box would appear stating that step skipping was not allowed, their line
would be erased, and they would be given another chance to click out a line. If,
however, the line was incorrect, the computer would respond, “Try again,” the
participant’s line would be erased from the box below the problem and moved to
a different location, and the participant would then have another chance to click
out a correct line. If the second attempt was not correct, the computer would
respond, “Here’s the correct line” and the next correct step (following from the
last correct line) would appear.

Each participant was asked to solve 32 of each of the three types of
problems (one-, two—, and three-step problems) for a total of 96 problems. Each
participant had 2 hr with which to solve all 96 problems. There were 12
participants in the Syntax(Hint) group, 14 in the Syntax(No Hint) group, and 23

participants in the Examples group.

Results
Background and General Results
Table 3.4 contains summary information about the performance of
participants in this experiment for easy reference. Participants reported their

math SAT scores on a voluntary basis (out of all the experiments in this
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Table 3.4
Syntactic Symbols At-a—Glance

Syntax(Hint) Syntax(No Hint) Examples Only

Self-reported math SATs 6622 6562 6552
Reading Instructions (min) 5.112 4.342 2.94P
Examining Examples (min) 2.002 1.582 0.79%
Successful Participants 12 of 122 12 of 142 12 of 23P
Self-reported math SATs 6622 6732 6834
Example References 23.722 52.41P 70.83b
Total Time (min) 64.092 79.42° 81.54°
First Block (12 problems) 20.102 24.122 33.09b

dissertation, only 6 participants reported that they did not remember their score,
or that they did not wish to divulge it). No difference is detected between the
SAT scores of the participants in the three groups (F < 1), either when examining
the groups as a whole, or just looking at those participants who completed all 96
problems (the “successful” participants, to be discussed shortly).

Preparation times. Not surprisingly, participants in the three groups spent
different amounts of time reading the initial information (F(2,46) = 9.96, MSE =
2.08, p < .001), with the Examples group taking less time (2.94 min on average)
than the other two groups (5.11 min for the Syntax(Hint) group and 4.34 min for
the Syntax(No Hint) group), as shown by a Newman Keuls post-hoc test, p < .05.
Participants in the three groups also differed in the amount of time initially
examining the screen of examples (F(2,46) = 6.16, MSE = 1.07, p < .01). Again, a
Newman Keuls post-hoc test shows that the Examples group spent less time
(0.79 min, on average) than the other two groups (2.00 min for the Syntax(Hint)
group and 1.58 min for the Syntax(No Hint) group), which did not differ from

each other.
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Successful and unsuccessful participants. At this points it is important to
make a distinction between two types of participants within each group: those
participants who completed all 96 problems in the allotted two hours and those
who did not. Twelve participants in each group completed the entire set of 96
problems. Everyone in the Syntax(Hint) group finished, but 2 people in the
Syntax(No Hint) group did not, and 11 people in the Examples group did not
complete the task. The 2 people who did not complete the task in the Syntax(No
Hint) condition solved 56 problems in one case and 52 problems in the other, and
the 11 people who did not finish in the Examples group made it to problem 23.4
on average. Significantly fewer people (p < .05) finished in the Examples group.
Looking at the initial instruction time measures examined in the previous
paragraph, the people who did not finish the task did not differ on those
measures from the people who did finish. Unless specifically mentioned, the
analyses discussed for the rest of this experiment, and also for the other
experiments, will be based just on those participants who completed the task.

Remindings. At the end of the experiment, every participant was asked if
the task they just learned (or attempted to learn) reminded them of anything—
any other task or domain that they knew about. In both the Syntax(Hint) and
Syntax(No Hint) groups, 9 of the 12 participants who finished the task reported
that the task reminded them of algebra. In the Examples group, 11 of the 12
people who learned the task said the task was similar to algebra. However, of the
11 people who did not learn the task in the Examples group, only 1 participant
reported the task’s similarity to algebra. The two people who did not finish in the
Syntax(No Hint) group, one reported being reminded of algebra, the other one
did not. For those who did not say algebra, the most common answers were
either that they were reminded of nothing or they were reminded of some sort of

logic task. Clearly, for those people who learned the task, drawing upon
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algebraic knowledge was beneficial—particularly for those who made that
connection in the Examples group. This relation between being reminded of
algebra and learning the task was examined in depth in the second experiment.
Learning

Accessing information. The most common piece of information that
participants referred back to while solving the problems was the screen of
examples (indeed, that was all the Examples group had to refer back), and
significant differences were detected between the number of times participants
returned to that page (F(2,33) = 5.54, MSE = 6759, p < .01). The Syntax(Hint)
group turned back to that page a mean of 23.72 times, the Syntax(No Hint) group
52.41 times, and the Examples group 70.83 times. A Newman Keuls post-hoc test
showed that the Syntax(Hint) group was significantly lower than the other two
groups, but the Syntax(No Hint) group did not differ from the Examples group.
The Syntax(Hint) group and the Syntax(No Hint) group did not refer back to the
screens of syntax or goal information often (on average only twice for the syntax
screen, and less than once for the goal screen). There were no differences between
these two groups on those references (for both, F < 1). No one in the Syntax(Hint)
group referred back to the hint screen. For the groups that did receive the
additional information, that extra information just needed to be viewed once, and
that was sufficient to help them in learning the task. Furthermore, despite the fact
that the additional information just needed to be examined once, it allowed those
people to learn the task with fewer references back to the example screen. The 11
people who did not finish in the Examples group referred back to the Examples
page 93.52 times. Even though they made it through roughly 24 problems on
average, they referred back to the examples screen a lot.

Completion time. The three groups differed significantly in the mean total

time it took participants to solve all 96 problems, F(2,33) = 3.50, MSE = 310.57, p <
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1-Step Problems
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.05. The Syntax(Hint) group took a mean of 64.09 min to solve all the problem,
the Syntax(No Hint) group spent 79.42 min, and the Examples group took 81.54
min. A Newman Keuls test revealed that the Syntax(Hint) group took
significantly less time than both the other groups (p < .05), but that the other two
groups did not differ from one another. Figure 3.1 plots the average time
participants spent solving the problems (broken up between problems of
differing lengths). Note that trials have been blocked in these graphs, and in the
graphs to follow, to aid readability. As can be seen, the groups differed
substantially in the first block of trials, less so in the second block, and by the
third block the groups were performing almost equally, and continued to do so
throughout the rest of the experiment.

Since the most difference is seen in the first block of trials, a separate
analysis was done on it. This block contains the first 12 problems, with each type
of problem being represented 4 times. The same set of problems was used for
each participant, and the problems were presented in the same order. The results
of this analysis show a significant difference (F(2,33) = 3.50, MSE = 310.57, p <
.05), with a Newman Keuls test showing that the Examples group took
significantly longer than the other two groups (on average, 33.09 min to complete
these first 12 problems), but no difference between the Syntax(Hint) and
Syntax(No Hint) groups (20.10 min and 24.12 min, respectively).

Errors

Error types. The three groups differed on the number and kind of errors
they produced while learning the task. Table 3.5 provides a breakdown of those
errors by group. Syntax errors refer to lines that participants type that are not
well-formed. That is, these lines could in no way exist within the task’s syntax.
Semantic errors are all other errors—generally they are the use of the wrong

operator. The table rows for each group refer to the step that the error occurred.
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Experiment 1: Average Errors per Participant

Examples Only

Addition
Cancellation
Sign Elimination
Total

Syntax(No Hint)

Addition
Cancellation
Sign Elimination
Total

Syntax(Hint)

Addition
Cancellation
Sign Elimination
Total
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Syntax Semantics Total

2.75 (8%) 9.42 (28%) 12.17 (36%)

0.50 (2%) 1.5 (4%) 2.00 (6%

3.17 (9%) 16.50 (49%) 19.67 (58%)
6.42 (19%) 27.42 (81%) 33.83
Syntax Semantics Total

2.75 (4%) 17.00 (26%) 19.75 (30%)
0.67 (1%) 3.17 (5%) 3.83 (6%)
5.67 (9%) 37.17 (56%) 42.83 (65%)
9.08 (14%) 57.33 (86%) 66.42
Syntax Semantics Total

1.08 (4%) 4.25 (14% 5.33 (17%)
0.17 (1%) 2.67 (9%) 2.83 (9%)
1.42 (5%) 21.42 (70%) 22.83 (74%)
2.67 (9%) 28.33 (91%) 31.00

Addition errors occurred on the first step of one- and two-step problems, where

the proper thing to do was to add an operator/operand pair to both sides of the

character string. Cancellation errors occurred on the second step of one- and

two-step problems, in which participants needed to cancel symbols on the left-

hand side. Finally, sign elimination errors happened on the last step of a three-

step problem or the only step of a one-step problem. These steps involved the

removal of the sign in front of the script-p, and generally involved some

manipulation to the symbols on the right-hand side.
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In terms of total errors the Syntax(No Hint) group made significantly
more than the other two groups (F(2,33) = 3.82 MSE = 1281, p < .05). This can be
attributed to two reasons. First, the Syntax(No Hint) group knew what made a
well-formed expression, but did not initially have the knowledge that two pairs
of operators were related to one another. This additional information that the
Syntax(Hint) group had enabled them to learn the task while making
significantly fewer errors. A lot of the errors made by the Syntax(No Hint) group
were at the beginning, trying to figure out the proper operator to add for the
addition step (12.10 errors per participant, of the 17.00 erorrs, could be attributed
to participants knowing that the same thing needed to be added to both sides of
the character string, but no knowing which operator), or how the operators
affected one another during the sign elimination step (essentially all of the
semantic sign elimination errors). Second, there is a selection bias in the
Examples group, in that Table 3.5 lists the statistics for 12 of 23 people in the
Examples group and 12 of 14 people in the Syntax(No Hint) group. The
Examples group contains only participants fairly proficient at learning the task.
Examining in more detail the 11 participants who did not master the task in the
Examples group (and who made it to a mean of 23.5 problems), it is found that
they made 516 total errors, 221 (43%) of them being syntactic in nature. However,
looking at only the top 50% of participants in each group (i.e., 12 of 23
participants in the Examples group, 7 of 14 in the Syntax(No Hint) group, and 6
of 12 in the Syntax(Hint) group), in terms of least number of total errors, one
does not find a difference (F(2,22) = 1.96, MSE = 383.2, p > .1).

Examining the percentages of errors in Table 3.5, one sees that the profile
of errors in the Syntax(No Hint) group is much more similar to that of the
Examples group; the correlation between the percentages of these two groups is

.98 (the correlation between the Syntax(No Hint) and Syntax(Hint) groups is .92,
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and .85 between the Examples and Syntax(Hint) group). The Syntax(No Hint)
and Examples groups made a much higher percentage of semantic errors on the
addition step than did the Syntax(Hint) group. The addition step, once one
knows that two pairs of operators are related, is relatively simple to learn. No
one had much difficulty with the cancellation step. The proper rule for that step
is that if the pattern ( (operator) (constant) (operator inverse)
(same constant)) appears on one side of the equation, those four symbols can
be eliminated. At the beginning, however, most participants learned it as just
dropping the four right-most symbols on the left side of the character string. This
is evident in verbal protocols, to be discussed in conjunction with the model in
Chapter 5. The sign elimination step was difficult for participants to master, and
this is where most errors occurred for all participants, but particularly so for
those in the Syntax(Hint) group, who had the information available to quickly
master the addition steps (e.g., knowledge of inverse operators).

Sign—elimination errors. The Syntax(Hint) group tended to make errors that
made the rule set more parsimonious. The rule for eliminating a # in front of the
script-p was similar to the rule for eliminating a # (that is, inverting the related
symbols on the right-hand side). However, the rule for eliminating the ® (do
nothing to the right-hand side) was quite different than the rule for eliminating
the © (switch the two constants on the right-hand side). People in the
Syntax(Hint) group attempted to apply the ® elimination rule when eliminating
a © and vice versa 54 times (42% of all errors on ® and © elimination steps),
whereas participants in the Examples group did so only 17 times (14% of errors
on those steps). The Syntax(No Hint) group was more similar to the Syntax(Hint)
group, making those errors 54 times (30% of applicable errors). Thus participants

with the most information tended to over—generalize their rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3: Syntactic Symbols 36

However, participants in the Examples group were more likely to make a
particular type of error in # elimination. The correct rule is that to eliminate a # in
front of the script-p, all the #s on the right-hand side become ©s, and all the ©s
become #s. The single example that demonstrated this rule in the screen of

examples was misleading:
Example 5: #po#I'©A
OTHA

One possible interpretation of that example would be that the rule is to switch
the position of the operators. Indeed, the first time almost all participants tried to
solve a problem which needed the # elimination rule, they would switch the
operators, not invert them (across all experiments, only one participant used the
correct rule on the first attempt). The Syntax(Hint) group quickly learned the
correct rule. For this experiment, they attempted to switch the operators 15 times
(18% of the # elimination errors). However, the Examples group perseverated in
making that particular error, doing so 34 times (41% of the errors). The
Syntax(No Hint) also made this error often, 41 times (31% of # elimination
errors). The groups with the least information were not able to create a rule with

the proper generality.

Discussion
This experiment tested the claim of the Syntactic Knowledge Contribution:
1) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are
influenced by knowledge of the task’s syntax, as well as other
information particular to the task (e.g., knowledge of inverse

operators).
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On all measures the group that had the most information, the
Syntax(Hint) group, performed significantly better than the other two groups.
The most interesting result is the 50% failure rate of the Examples group,
compared to almost everyone learning the task in the two syntax conditions. The
Examples group was always worst (except in total number of errors for all 12
successful participants), and the Syntax(No Hint) group would be someplace in
between—sometimes they were more similar to the Syntax(Hint) group but
frequently would be more similar to the Examples group. This pattern held
across all the major measures of performance—whether or not they learned the
task, number of references back to the examples, time to learn the task, and errors
made while learning. The additional declarative information was extremely
beneficial in learning the task. Such results support the Syntactic Knowledge
Contribution.

Experiment 2 was conducted in order to more closely investigate the link
between people learning this task and their knowledge that the task is based on
algebra. One of the striking findings of this experiment is that a major determiner
as to whether a person learns the task, if they are in the Examples group, is if
they are reminded of algebra. Almost all the people (11 of 12) in the Examples
group who learned the task were reminded of algebra, but only 1 of the 11 who
did not complete the task reported the task’s similarity to algebra. Experiment 2
manipulated people’s knowledge as to how the task was related to algebra in an
attempt to better understand this relationship.

An interesting pattern emerges from the error data, particularly on the
sign elimination steps, between the people who have a lot of information with
which to begin learning the task and those who have only the examples. The

pattern provides some evidence for the Over Specificity Contribution:
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3) Lack of adequate syntactic knowledge causes the analogy

mechanism to build over-specific rules from examples.
This difference can perhaps best be characterized as one group being more
theory driven (the Syntax(Hint) group) and the other being more driven by data
(the Examples group). As previously stated, many of their errors with the sign
elimination steps attempted to make the rule set more parsimonious. The
Syntax(Hint) group knew that certain pairs of operators were related, and knew
to look for those kinds of relations. Once they figured out the rules for ® and #
elimination, they were more likely to pair the © and ® together for the sign
elimination steps. The Examples group did not initially know about the pairing
of operators, and so were less disposed to finding such over-arching relations.
The Syntax(No Hint) group with their knowledge of syntax and goal had some
idea of the underlying structure of the task, and so resembled more closely the
Syntax(Hint) group on this measure.

Another instance where this occurs in the error data is in learning the #
elimination rule, where one of the examples was very misleading. The
Syntax(Hint) group, with their knowledge of inverse operators figured out the
correct transformation after attempting to do one problem and being told the
right answer. The Examples and Syntax(No Hint) groups, not knowing to
perhaps look for inverse operators, perseverated in making that error.
Experiment 4 was designed specifically to examine these issues more closely, but

I will be mentioning them in relation to the other two experiments as well.
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Chapter 4

Experiment 2: Algebraic Symbols

Experiment 2 examined more closely the result from Experiment 1 that
people who were reminded of algebra in the Examples group were much more
likely to learn the task than those who were not reminded of it. Indeed, almost all
the people in the former group (11 of 12) reported being reminded of algebra,
whereas almost none of the people in the latter group did (1 of 11). People were
clearly tapping into their knowledge of algebra in learning the task. Since the
largest effect of this was seen in the Examples group, it is on that condition that
the groups in this experiment were based. This experiment attempted to
manipulate in a controlled way people’s awareness of the task’s similarity to
algebra, thereby obtaining a better test of this dissertation’s second contribution:

2) One of the strongest predictors of success for learning Symbol

Fun was if the learner was able to access and use their

knowledge of algebra.

39
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In Experiment 1, nothing in the task’s instructions made mention of algebra, and
in fact the information presented to the participants was written in order to mask
the task’s basis in algebra.

The main manipulation in this experiment took the form of an explicit hint
that the task was indeed related to algebra. The level of detail that the hint had
was manipulated between the three groups that comprised this experiment.
People either received a low detailed hint, which just said that the task was based
on algebra, or an intermediate detailed hint, which not only said the task had its
origins in algebra, but also mentioned the different kinds of transformations in
the task. There was also a high detailed hint, which not only contained the
information in the intermediate detailed hint, but also provided a mapping
between the character strings in the examples and their algebraic counterparts.
The expectation is that the more detailed the hint, the more efficient the learning

will be.

Method

Participants. Forty—-four Carnegie Mellon University undergraduates
participated in this experiment for partial course credit and pay.

Materials. The task used in this experiment was exactly the same as the one
used in Experiment 1. The differences between the groups, as in Experiment 1,
was only in the initial information available to the participants. The screen of
examples available to the participants in all groups was the same as in
Experiment 1, except that for one group in this experiment it was augmented
with additional information (to be described later).

Procedure. Again, the task instructions were part of the Hypercard stack
used to test the participants. The informational content given to the three groups
in this experiment was based on the Examples group of the last experiment. That

is, none of the groups in this experiment were given knowledge of syntax or goal.
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Rather, all of them were given the screen of examples, but before they were
shown that, an additional screen of information was presented to them. This
screen contained information as to how the task was related to algebra, and the
information differed in directedness between the groups. The labels used for the
groups refer to the detail level of the algebraic hint given to the participants in
that group. The least directed information given to the Algebra(Low) group read
as follows:

This task is like algebra. It is not a direct mapping, so do not get
caught on any one manipulation. However, as you look at the
examples and start solving problems, you will find it helpful to use
your knowledge of algebra in figuring out the domain.

After reading this screen, the participant went on to the screen of examples, and
then proceeded like the other groups in Experiment 1.
Another group of people, which I refer to as the Algebra(Intermediate)

group, saw not only the paragraph above, but also this paragraph:

There are basically 3 types of manipulations in this task. One is
adding the same thing to both sides of equation. Another is
canceling, and the last is eliminating the sign in front of the g
(which often has consequences for the right-hand side of the
character string).

These two paragraphs were presented on the same screen, and like the
Algebra(Low) group, once the people in the Algebra(Intermediate) group read
through these paragraphs, they were presented with the screen of examples, and
the experiment proceeded as in Experiment 1.

Finally, the people in the Algebra(High) group saw the same algebra
information screen as the Algebra(Intermediate) group. However, each example
on the following screen of examples was annotated with the corresponding
algebraic symbols, much like the example presented in Table 3.2 (Appendix B

contains the full list of annotated examples).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Algebraic Symbols 42

In all three conditions, the way participants interacted with the program
as they were trying to solve problems was exactly the same as in Experiment 1.
They could refer back to the examples screen, which for the Algebra(High) group
contained additional information, as well as the text of the algebra hint.

Again, each participant was asked to solve 32 of each of the three types of
problems (one-, two-, and three-step problems) for a total of 96 problems. Each
participant had 2 hr with which to solve all 96 problems. There were 19
participants in the Algebra(Low) group, 12 in the Algebra(Intermediate) group,

and 13 participants in the Algebra(High) group.

Results
Background and General Results

Table 4.1 contains summary information about the performance of
participants in this experiment for easy reference, with the Examples group from
Experiment 1 displayed to provide reference. No difference is detected in the
SAT scores of the participants in the three groups (F < 1) when examining the
groups as a whole, but when examining just the successful participants, a
difference is detected (F(2,33) = 3.68, MSE = 2663, p < .05). A Newman Keuls test
reveals that the Algebra(Low) group is significantly higher than the
Algebra(High) group (p < .05). This difference between the aptitude of the
groups, at worst, attenuated the predicted effect, since the Algebra(Low) group
was expected to perform worst.

Preparation times. Examining both time to read the information given to the
participants up front, and the time spent initially studying the examples, no
differences were detected between these three groups (F < 1). However, when
compared to the amount of time spent by the Examples group from Experiment
1, all three of these groups spent significantly more time, as shown by a Newman

Keuls test (p < .05). The Algebra(Low) group spent 2.65 min initially studying the
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Table 4.1
Algebraic Symbols At—a—Glance
Algebra
High  Intermediate = Low | Examples
Self-reported math SATs 6632 6892 6922 6552
Reading Instructions (min) 4.442 4.902 5.142 2.94b
Examining Examples (min) 2.242 2.432 2.652 0.79b
Successful Participants 120f132  120f122  120f19°| 120f 230
Self-reported math SATs 6742 6892 730P 6832
Example References 16.422 24.582b 45.00° 70.83¢
Total Time (min) 62.772 65.152 67.032 | 81.54P
First Block (12 problems) ~ 19.492 19.362 23.892 | 33.09°

examples and 5.14 min with all of the initial instructions, the Algebra(Inter-
mediate) group spent a mean of 2.43 with the examples and 4.90 min with all the
instructions, and the Algebra(High) spend 2.24 min with the examples and 4.44
min with all the instructions.

Successful and unsuccessful participants. However, as in Experiment 1, a
distinction needs to be made between those people finishing the task and those
who did not finish in the 2 hr time limit. Twelve participants completed the task
in each of the three groups. Seven people did not learn the task in the
Algebra(Low) group, and one person did not finish in the Algebra(High) group.
Everyone finished in the Algebra(Intermediate) group. The proportion of
successful participants between the Algebra(Low) and Algebra(Intermediate)
group is significant (p < .05). A significant difference does not exist between the
proportion of successful participants in the Algebra(Low) group and the
successful participants in the Examples group from Experiment 1. The one

person who did not complete the task in the Algebra(High) condition did solve
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42 problems, and the 7 people who did not finish in the Algebra(Low) group
made it to problem 35.3 on average. Looking at the initial instruction time
measures examined in the previous paragraph, the people who did not finish the
task did not differ on those measures from the people who did finish.

Usefulness of algebra hint. In Experiment 1 participants were asked if the
task reminded them of anything. It was found that, for those people who learned
the task, most people were reminded of algebra. At the end of this experiment in
which people were to varying degrees explicitly told the task was based on
algebra, people were asked if they felt that the algebra hint was beneficial in
learning the task. In the Algebra(Low) group, 8 of the 12 people who learned task
reported that the hint was helpful, and perhaps surprisingly, four of the people
who did not complete the task said that the hint helped. Nine of the 12 people in
the Algebra(Intermediate) stated that making use of the hint aided them in
learning, and everyone in the Algebra(High) group, including the one person
who did not finish, said it helped. In elaborating on how it helped, most people
said it allowed them to more easily notice that things were being added to both
sides and then being canceled, as well as clued them in to the fact that there may
be inverse operators.

Learning

Accessing information. Across the three groups participants differed
significantly on the number of times the example screen was referred back to
(F(2,33) = 3.64, MSE =713.9, p < .05). The Algebra(Low) group referred to that
page a mean of 45.00 times, which was significantly different by a Newman
Keuls test (p < .05) from the 16.42 times on average that the Algebra(High) group
looked back. The Algebra(Intermediate) group referred back to that page a mean
of 24.58 times, which does not differ from either of the other two groups. All

three of these groups differ from the Examples group of Experiment 1 (who
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referred back to the examples screen 70.83 times). No one in these three groups
referred back to the page with the hint as to how the task was related to algebra.
The seven people who did not finish in the Algebra(Low) group referred back to
the examples an average of 74.32 times.

Completion time. The three groups did not differ significantly in the total
time it took them to solve all 96 problems (F < 1). However, there was a slight
suggestion that the more detailed the hint, the faster learning took place. The
Algebra(Low) group spent 67.03 min on average solving all the problems, the
Algebra(Intermediate) group spent 65.15 min, and the Algebra(High) group took
62.77 min. In comparing them to the Example group from the last experiment,
which took a mean of 81.54 min to solve the problems, all three groups did
significantly differ by a Newman Keuls test (p < .05). Figure 4.1 plots the
performance of the three groups in this experiment, using the Examples group
from Experiment 1 as a comparison, on all three types of problems. As in the
graph of Figure 3.1, the groups did noticeably differ during the first block, that
difference was attenuated during the second block, and by the third block all
groups were performing equally on subsequent trials. Therefore, any difference
in time to learn the task between the three groups occurs very early in the
learning process. As in Experiment 1, performing an ANOVA on only the first
block of trials, one does see a significant difference (F(3,44) = 2.93, MSE = 50958, p
< .05), and a Newman Keuls post-hoc test revealing that the Examples group
differs from the Algebra(High) group, but no other pairings are significant at the
p < .05 level.

Errors

Table 4.2 presents the error data from this experiment in a manner similar

to Table 3.5. The Examples group data from Table 3.5 is presented here for

comparison purposes. The three groups did not differ significantly in the total
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Figure 47: Overall time by block for each problem type (Experiment 2)
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Table 4.2
Experiment 2 Errors

Examples Only

Addition
Cancellation
Sign Elimination
Total

Algebra(Low)

Addition
Cancellation
Sign Elimination
Total

Algebra(Intermediate)

Addition
Cancellation
Sign Elimination
Total

Algebra(High)

Addition
Cancellation
Sign Elimination
Total

Chapter 4: Algebraic Symbols
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Syntax Semantics Total
2.75 (8%) 9.42 (28%) 12.17 (36%)
0.50 (2%) 1.5 (%) 2.00 (6%)
3.17 (9%) 16.50 (49%) 19.67 (58%)
6.42 (19%) 27.42 (81%) 33.83
Syntax Semantics Total
2.25 (7%) 6.83 (21%) 9.08 (28%)
0.75 (2%) 1.42 (4%) 2.17 (7%)
1.50 (5% 19.67 (61%) 21.17 (65%)
4.50 (14%) 27.92 (86%) 32.42
Syntax Semantics Total
7.17 (14%) 14.92 (29%) 22.08 (43%)
0.83 (2°0) 1.83 (4%) 2.67 (5%)
1.92 (4%) 24.25 (49%) 26.17 (51%)
9.92 (19%) 41.00 (81%) 50.92
Syntax Semantics Total
4.83 (11%) 4.83 (11%) 9.67 (22%)
2.50 (6%) 242 (5%) 4.92 (11%)
2.42 (5%) 27.92 (62%) 30.33 (68°0)
9.75 (22%) 35.17 (78%) 44.92

number of errors they produced (F < 1). Again, one must keep in mind that for

the Algebra(Low) the 12 people represented in the table come from a group of 19

people, whereas the 12 people in the other two groups are either all the

participants in that group (the Algebra(Intermediate) group) or all but one of the
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participants in the group (the Algebra(High) group). However, looking at the top
50% of participants in each group (i.e., 10 of 19 participants in the Algebra(Low)
group, 6 participants in the Algebra(Intermediate) group, and 7 participants in
the Algebra(High) group), in terms of least number of total errors, one does find
a difference between the groups (F(2,20) = 4.55, MSE = 90.83, p < .05), with a
Newman Keuls test showing that this subset of the Algebra(High) group made
more errors than the other two groups (p < .05). These Algebra(High) people
made an average of 29.3 errors, whereas the Algebra(Low) people made a mean
of 19.8 errors, and the Algebra(Intermediate) group 12.8 errors. Both the
Algebra(Low) and the Algebra(Intermediate) groups had participants who did
extremely well (i.e., made less than a dozen errors), whereas the participants in
Algebra(High) group all did roughly the same, making around the mean number
of errors.

As in Experiment 1 the error profiles, in terms of the percentages, are
different between the groups, as evidenced in Table 4.3 which shows the
correlations of those percentages with one another. Similar amounts of
syntactical errors were made between the groups, with most errors being
semantic in nature. The pattern of errors between the three types of steps are
most similar between the Examples group and the Algebra(Intermediate) and
Algebra (Low) groups, and the Algebra(Low) group and the Algebra(High)
group. It is important to keep in mind that the 12 people reported in the

Algebra(Low) group are, in some sense, the people who got the most out of the

Table 4.3
Correlations in Error Percentages

Examples  Algebra(Low) Algebra(Inter.)

Algebra(Low) .95 - —
Algebra(Inter.) 96 91 —
Algebra(High) 81 95 .79
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algebra hint—enough so to make them similar to the Algebra(High) group,
where many of the connections between this task and algebra were laid bare. The
Algebra(Intermediate) group made the highest percentage of errors on the
addition step, where knowing the inverse operators is most important. The idea
of inverse operators is made apparent in the Algebra(High) group (i.e., seeing
that ® is paired with + and % is paired with -), and as previously stated, the
participants in the Algebra(Low) group are the ones who quickly made that
connection based upon the algebra hint. Like the Syntax(Hint) group in
Experiment 1, the Algebra(High) and Algebra(Low) groups had most difficulty
with the sign elimination steps (around 70% of the total errors).

Sign elimination errors. Examining the particular types of sign elimination
errors, like in Experiment 1, one sees slight differences between these three
groups. First, the people in the Algebra(Low) and Algebra(Intermediate) groups
made a similar percentage of errors in confusing the ® and © elimination rules
(the Algebra(Low) group made 48 errors of that type, or 34% of applicable errors,
and the Algebra(Intermediate) group made 26%, or 47 total). The Algebra(High)
group made 19% (34 total) of their errors on these types of problems. Another
differentiating error mentioned in Experiment 1 was perseverating in switching
the operators when eliminating the #, as suggested by the misleading example,
not inverting the related operators. The Algebra(Low) group made that error 36
times out of 88 total errors (41%) on # elimination steps, whereas the other two
groups made the error much less: the Algebra(Intermediate) group 26 times out

of 103 (25%) and the Algebra(High) group 28 times out of 148 (19%).

Discussion
In all its forms, the algebra hint aided people in learning the task in
comparison to the Examples group from Experiment 1, which supports the claim

of the Prior Knowledge Contribution:
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2) One of the strongest predictors of success for learning Symbol

Fun was if the learner was able to access and use their

knowledge of algebra.
In its least detailed form, only four additional lines of text, 12 of 19 people
learned the task, in comparison to 12 of 23 in the Examples group. While the
percentage of people who learned the task is not statistically different, the time it
took the people who did learn the task (i.e., the people who truly grasped the
hint) was significantly quicker. This slight hint allowed people to access
previously learned knowledge which they may or may not have accessed
otherwise.

With the addition of four more lines of text, the text seen by the
Algebra(Intermediate) group, resulted in everyone in that group being able to
learn the task in the allotted 2 hr. Those additional four lines of text contained
information which would limit the search space, the possible transformations
and manipulations allowed in the task, for those people. The additional lines
clearly casted the problems in terms of the three basic manipulations—addition,
cancellation, and sign elimination—and enabled the participants to concentrate
on those types of potential rules. In sum, those lines allowed the participants to
highlight the algebraic knowledge most necessary to learn the task and to not
concentrate on the other aspects of algebra not necessary.

Finally, the Algebra(High) group actually saw a mapping between this
task and algebra, which resulted in all but one person learning the task and, for
the people who did, a suggestion that the learning was quicker than in the other
two algebra hint groups, particularly across the first 24 problems. The mapping,
on top of the hint seen by the Algebra(Intermediate) group, provided additional

information with which the participants in the Algebra(High) group could use to
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learn the task, but apparently the four lines of text was the more crucial piece of
information in learning the task.

The algebra hint was as effective as it was because it allowed the problem
solvers to map existing algebraic knowledge (e.g., adding the same thing to both
sides of an equation, inverse operators, etc.) onto learning the new task. Initially
studied by Thorndike (1906; Thorndike & Woodworth, 1901) and then updated
by Singley and Anderson (1989) to fit into Anderson’s ACT theory (1993), the
identical elements theory of transfer provides an explanation as to why and how this
happens. In as much as existing knowledge, both declarative and procedural,
overlaps with the knowledge needed to perform the new task, transfer will
result. The more overlap that exists between the two tasks, the greater the
transfer. In all conditions, the hint that the task was based on algebra allowed the
participants to consider how their algebraic knowledge could be applied to this
new task. The hint given to the Algebra(Intermediate) and Algebra(High) group
as to what sort of manipulations were involved in this task allowed a narrowing
of their consideration as to how their existing knowledge of algebra could be
applied. Finally, the examples screen seen by the Algebra(High) group made the
mapping between their existing algebra knowledge and knowledge of this task
extremely explicit.

In analyzing the errors that people made in Experiment 1, it appeared that
the participants in the group with the most information (the Syntax(Hint) group)
were more theory driven than the group with the least information (the
Examples group), who were more data driven. In as much as people made use of
the algebra hint in this experiment, everyone should have been operating with a
“theory,” or set of related knowledge structures from algebra, of how the task

should work as they were attempting to learn it. Therefore, the better this
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additional information, the better the learning, as stated in the Over Specificity
Contribution:

3) Lack of adequate syntactic knowledge causes the analogy

mechanism to build over-specific rules from examples.

This is roughly what one sees in the results of this experiment. The Algebra(Low)
group tended to try to over-generalize the rule set, making the error of
interchanging the ® and © sign elimination rules 34% of the time on errors
involving those steps, whereas the Algebra(High) group, who could see the
mapping of the symbols and could perhaps better guess at the underlying rules
(e.g., for © elimination, switch the two operands) made those errors 19% of the
time. Also, the Algebra(Low) group repeatedly made the error of switching the
operators for # elimination (41% of their errors on that step), whereas the
Algebra(High) group, who could see the mapping between inverse operators,
more quickly learned that that was not correct (25% of their errors). The
Algebra(Intermediate) group was someplace in between with their
understanding-——confusing the ® and © rules 30% of the time, but only making
the # elimination error 18% of the time when they made on error on that step.

Based on the results of these two last two experiments, an adequate model
of how people learn this task, and what pieces of information are necessary for
people to fully understand the task, can be constructed. The following chapter

discusses an ACT-R model of people learning this task.
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The Model—ACT-SF

This chapter details an ACT-R model, ACT-SF, of people learning Symbol
Fun, as examined and analyzed in the previous two chapters. An important
distinction within the ACT-R architecture is between declarative knowledge,
knowledge of facts (e.g., “Washington DC is the capital of the United States”)
and procedural knowledge, knowledge of how to perform actions (e.g., adding
numbers together). One of the claims of the ACT-R theory is that all knowledge
has declarative origins. That is, the only way new procedural knowledge, in the
form of production rules, enters the system is by the process of analogizing from
the current goal to some previous declarative knowledge. This mechanism
operates by forming an analogy from examples stored in declarative memory to
the current goal. Also, this mechanism accounts for how generalizations arise
from prior knowledge. The analogy mechanism is built into the ACT-R
architecture.

The ACT-SF model initially contains no procedural knowledge (i.e., no

productions) that describe how to perform the manipulations required within the
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Symbol Fun task (the model does contain two productions that perform
“housekeeping” tasks). These productions are learned via the analogy
mechanism, based on its initial declarative knowledge.

The goal of the ACT-SF model is to provide a full account of how people
learn the Symbol Fun task, and then to compare the predictions that the model
makes against participants’ performance in the previous and also the later
experiments. Also, this model serves as a test of ACT-R’s analogy mechanism,
and, to some degree, ACT-R’s claim that all knowledge starts off declaratively,
since that is the way the analogy mechanism works. One of the ways this was
examined was by removing or modifying the model’s declarative knowledge,
and this will be discussed in the last part of this chapter. By such a process,
human failures at learning the task were modeled.

The model which will be described now is referred to as either ACT-SF or
the “Informed Model.” Initially it only has declarative knowledge—that is, no
procedural knowledge as to the manipulations needed to perform the task—but
that knowledge is represented in such a way as to allow the best, most accurate
learning of that procedural knowledge. This initial knowledge would be
extremely similar to knowledge problem solvers had in the Syntax(Hint) group
described in Experiment 1 (“Syntactic Symbols”): a representation of how the
strings are parsed, and knowledge of inverse operators. All of this knowledge is
represented within ACT-R’s declarative memory.

As it stands now, ACT-SF is only a qualitative model. It does not match
any quantitative data. Rather, it models the acquisition of the procedural
knowledge required to perform Symbol Fun in a manner consistent with the way
humans do, as discussed in the preceding two chapters. It does not model the
slower, almost stage-like acquisition of this procedural knowledge as seen in

some of the groups (e.g., the Example Only group of Experiment 1). Parallels
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between the human data and ACT-SF will be highlighted in the next sections

when appropriate.

Representation in ACT-SF

Given that the declarative representation of the character strings are the
most important aspect for ACT-SF to learn the underlying rules of Symbol Fun, a
discussion and an example of that representation will be presented here. The last
half of this chapter contains a more in~depth discussion of this representation.

ACT-R’s analogy mechanism works by comparing the start state of a
problem to its solution state. These start and solutions states are stored as
separate declarative memory structures. Often there are constraints placed on
how the solution state can be reached (e.g., certain other declarative structures
must be accessed, or certain values must be generalized over). The start and
solution states, as well as any constraints, are recorded within declarative
memory structures referred to as dependencies. Dependencies are predefined
working memory structures within ACT-R that already the contain the positions
(“slots”) needed to record pointers to the start and solution states, and any
constraints.

ACT-R chooses the examples it attempts to analogize with based on the
activation of these dependency working memory elements (WMEs). Dependency
WMEs with higher activation (e.g., those that have been most useful in the past
or those that have been more strongly encoded) are chosen first. If the system's
current goal matches the goal type of the start state that the chosen dependency
WME points to, then an analogy is attempted. If the production that is created
has no instantiation with the current goal, then the analogy mechanism will pick

another dependency WME to test.
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e a
A. Example Problem
Examplel: v o v @ o #A
Solutionl: » P e PP —S#AB®D
B. ACT-R Representation
Examplel Solutionl
(| LeftHandsider LeftHandSide2 —]| |
— SpecialOp ¢ v SpecialOp —
— SpecialArg §0 SpecialArg —
—Opl » v Opl —
— Argl ® D Argl —
— Op2 nil @ ® Op2
> - Arg2 nil ¢ Arg2 —
— RightHandSide 1 RightHandSide 2
Opl # #Opl
Argl A A Argl
Op2 nil @ ® Op2
L Arg2 nilr (Iv)_/b_:rgz )
N »

Figure 5.1: ACT-SF's Representation with Dependency Structure Highlighted

Figure 5.1 provides an example of how character strings are represented
within ACT-SF. Panel A shows the two lines being represented and Panel B
provides a schematic for how those two lines are represented within ACT-R’s
declarative memory. Each character string is composed of two parts, a right side
and a left side. These two sides are then broken down into parts which contain
positions for each possible character that could occur on that side. Both the right
and left sides also have positions for a second operator and argument. When a
position is not filled in, its value is nil. The circled numbers highlight the way
three dependency WMESs have recorded how this example is marked up. Each

dependency corresponds to one possible production (i.e., transformation
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Table 5.1
Example for Use in Analogy
Step # Symbol Fun Corresponding Algebra
Given v P vDOHA -x-A=*C
1 v O ORDHHAB®D -x-A+A="C+A
2 e potA@d -x=*C+A
(Answer) 3 PEAND x=*C-A

between states), and this example will be used later to illustrate how these

productions are actually created.

Operation of ACT-SF

When the first problem is presented to the system to solve, no productions
are available with which to match. Therefore the analogy mechanism is invoked
in order to try to induce the correct transformation. What follows is a description
of that induction process as the model tries to solve the problem:

v (OCABQ
using an interpreted example exactly like the problem presented in Table 3.2, and
reproduced in Table 5.1.

ACT-SF has stored the eight examples all participants had available, as
shown in Table 3.3, and they are marked-up (via the underlying declarative
representation pictured in Figure 5.1 and the dependency WMEs) to allow the
ACT-R analogy mechanism the opportunity to learn the best set of productions
that it could learn in order to do the task. The actual declarative memory
structures are listed in Appendix C, and the resulting productions of this process
are shown in Appendix D. The following paragraphs give an illustration of that

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5: ACT-SF 58

An Illustration

To begin, and as stated above, consider the situation where the current
problem is v p©A-®Q and the first line of the reference example is
v o v®o#A. At each step of this illustration, three things may be discussed.
First, in all cases the declarative representation that gives rise to the production
will be discussed and the production shown. Second, any predictions which
follow from this representation and production will be considered. Finally, if any
supporting protocol or other data supports the prediction, it will be presented.

Production 1: Appending the same string to both sides. This transformation is
captured by a dependency WME that the line that follows v @ e®de#A is
v 0 vPODPH#A®P. Or, to put that in perhaps an easier to understand form, one

could represent the situation as follows:

Current problem: Current example:
v OOAB®Q v 0 vDoH#HA
¢ VOB DPHRARD

What the model needs to do is infer the production behind the action indicated in
the example. This transformation, according to the way the example is marked-
up and recorded in the dependency WME, is accomplished using two subgoals,
one to add the proper thing to the left side, and the other to add the same thing
to the right side. This is illustrated in Figure 5.1 by the circled ones (see Appendix
C to examine how this is accomplished in the code). Therefore the example is
marked in a way to make those subgoals explicit, and then those subgoals are
marked so that the right side of the problem statement goes to the right side of
the first line in the solution and that the left side of the problem statement goes to
the left side of the first solution line. A production is created that embodies the

creation of these two subgoals:
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IF the current goal has a left side and a right side (P1)
AND the left side has op1 and conl
THEN set a subgoal to append to the left side based on
opl and conl
AND set another subgoal to append to the right side
based on op1 and conl

Notice that the subgoals also store the important aspects of the left side necessary
to the addition step, the operator and constant. This is important for the subgoal
which transforms the right side, since it does not have direct access to the
contents of the left side. This production is now applied to the current problem,
and so the system now has two subgoals it will have to solve. What ACT-R’s
analogy mechanism needs to do next is to figure out how these transformations
occur.

Production 2: Append an inverse—operator argument string to one side. The
next transformation, appending something to one side of the character string, is
indicated in Figure 5.1 by the circled two (for the left side) and the circled three
(for the right side). Examining the two left sides of the current example shown
above, the first four symbols are the same, and stay in their same positions.
However, the fifth symbol in the solution line does not appear in the left side of
the problem statement. ACT-R must use its additional declarative knowledge to
determine the origin of that symbol. Since the model has knowledge of the
inverse operators, and the ¥ appears earlier in the line, the dependency WME
records that ® may aid in making the analogy, and the analogy mechanism
encodes in the created production that the ® appears because it is the inverse of
v. Lastly, the sixth symbol in the answer line, the ®, also does not have a direct
match in the corresponding slot of the problem string, but since that symbol is
the same as one that appears elsewhere in the line, the model assumes that that

will always be the case. This production is now created:
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IF the current goal is to append something to one side (P2)
AND the goal is based on op1 and conl
AND op2 is the inverse of op1

THEN append op2 conl to this side
AND pop that subgoal

Prediction. Both this production and the first one will apply to all addition
steps for two— and three-step problems; it is not specific to the case where a
appears as the third symbol, and nor is it specific to three-step problems. Rather,
they will apply when any operator appears in the first operator position and
nothing has already been added. Furthermore, these productions will apply to
adding symbols to both the left- and right-hand side of the production.

Supporting data. When participants figure out the right rule for adding to
both side of the equation, they do indeed generalize to all the operators and to
both two— and three-step problems. Appendix E gives a sample protocol of a
typical participant in the Examples only group (a successful learner). Across
Problems 10 and 11 he acquires the rule for adding the inverse operator to both
sides of the string, and applies it equally afterwards to any operator and to both
two- and three-step problems.

Production 2 fires again. As before, P2 is applied to the current goal of
appending to the left side of the character string. That goal is then popped.
Figuring out what to do the right side now becomes the top goal of the system.
Since P2 can apply to this current goal, it is applied to the problem’s right side,
that subgoal is popped, and the system has successfully transformed the current
problem statement into the next correct line in the problem’s solution:

v O OCARASBQHA

Production 3: Deleting symbols on one side. The above character string is
now the system'’s goal, and, since no productions apply at this point either, the
process of selecting an example to analogize with begins again. Though it is not

constrained to, let us suppose that the system picks the second line of the
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previous example (what was referred to as the solution line in the previous
paragraphs) to use as the new reference example. This line, v o Yy O@D—#ABD,
has marked that ® —#A®d is the next correct line, and so that line becomes the

new solution line:

Current problem: Current example:
v POA#ASB®QHA v 0 vORDHA®D
v O OFABD

To get from the reference example to the solution line, something only
needs to be changed on the left side, and the example is marked as such.
Furthermore, the transformation is extremely easy—the first two characters are
the same, and then the next four characters are dropped, and the right side
remains the same. The production that gets created to account for this change

does not check that the operators are inverses:

IF the current goal has a left side and right side (P3)
AND both operator and operands slots on the
left side are filled in

THEN drop the four rightmost symbols on the left side

Prediction. Participants do not need to have knowledge of inverse
operators, and will simply think of this transformation as deleting four symbols,
not canceling them. It also applies equally to two— and three-step problems.

Supporting data. It was with these cancellation steps that people had the
least trouble, with only 10% of their errors coming from this transformation.
Listening to people give verbal protocols at this task, across all conditions, it is
evident that when people first do this step, they do not think of it as canceling
(i.e., that two of the symbols being removed are inverses of one another), but
rather that the symbols are merely dropping out. Problem 3 in Appendix E

contains a good description of the acquisition of such a cancellation rule.
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As states, this cancellation rule does not depend on knowledge of inverse
operators. All 11 of the unsuccessful participants in Experiment 1’s Examples
only group, except for one, after 4.0 problems on average, learned this
cancellation rule. None of these 11 participants learned the inverse operators
(evident from their data files and exit interviews). Using the protocol participants
as a representative sample, it appears the rule they were learning was just to
drop the four symbols.

Production 4: Sign Elimination. The above production (P3) gets applied to
the current goal, and the next step in the problem’s solution is produced and
becomes the top goal:

v P OBQHA

Since the lead symbol (the #) is the same for the current problem and the
example, and this is the only example which has a ¥ out front, the system will
continue to use the same example, where @@« #Av® is stored as the line that

comes after ¢ #A®D:

Current problem: Current example:
¥ 0 ®QH#A v 0 HHABRD
O ORAYD

Similar to the change between the problem statement and the first line in the
problem’s solution, transformations need to be done to both the left and right
sides, and so the example is again marked to create two subgoals, one that

manipulates the left side and one that changes the right side:

IF the current goal has a left side and a right side (P4)
AND the left side has only a front operator and the script-p
THEN set a subgoal to delete the operator on the left side
AND set another subgoal to do something to the right side
based on the front operator
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Notice that the frontmost operator is stored, so that the right side knows the
proper transformation to perform. Applying this production to the goal results in
the creation of two subgoals.

Production 5: Deleting the front operator. As in the transformations that
occurred for the first step, the first subgoal is marked in such a way to link the
left side of the reference example to the left side of the solution. Here, the
difference is that the ® in front of the g is dropped:

IF the current goal is to do something to the left side (P5)
AND there’s only an operator in front of script-p and
the script-p itself

THEN drop that operator
AND pop subgoal

Prediction. This production is another that is not operator specific—it will
drop any operator that appears in front of the script-p.

Supporting data. In Appendix E, on the second problem the participant
dropped the initial symbol, and on the fourth problem (the second problem
which had a sign elimination step) specifically mentioned that “they lose the very
leftmost thing.”

Production 6: Transforming the right side. After that production is applied,
the second subgoal remains, which links the right side of the reference example
to the right side of its solution. In the case of # and # elimination, the proper
thing to do depends on what appears on the right side. The related operators
need to be inverted, whereas the non-related operators remain as is. In the case
of ® and © elimination, however, the transformations are more straightforward.
Since ¢ elimination depends on what operators are on the right, two more
subgoals need to be created, one for each right side operator/operand pair, and

so a production such as this created:
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IF the front operator is a minus (P6)
THEN set a subgoal to invert the first operator/operand pair
recording that the front operator is a minus
AND set another subgoal to invert the second pair
recording that the front operator is a minus

Prediction. This production is particular to the operator out front. Three
other productions will need to be created to handle the other three operators.

Supporting data. To correctly learn the problem set, the participants must
come to this conclusion. One can see this very clearly with the protocol par—
ticipant in Appendix E, problem 9 (though he is cueing off the wrong symbol).

Productions 7 and 8: Inverting symbols on the right side. In the case of the
present example, the output of one of the two created subgoals will be a

production that inverts the operator:

IF the current goal deals with a particular front (P7)
operator and an operator/operand pair
AND the front operator is related to the pair

THEN invert the pair’s operator
AND pop subgoal

and the output of the other subgoal is a production that does not invert the
operator:

IF the current goal deals with a particular front (P8)
operator and an operator/operand pair
AND the front operator is not related to the pair

THEN leave the pair the same
AND pop subgoal

Prediction. Neither of these productions are location specific—the
operator/operand pair could either be the first or second pair that appear on the
right side.

Supporting data. As will be described in Experiment 4 (Chapter 7, “General
Symbols”), participants are quite good at abstracting over these positions, and so
this is similar to what participants actually do (e.g., see Appendix E, problems 12,
18, and 19).
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Conclusion. After applying the last production, the system now has the
final line in the initial problem’s solution, that the last line of ¥ ©A-®S should
be <> 9Q#A. There were eight productions created in order to make that
transformation. On subsequent two— and three-step problems and problems that
involve ¥ elimination, the model has available to it these productions to use.
When these productions apply, however, they may or may not fire, depending
on their strength. The analogy mechanism is in constant competition with the
production matching process, and if the strength of the matching productions is
not high enough, the analogy mechanism will attempt to execute. If the created
production is identical to an already existing production, the identity will be
noted, and strength will be added to that production. In such a way, the analogy
mechanism will create and strengthen the productions so that eventually the
problems will be solved solely by the application of productions.

Given the declarative representation used in the Informed Model, a
minimum of 13 productions need to be created for the model to solve all possible
problems. These are detailed in Appendix D, in which a run of the model on
multiple problems is given. It is possible, if not likely, for more productions to be
created due to spurious relations between the symbols in the character strings.

This will be discussed in the next sections.

ACT-SF Model Discussion
The Informed Model Representation
The Informed ACT-SF Model which was just illustrated captures the
important qualitative aspects of people successfully learning this task. People in
the Syntax(Hint), Algebra(Intermediate), and Algebra(High) groups arguably
have such a representation at the outset of starting the task, or at lease quickly
acquire such a representation. Essentially all of the participants in these groups

are successful at learning the task.
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This chapter continues by enumerating the exact features of this
representation, and how it maps on to the model. For each of the five points
listed below, a description of how each point is realized in the model and a short
discussion of the evidence that successful participants have such a repre-
sentation is given. After those five representational points, the chapter continues
with discussing how such representations can be established by those
participants in conditions which did not start out with the best representation,
and furthermore the consequences for when such representations are not
established, as shown by both the model and participants. Finally, this chapter
concludes with a discussion of a few errors commonly made by participants for
which ACT-SF currently does not model.

The major representational features of the model are:

1) Definite left and right sides

2) Each line in a problem’s solution is separable

3) Within a line, the characters are separable

4) Inverse operators

5) Sign elimination depends on the operator being eliminated

Definite left and right sides. As shown in Figure 5.1, the model clearly
divides each character string into a left and a right side. The character strings are
represented as a hierarchical structure, with each string consisting of a left and a
right side, and then both of these sides formed of individual symbols. For
participants, the double arrow serves as a strong initial indicator that perhaps the
string should be divided at that point. Many participants in the Examples group
either make that assumption from the start, or soon do so in their learning (this is
evident from their data files, and also from the participants that protocols were
collected from). Once that assumption is made, most of the syntactic errors
disappear.

Each line in a problem’s solution is separable. The model will consider the last

step of a three-step problem to help in solving a one-step problem (and vice
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versa), as well as consider different problems in formulating a multi-step
solutions. Participants who are clearly on their way to mastering the rule set do
this as well. This must be the case, since if given a one-step problem which
involves # elimination, using either of the one-step examples on the example
screen (Examples 3 and 5; see Table 3.3) would result in an error.

Within a line, the characters are separable. Within a character string, the
model considers each symbol individually, and it is not critical for an exact
match to occur between the current problem and the example it selects to
perform an analogy. Participants who have not yet started representing the
strings as such restrict their considerations or clump symbols together to try to
find a match. For example, if the right side of the problem contains a ®A, they
will try to find an example with a ®A in it, hopefully on the right side, but may
consider an example that contains it on the left as well.

Inverse operators. Perhaps the most important piece of information in
representing this task, in terms of being able to learn all the correct rules and
finish the task, is the inverse operators. ACT-SF is given this at the outset, as are
the participants in the Syntax(Hint) group. Participants in the Algebra(High)
group also are likely to infer this information from the first time they examine
their annotated examples page (as in Appendix B). Participants who were not
given this information and did not learn it on their own, simply did not learn the
task.

Sign elimination depends on the operator being eliminated. This last
representational item concerns itself with the sign-elimination steps. Participants
would often approach the sign-elimination steps with the idea that there was
only one, perhaps two, manipulations that were done to the right side (e.g., leave
it the same or swap the constants). However, as they became more experienced

with those steps, they began to realize that each of the four leading operators

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5: ACT-SF 68

meant a different transformation needed to be applied to the right side. Two of
those operators, the » and # elimination steps, require additional, indirect,
knowledge beyond what is contained in the character string (i.e., knowledge of
the inverse operators). Obviously people must first acquire this inverse operator
knowledge before they can fully appreciate the correct rules for performing v

and # elimination.

Degrading the Representation

When participants lack a representation which takes into account the five
points listed above, what are the consequences and how does the participant
learn such a representation? Under an analysis of the protocols, it appears that
the five points of representation come on-line in the order mentioned. As
mentioned already, Appendix E contains a protocol of a successful participant in
the Examples group from Experiment 1, and one can see in this protocol such a
progression. The discussion that follows centers mostly on that particular group
(the Examples only group of Experiment 1), since that is that group that started
off with the least amount of information, and so provides for the clearest picture
of how this information can come on-line. The next section contains a short
discussion of a second model that was created which degraded points 1 and 3
from the last major section (Definite left and right sides and Within a line, the
characters are separable). A discussion of degrading points 4 and 5 follows (Inverse
operators and Sign elimination depends on the operator being eliminated).

ACT-RC. A second, simpler model was created that did not initially know
about the difference between operators and constants, and that learned them by a
variation of the rational categorization algorithm (Anderson, 1991). Except for
learning that the lines are separable, this model was equivalent to removing the
parsing knowledge discussed previously (definite left and right sides and

separable characters). In short, this model worked by comparing across many
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different character strings, extracting which symbols appeared in which positions
most often. What it learned was that Greek symbols always appeared in a
particular set of positions, four operators appears in another set, and one position
always contained the double arrow. This model never fully learned the task, and
so could be compared to those participants who did not learn the task as well.
This unsuccessful model took considerably longer, in terms of number of
problems attempted to solve and examples referred, to attain the same
proficiency as the unsuccessful participants. There is still knowledge that
participants have that is not being captured by the models (e.g., previous
knowledge of Greek symbols), and which would be challenging to model, but
beyond the scope of the current considerations.

Inverse operators. As previously alluded to, it is learning about the inverse
operators that was a major determiner if a person in the Examples group
successfully learned the task. All 12 people who learned the task in that group
acquired the inverse operator knowledge (apparent not only from their data files,
but also from the exit interview), but none of the 11 people who did not complete
the task did so (again, extremely apparent from the data files and exit
interviews). Rather, all except for 1 of the 11 people learned to separate the
character strings into left and right sides, but failed to learn the idea of inverse
operators. In observing their mistakes on the addition steps, where knowledge of
inverse operators is critical, they obviously knew they had to add an operator
and a constant to both sides of the string, but did not know which operator to
add. This is apparent from the protocol in Appendix E over the first 8 problems.
It was on Problem 10 that he stated clearly the relationship between ¥ and ®.
Prior to that, the participant was adding any operator and repeating the constant

to both side of the character string.
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Table 5.2
The Correct Production and Its Over-Specific Counterpart
(p change-production4?7 (p change-production5
=subgoalér2-variable> =subgoallr2-variable>
isa change isa change
operator =+-variable operator =+-variable
argument =b-variable argument =a-variable
string =righté-l-variable string =rightl-l-variable
result nil result nil
=+-variable> =rightl-l-variable>
isa operator isa expression
inverse =--variable specop =blankl-variable
=right6-l-variable> specarg =blank2-variable
isa expression opl =*-variable
specop =blankl-variable argl =b-variable
specarg =blank2-variable op2 nil
opl =/-variable arg2 nil
argl =c-variable ==>
op2 nil =rightl-2-variable>
arg2 nil isa expression
==> specop =blankl-variable
=right6-2-variable> specarg =blank2-variable
isa expression opl =*-variable
specop =blankl-variable argl =b-variable
specarg =blank2-variable op2 -
opl =/-variable arg2 =a-variable
argl =c-variable =subgoallr2-variable>
op2 =--variable result =rightl-2-variable
arg2 =b-variable 'Push! =rightl-2-variable
=subgoalér2-variable> !Pop!
result =right6-2-variable !Pop!)
'Push! =righté6-2-variable
'Pop!
'Pop!)

If the inverse knowledge is taken out of the Informed ACT-SF Model, the
model becomes quite similar to these participants who did not learn the task.
Consider the productions displayed in Table 5.2. The one on the left is the same
as change-productiond? shown in Appendix D. The production on the right was
created from a version of ACT-SF with the inverse operator knowledge excised,
and is similar to the rule the participant was considering in his protocol in
Appendix E for Problems 4 and 6. The production on the right differs from the
left one in that it does not figure out the relation between the operators (indeed, it
cannot figure out the relation), but will always add a minus sign and repeat the

operand when adding the same thing to both sides of the equation—very similar
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to what the protocol participant was doing. The protocol participant does figure
out this inverse relation by at least Problem 10, but the unsuccessful participants
never do. They continue to think that it is specific things that you add. Indeed,
some participants (7 of the 24 total protocol participants across all conditions) did
believe that some variant of this rule was the correct rule at some point during
their learning.

Currently the model has no way of inducing this inverse relationship
between operators on its own. In the model, this would correspond to placing the
relevant information into the proper dependency WME. Perhaps in some
instances participants learned this knowledge by borrowing from their
knowledge of algebra and arithmetic, but in the three protocols collected from
the Examples group from participants who successfully learned the task, it
appears that this knowledge comes about from trying to figure out where the
additional operator and constant comes from, and comparing across examples to
see that the ® and ¥ occurred together and that the # and © occurred together.

Sign elimination depends on the operator being eliminated. Once knowledge of
inverse operators has been gained, all participants who gave verbal protocols
eventually learn all the sign elimination steps. Indeed, some participants who did
not learn the inverse operators had some idea of the proper manipulations for
these sign elimination steps, but obviously not the correct ones for # and ©
elimination. Very often these individuals had not associated the proper thing to
do with the leading operator of the character string. This state of affairs can be
represented in the model by: 1) not marking the # and © elimination steps any
differently (indeed, the most common interpretation for the model of #
elimination then becomes to switch the position of the two operators, as
mentioned previously an extremely common mistake by the participants in all

groups) than the other sign elimination steps; and 2) not indicating the first
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symbol as the one that dictates the proper transformation. These sign elimination
steps, and how they should be marked up, are learned by the participants as they
set up hypotheses as to what the transformation should be, try them out, and are
then surprised when the transformation does not work and they need to find any

other hypothesis.

Representational Differences

To conclude, I would like to mention a couple of places where the
representation, and the process by which productions arise from those
representations, of the model does not match with that of the participants. The
most egregious of these occur when spurious relations occur between symbols
that make up the character string being used by the analogy mechanism. This
results in overly-specific productions that participants never produce. For
instance, if the input to the analogy mechanism was this:

Current example:
® p o#ARD

U

P EARD
the production that would be created to handle the right side for ® elimination
steps would be:

IF the front operator is a ® (P9)
AND the right side is of the form op1 conl op1 con2
THEN don’t change anything on RHS and pop subgoal

That is, it would only apply when both the operators on the right side were the
same. This would only be the case in a small subset of the of the problems.
Furthermore, if the model did not represent the character string as having two
sides, but rather as one whole set of symbols, the chances that such spurious
relations occur are higher, and so more overly-specific productions are generated

in that case. This is one of the reasons why the hierarchical representation was
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chosen, in addition to support from the protocols (notice how in Appendix E’s
protocol that he only mentions adding one thing, but in his actions he does it to
both sides). Participants were very rarely caught up by these coincidental
relations. For the above problem, people would notice that nothing changed on
the right side of the problem, but probably would not encode the identity of the
two operators. For the model, this encoding specificity results in the creation of
additional, overly specific productions that participants do not create or use.
These sorts of overly specific productions are the result of the ACT-R analogy
mechanism and how it considers the symbols when it creates the production. It
makes the usually sensible assumption that symbols which are the same should
always be the same. However, that is not always the case, and participants are
much better than the model in determining when that assumption does not hold.

The second of the errors not represented in the model involves the
participants considering the key arrangement of the on-screen keypad as an
insight into what to add and how the symbols change. The model has no
representation of this keypad, but it can provide some help in learning the task.
The keypad has three columns of four keys—one column contains all the
operators, another all the constants, and the last all the special keys (the double
arrow, the script-p, and the delete and check keys). Participants would
sometimes consider this arrangement of keys, particularly the arrangement
within a column, to be the deciding factor in what to type. For example, 3 of the
24 total protocol participants at some point considered the arrangement of the
constants in their column to determine what to do for © elimination (where the
proper rule is to just switch the position of the two constants). Since the model
had no representation of the keypad, it could not produce such a production and

so could not make such an error.
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Conclusion

This chapter presented an ACT-R model of the participants and their data
presented in the previous two chapters. The model, using the constraint within
the ACT-R architecture that all knowledge starts off declaratively and gets
proceduralized via the analogy mechanism, provides a full account of the
qualitative changes one sees as a person learns the task. While most of the
mechanisms by which a person’s actual declarative representation changes (e.g.,
how the character strings are parsed) were not modeled, by removing certain
pieces of the model’s declarative knowledge, the model can mimic unsuccessful
participants.

To map this on to the main contributions of this dissertation, ACT-SF

provides a model of the second contribution:

2) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are
influenced by knowledge of the task’s syntax, as well as other
information particular to the task.

The model is given a particular declarative representation of the character
strings. In its current state, it has no way of changing this representation over
time. When given the best possible representation (the Informed Model), it
correctly and quickly learns the rules of the task. This is analogous to the
participants in the Syntax(Hint) group of Experiment 1. When parts of that
representation is degraded, the model makes similar mistakes as to people who
have not learned the task, like the people in the Example group of Experiment 1.

Where to go from here. Even in its current state, the model makes some

predictions concerning participant’s behavior, and these were highlighted in the

illustration of the model. At this time, only preliminary evidence has been
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analyzed to support such predictions. When appropriate, such evidence was
mentioned throughout the chapter. Better analyses of the protocol data would
provide better data to test these predictions. The next two chapters discuss
further empirical studies and test some of the claims inherent in the model,
namely the contribution of syntax in learning Symbol Fun (Chapter 6, “Prefix
Symbols”) and the way people generalize the rules they are learning (Chapter 7,
“General Symbols”).

Outside of more in-depth analyses to better test the predictions of the
current model, ACT-SF should be augmented to better predict the quantitative
data. This augmentation would entail two things. First, a learning mechanism
which changes the model’s declarative representation of the character strings
should be added so that the model could progress like a successful participant in
the Examples only group of Experiment 1 (i.e., like the participant in Appendix
E). Second, information should be added concerning the average participant’s
knowledge of algebra so that it could be used in support of learning the rules of
Symbol Fun. Such information would probably take both a declarative and a
procedural form, but on account of that, attempting such an addition might bring

about more testable predictions.
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Experiment 3—Prefix Symbols

The following two experiments test particular claims that follow from the
ACT-R model discussed in the previous chapter. Experiment 3 further
investigates the effect of providing syntactical information in addition to the
examples. Experiment 4 examines more closely the way in which people
generalize the rules they are learning with respect to the manner in which the
model generalizes its rules.

In Experiment 1 a large effect was found between providing only
examples to participants versus providing them syntactical information in
addition to the same examples. More people learned the task when syntactical
information was available, and they did so much more quickly (the Syntactic
Knowledge Contribution). They also made somewhat fewer errors, and their
pattern of errors across the different types of transformations was different (the
Over Specificity Contribution). However, across both groups who successfully
learned the task (the Examples and the Syntax(Hint) groups), a majority of

people were reminded of algebra (the Prior Knowledge Contribution). This

76
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indicates they were calling upon other knowledge with which to learn the task—
not only specific algebraic knowledge (e.g., adding the same thing to both side of
an equation), but probably also more general arithmetic knowledge (e.g., how
equations are structured). This experiment attempts to eliminate the benefit of
being able to use not only algebraic knowledge, but also this more general,
equation knowledge, in order to better test the Syntactic Knowledge
Contribution:

1) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are
influenced by knowledge of the task’s syntax, as well as other
information particular to the task (e.g., knowledge of inverse
operators).

This experiment modified the task used in Experiments 1 and 2 in order to
remove the similarity between it and standard arithmetic and algebra. This task
is formally equivalent to the old one, but whereas the old one used an infix
notation (i.e., the relevant operator is between its two operands), this one used a
prefix notation (i.e., the relevant operator is in front of its two operands). The
hypothesis is that people’s ability to draw upon their arithmetic knowledge
would be nullified. In such a way, a better test of how the syntactical information
influenced learning the new task could be assessed. The prediction of the model
is that, since the two systems are formally equivalent, the learning of the two
groups in this experiment should be similar to the learning of the two

corresponding groups in Experiment 1.

Method
Participants. Twenty-six Carnegie Mellon University undergraduates

participated in this experiment for partial course credit and pay.
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Table 6.1
Examples used in Experiment 3

Example 1 Example 4 Example 7
@ POPEA ovpled o#pPToA
©v@pPPPvBAD ©@v PITEWOT ©O# pITOOAT
O pPeBAD e 4GA 11N © POOAl

Example 2 Example 5 Example 8
oftvpled o#pC#IA B0 pI'BQ
—O# PITCwdI o p#Olra SvEOPITvAQI
9 OO0WDl 0 pvBQI
 OBDT Example 6 o pPverQ

@ pACT

Example 3 oY@ pPAAYCTA
o0 p®#IA @ PeOlrA
& ®FAD o pPeOlrA

Materials. The task used in the this experiment is a modified version of the
one used in Experiments 1 and 2. Instead of an infix notation, a prefix notation
was used. The two systems are formally equivalent, and a simple transformation
exists to change a character string from one version of the task into the same
equation in the other version. Table 6.1 contains the eight examples available for
reference to the participants (this can be compared with the examples displayed
in Table 3.3 in order to gain some idea of what the syntactic difference is between
the two tasks). As in the previous two experiments, the task was implemented as
a Hypercard 2.2.1 stack (Apple Computer, Inc., 1994) which was run on an
accelerated Apple Macintosh Ilci computer connected to a two—page monitor.

Procedure. With one difference, the procedure used in this experiment was
identical to Experiment 1's procedure. All participants initially saw two screens
that contained some introductory comments about the experiment and
instructions on the task'’s interface (the same two screens as used in the previous

two experiments). At this point, one of the two groups received information
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relating to the task’s syntax and goal structure, as well as a hint. This information
is equivalent to the information given to the people in the Syntax(Hint) group of
Experiment 1, and the information is displayed in Appendix F. The only
difference is that one of the items in the Goal information from Experiment 1, “If
a connector appears in front of the ‘', the last step is to remove that connector
from it,” does not have a easy, direct correspondence in this experiment, and so
was dropped. The group of people who received this additional information was
in the Syntax(Hint) group, and the other group was the Examples group. Again,
these two groups are analogous to the liked—-name groups in Experiment 1.

At this point, a slight change was made from the procedure used in
Experiment 1. The Syntax(Hint) group has received the additional information,
and the Examples group has only seen the initial two introductory screens. A
sheet of paper on which contained the eight example problems (Table 6.1) was

given to each participant. At the top of this paper was these instructions:

There are two basic types of symbols (I may already have told you
this. If that’s not the case, I call them object symbols and connector
symbols). For each line below, circle each symbol that you think is
an object symbol and underline each symbol you believe to be a
connector symbol (every symbol does not have to have something
done to it). Then draw one vertical line to separate each line into
two parts. There’s no need to spend a lot of time on these.

The participants were then expected to follow these instructions using the
example problems. The people in the Syntax(Hint) group was able to refer back
to the screens that contained the additional information. The purpose of this form
was to ensure that the Syntax(Hint) group fully understood the parsing
information, and did not simply dismiss it.

After the participants completed filling out this sheet, they continued with
interacting with the computer. Both groups next went to the screen that had the

eight examples, and then went to the screen on which problems were presented
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for them to solve. The computer program acted the same as the one used in the
first two experiments. At any point, the participants could refer back to the
example screen, and the Syntax(Hint) group could refer back to the syntax
information.

Each participant was asked to solve 32 of each of the three types of
problems (one—, two—, and three-step problems) for a total of 96 problems. Each
participant had 2 hr with which to solve all 96 problems. There were 14

participants in the Syntax(Hint) group and 12 participants in the Examples
group.

Results
Background and General Results
Table 6.2 contains summary information about the performance of
participants in this experiment for easy reference. No difference is detected in the
SAT scores of the participants in the two groups (t < 1), either when examining
the groups as a whole or just the successful participants. With regards to the
form that both groups filled out before presented with the screen of examples on

Table 6.2
Prefix Symbols At~a-Glance

Syntax(Hint) Examples Only

Self-reported math SATs 6932 6812

Reading Instructions (min) 6.212 3.15P
Examining Examples (min) 1.652 0.65°

Successful Participants 12 of 142 1of 120
Self-reported math SATs 706 —
Example References 63.83 —
Total Time (min) 92.71 —

First Block (12 problems) 34.46 —
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the computer, both groups spent the same amount of time filling it out (#(24) =
-.751, p > .1), with the Syntax(Hint) group taking 6.58 min on average, and the
Examples group taking 7.47 min. Of the 14 Syntax(Hint) participants, 9 of them
marked the examples exactly right. The other 5 had the objects and connectors
correctly circled and underlined, but had mismarked the separating line (4
always put the line right after the g, and the other participant put it after all of
the connector symbols). For the 12 participants in the Examples group, no clear
pattern emerged. Participants did have a slight tendency to group all the Greek
symbols together (either underlining or circling all of them), and then, within a
single participant, have a consistent set of symbols to which they would perform
the other action. There was no clear pattern for where they divided a line.

Preparation times. Not surprisingly, the two groups differed in the amount
of time they spent studying the instructions (t(24) = 2.96, p < .01). The
Syntax(Hint) group spent a mean of 6.21 min, and the Example group spent 3.15
min on average. The groups also differed on the amount of time initially
examining the examples (after already marking them up on the form), t(24) =
2.17, p < .05, with the Syntax(Hint) group spending 1.65 min on average and the
Examples group 0.65 min.

Successful and unsuccessful participants. As in the first two experiments, a
distinction needs to be made between those people finishing the task and those
who did not finish in the 2 hr time limit. Twelve participants completed the task
in the Syntax(Hint) group and one person in the Examples group. Two people
did not learn the task in the Syntax(Hint) group, and eleven people did not finish
in the Examples group. Significantly fewer people (p < .01) finished in the
Examples group. The two people in the Syntax(Hint) group who did not

complete the task made it to Problem 40 in one case and Problem 38 in the other.
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The eleven people in the Examples group who did not complete the experiment
made it to problem 49.02 on average.

Remindings. Participants at the end of this experiment were asked if the
task reminded them of anything. In the Syntax(Hint) group 6 of 14 people were
reminded of algebra, and 3 of 12 people in the Examples group were. Of the two
people who did not finish in the Syntax(Hint) group, one of them thought it was
similar to algebra. The one person who finished in the Examples group was
reminded of algebra. The most common answer to this question, across both
groups, (besides “nothing”) was “pattern finding.” Participants were also asked
at the end of the experiment if they had ever used a prefix or postfix notation for
arithmetic before. None had.

Learning

Accessing information. Comparing the total number of references back to
the example page by both groups and including both successful and unsuccessful
participants, no difference was detected (t(24) = 1.32, p > .1), with the
Syntax(Hint) group referring back to the examples screen 63.83 times on average
and the Examples group a mean of 86.00 times (but remember, participants in the
Examples group only made it through an average of half the problem set).
However, comparing the successful participants in the Syntax(Hint) group of this
experiment to the successful Syntax(Hint) participants of Experiment 1, a
difference is detected (+(22) = -3.67, p < .01), where the Experiment 1 Syntax(Hint)
participants referred back to the example screen an average of 23.67 times. The
Syntax(Hint) participants of this experiment also referred back to the Goal
information page slightly more often (#(22) = -2.37, p < .05; 0.5 times versus 1.25
times on average), but the references back to the Syntax and Hint information

pages did not differ.
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Figure 6.1: Overall time by block for each problem tvpe (Experiment 3)
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Completion time. Since most participants in the Examples group did not
complete the task, it makes it difficult to compare their total time at solving the
task to the total time of the Syntax(Hint) group. However, the total time of the
Syntax(Hint) group can be compared to the total time of Experiment 1's
Syntax(Hint) group. The Syntax(Hint) group from Experiment 1 took a mean of
64.09 min to solve all the problem and the Syntax(Hint) group from this
experiment spent 92.71 min on average, a significant difference (#(22) = -5.31, p <
.001). Figure 6.1 plots the performance of these two groups. The Syntax(Hint)
group performed somewhat worse, in terms of time to solve the problems, to the
Examples group of Experiment 1, where the successful participants of that group
spent 81.54 min on average.

Errors

All together, the participants in the Examples group of this experiment
made a lot of errors—a total of 1454 or a mean of 121.17 per participant.
Considering the number of lines that each participant attempted to click out,
about 96 on average, 1.19 errors were made per line. Essentially all of these errors
were syntactic in nature, with the participants never learning any of the correct
transformations. Six of the participants did apparently learn the cancellation step,
and a subset of these learned some of the sign elimination transformations (e.g.,
leave it the same or swap the operands) but not when to correctly apply them.

The Syntax(Hint) group fared much better. Their results are displayed in
Table 6.3, which can be compared with Tables 3.5 and 4.2. The Syntax(Hint)
group from Experiment 1 performed much better than this Syntax(Hint) group
(1(22) = -2.72, p < .05). The profile of the percentages are not different, however,
from previous groups. Most errors are semantic in nature and there are very few
errors on the cancellation step. Comparing the percentage error profile of this

Syntax(Hint) group to the Examples and Syntax(Hint) group of Experiment 1, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6: Prefix Symbols 85

Table 6.3
Experiment 3 Errors Per Participant

Syntax(Hint)

Syntax Semantics Total
Addition 7.50(11%) 13.75 (20%) 21.25 (30%)
Cancellation 1.67 (2%) 6.17 (9%) 7.83 (11%)
Sign Elimination 2.17 (3%) 39.00 (56%) 41.17 (59%)
Total 11.33 (16%) 58.92 (84%) 70.25

Syntax(Hint) groups are slightly more similar to one another (.96) than this
Syntax(Hint) group is to the Experiment 1's Examples group (.91). Looking at the
top 50% of participants in both groups (six participants in each), one sees a
similar result (£(10) = -2.57, p < .05), with the Syntax(Hint) group from this
experiment making a mean of 32.00 errors compared with 16.17 errors for the
Experiment 1 Syntax(Hint) group.

Sign elimination errors. The participants in the Syntax(Hint) condition of
this experiment made similar errors as to the participants in previous groups.
That is, they swapped operands or operators, left everything the same, or
inverted one of the operators when those transformations were not appropriate.
Incorrect transformations that might have been peculiar to the prefix notation
were not observed, at least not in significant numbers. That being the case, the
expectation is that the Syntax(Hint) group of this experiment would be similar to
Experiment 1’s Syntax(Hint) group in terms of the sign elimination errors, and
one does find this. This experiment’s Syntax(Hint) group confused the ® and ©
elimination rules 82 times (34% of those errors), compared to 42% of Experiment
1’s Syntax(Hint) group (the Examples group of Experiment 1 only made this
error 14% of the time). Furthermore, this experiment’s Syntax(Hint) group only

made the swap operators error for # elimination 41 times (24% of # elimination
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errors), which is more similar to the 18% of Experiment 1’s Syntax(Hint) group

than it is to the 41% of that experiment’s Examples group.

Discussion

Although this task is formally equivalent to the task used in Experiment 1,
it is more difficult for participants to learn, a result contradicted to what would
be predicted by the ACT-SF model, but predicted by the Syntactic Knowledge
Contribution:

1) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are
influenced by knowledge of the task’s syntax, as well as other
information particular to the task (e.g., knowledge of inverse
operators).

If given only examples to learn from, almost no one learning the prefix version
learned the task, compared to almost a 50% success rate with the infix version
used in Experiment 1. If those examples are augmented with syntactic and other
information, people learning either version of the task eventually learn it.
However, the people learning the prefix version needed more references back to
the examples, took longer, and made more errors. What makes the prefix version
more difficult to learn?

As mentioned in the introduction, the prefix version of the task eliminates,
or at least reduces greatly, the benefit of being able to parse the character strings
in a standard, arithmetic way (i.e., operators to the immediate left of their
operands and an obvious divider between the left- and right-hand sides of the
equation). This is part, if not most, of the knowledge contained within the
syntactic information given to the participants in the Syntax(Hint) group. Instead

of perhaps relying on past knowledge of how equations are structured,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6: Prefix Symbols 87

participants were forced to use the provided information to help them parse the
strings, in the case of the Syntax(Hint) group, or to induce that parsing
information in the case of the Examples group (and with disastrous results).

The ACT-SF Model has some of this syntactic knowledge of arithmetic not
only explicit in its representation, but also implicit as well. The model, with its
hierarchic organization, uses the double arrow as a divider between the character
string’s left and right sides. However, a flat representation could also have been
used, which would correspond to having each symbol that made up the
character strings contained within a separate slot in a single working memory
element. (As noted in Chapter 5, such a representation was not used in order to
avoid spurious relations between the symbols during the analogy process and to
also allow for the creation of a more compact production system.) Once created,
this basic, flat representation would have equal difficulty learning either the infix
or the prefix version of the task. In its analogy process, ACT-R merely matches
up the svmbols on the left-hand side of the created production with the symbols
on the right-hand side of the production, regardless of order. However, as seen
in the data, participants have a much more difficult time matching up the
symbols when they are in prefix order. Some aspect of the infix notation is easier
for the participants to grasp. This differential between the infix and prefix
conditions is not part of the model and is what is implicit within the ACT-SF
Model as it stands. This aspect corresponds to a familiarity the participants have
in dealing with equations in an infix order.

The final experiment investigates the rule generalization process (in
accordance to the Over Specificity Contribution) in a more detailed manner than

the previous experiments have attempted.
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Experiment 4—General Symbols

Experiment 4 examined more closely the rule generalization process, as
mentioned in the third main contribution of the introduction:

3) Lack of adequate syntactic knowledge causes the analogy

mechanism to build over-specific rules from examples.

Specifically, this experiment investigated the process by which structures in a
rule are variablized and the relations that people believe hold between those
structures. This is a finer level than what the generalization process has been
studied at before. The ACT-R model, as described in Chapter 5, makes some
plain predictions for process in this task. The analogy process in ACT-R is quite
simple. If it can directly map symbols on the left-hand side of a production with
symbols on the right, those symbols are linked and variablized to be the same. If
multiple instances of that symbol appear, on either the left or the right, then
ACT-R assumes that that must always be the case. If a symbol cannot be mapped
between sides, but ACT-R has supporting information to make the mapping

(e.g., knowledge of inverse operators), the link is made and that relation is
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embedded within the production. If, however, no supporting information can be
found, the symbol is assumed to be a constant.

In each of the past experiments, analyses have been done that shed some
light on the generalization process. The error data from the experiments provide
most of the evidence. The hypothesis put forward has been that the more
information initially given to people with which to learn a task, the more liberal
they will be in their generalizations. For example, participants in the
Syntax(Hint) conditions attempted to meld the ® and © elimination rules, like
the way the ¥ and # elimination rules are similar to one another. People in the
Examples group did not attempt this blending of rules. A similar phenomenon
occurs within the # elimination rule. People in the Syntax(Hint) group quickly
see through the misleading example that seems to indicate the proper rule is to
swap the position of the two operators, and not necessarily invert them. The
conservative Examples group persisted in making this error. In large part this
distinction can be seen as the groups with more information being more theory-
driven, since they could, see the bigger picture, whereas the groups with less
information were more data—driven.

This experiment investigated such issues. By using a slightly modified
version of the task used so far, one that just contained the one-step problems
(those that deal with the sign—elimination steps), significantly more data was
gathered to test how people generalized the rules they were learning.
Furthermore, these sign elimination steps have been the most informative in the
past experiments in studying this process. The task has also been modified so
that people first solved simpler problems than what have been used thus far, and
then in the latter part of the problem set solve the standard sign elimination
problems that participants in the previous experiments have solved. These

simpler problems involved only one operator/operator pair on the right~hand
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side, as opposed to the two pairs seen in the one-step problems used in the
previous experiments. This transition from simple to complex problems shed
further light on how people generalize the rules they are learning. In keeping
with the analyses done so far, the prediction was that the participants with less
information will be most conservative in their generalizations, whereas the
people with more information will be more liberal. In the model, this liberalness
arises from being able to augment the learned rules with the additional
declarative information, such as the inverse operators. When such additional
information is not available, the rules formed must perforce be conservative and

specific to only that situation.

Method

Participants. Thirty Carnegie Mellon University undergraduates
participated in this experiment for partial course credit.

Materials. The task used in the this experiment was a modified version of
the one used in the previous experiments. For this experiment, only one-step
problems were used. Furthermore, the first part of the experiment was
comprised of simpler problems, ones that had only two symbols on the right-
hand side (an operator/operand pair). Table 7.1 provides examples of these
simpler problems. The rules of this simpler task were largely the same as for the
more complex version , except for the rule for © elimination. Since the right side
only had one operator/operand pair, there were not two operands to be

switched. The rule for © elimination in this simpler version was to just leave the

Table 7.1

Example Simple Problems Used in Experiment 4

Example 1 Example 2 Example 3 Example 4
®@pevA v o@D Ogpe#l #peoel
VA peovd poHl ol
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Table 7.2
The eight simple problems participants saw

BpeovQ v HoBA © pe®Q # 0D
®po0A v o oHD ©p el #ppoel

right-hand side the same (thus mirroring the ® elimination rule). The
elimination rules for ® and # elimination were the same as in the complex
version, invert related operators and leave the same any unrelated operators.

As in the previous experiments, every participant received the same
problem set. The first 64 problems were all of the simpler type, and then the last
128 were all of the complex type. The first 64 were grouped into 8 sets of 8
problems. Table 7.2 contains all 8 of these problems (the operand was randomly
picked). Within each set, each operator appeared as the first symbol (the symbol
to be eliminated, hereafter referred to as the “elimination symbol”) twice. Each
elimination symbol was paired with two operators (e.g., ® was paired with #
and ©, whereas v was paired with ® and #). When an operator was an
elimination symbol, one of the operators it was paired with appeared in the
right-hand side of the character string. The next time that operator appeared as
the elimination symbol, its other paired operator would be on the right. The
pairings were chosen such that half of the symbols that appeared when v and #
was the elimination symbol would be related, and thus need to be inverted.
However, for both of those two symbols, participants would only see half of the
possible inversions (i.e., they would see © paired with # as the elimination
symbol, but not # when # was the elimination symbol).

A similar pattern was used for the last 128 problems, which were grouped
into 4 sets of 32 problems. For these problems, two operators appear in the right-
hand side. For each elimination symbol, the first operator on the right was

chosen from one of the two operators that it did not appear with during the first
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64 problems (e.g., when ® was the elimination symbol, the first operator would
either be a ® or a #, whereas if ¥ was the elimination symbol, the first operator
would be either a ¥ or a ©). The second operator could be any of the four. This
results in eight combinations for each of the four elimination symbols, or 32 total
different problems. This mildly complicated scheme of generating problems was
used in order to test how participants would generalize to seeing other symbols
in the same position, as well as to the second operator position at the start of the
complex problems.

Procedure. Outside of the different problem set, the procedure for this
experiment was similar as to the previous ones. Like Experiment 3, this
experiment was comprised of two groups, an Examples group and a
Syntax(Hint) group. Both groups initially went through two screens of
introductory material (the same as all previous groups saw). The Syntax(Hint)
group next received the syntax, goal, and hint information that Experiment 1’s
Syntax(Hint) group received (see Appendix A). Both groups next went through a
screen of examples (the four examples displayed in Table 7.1), and then started
solving the 192 that made up the problem set. They were told that at some point
the problems would get more complicated, but not exactly when. The
participants interacted with the program the same way as participants in the
previous experiment-—clicking out their solutions, having the computer check
their line, and then receiving feedback. Participants had two chances per problem
to enter the right character string. If both guesses were incorrect, the computer
would display the right answer before giving them the next problem. As before,
the participants were able to refer back to the examples screen at any time. When

they made it to the complex problems, the examples did not change.
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Each participant had 1 hr with which to solve all 192 problems. There
were 16 participants in the Syntax(Hint) group and 14 participants in the

Examples group.

Results

Background and General Results

Table 7.3 contains summary information about the performance of
participants in this experment for easy reference. No difference is detected in the
SAT scores of the participants in the two groups (t < 1), either when examining
the groups as a whole or just the successful participants. The two groups differed
in the amount of time they spent studying the instructions (#(28) = -4.23, p <.001).
The Syntax(Hint) group spent a mean of 4.43 min, and the Example group spent
2.99 min on average. The groups, however, did not differ on the amount of time
initially examining the examples, £(28) = -1.27, p > .1, with the Syntax(Hint) group
spending 0.83 min on average and the Examples group 0.68 min.

Successful and unsuccessful participants. As in the prior experiments, a
distinction can be made between those people finishing the task and those who
did not finish in the 1 hr time limit. Twelve participants completed the task in the

Table 7.3
General Symbols At—a-Glance

Syntax(Hint) Examples Only

Self-reported math SATs 6952 6742

Reading Instructions (min) 4.432 2.99b
Examining Examples (min) 0.832 0.682

Successful Participants 12 of 162 12 of 142
Self-reported math SATs 6902 6722
Example References 3.922 9.75%
Total Time (min) 48.012 49.152
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both the Syntax(Hint) and Examples groups. This means that four people did not
learn the task in the Syntax(Hint) group, and two people did not finish in the
Examples group. This difference in proportions is not statistically significant. The
four people in the Syntax(Hint) group who did not complete the task completed
an average of 101.75 problems. One person in the Examples group who did not
finish made it to Problem 100, and the other person actually did complete all the
problems. However, this participant made 156 errors over the course of the 128
complex problems.

Remindings. After the experiment, the participants were asked what the
task reminded them of (as in Experiments 1 and 3). In the Examples group, 3 of
14 people answered algebra. In the Syntax(Hint) group, 5 of 16 people replied
algebra (this is not a significant difference, p > .1). Almost everyone else was not
reminded of anything. None of the people who did not complete the task were
reminded of algebra.

Rule learning. Another question asked of the participants after the
experiment was for them to relate the rules of the task. Of the people who
successfully completed the task, only 6 participants in each group could
successfully enunciate the rules. Success was indicated by knowing the two pairs
of inverse operators and when they were needed (for # and # elimination, and by
knowing the rules for ® and © elimination). Four people in the Examples group
and 5 people in the Syntax(Hint) group had a “fractured” set of rules (either
incomplete or they went mostly by specific instances). The remaining three
participants could not formulate an answer to the question.

Learning

Accessing information. The examples available for the participant’s

reference in the experiment were not as useful as the examples available in the

prior experiments. There were only four examples, and they were all within the
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simple version of the task. No difference was detected between the number of
times the Syntax(Hint) group referred back to the examples versus the Examples
group’s references (t(22) = -1.29, p > .1). The Syntax(Hint) group referred back to
the examples screen a mean of 3.92 times, and the Examples group referred back
to that screen 9.75 times on average. No one in the Syntax(Hint) group referred
back to the hint screen, but they did refer back to the syntax screen 2.33 times on
average and to the goal screen 1.33 times.

Completion time. In terms of total time to complete the problem set, the two
groups did not differ (t < 1). Figure 7.1 plots the performance of the Examples
and Syntax(Hint) group across the problem set, with the data blocked into
groups of 16 problems. The performance of the Syntax(Hint) group from
Experiment 1 is plotted for comparison purposes (this group only received a total
of 32 one-step problems). Even when the complex problems are compared
separately, no difference exists (t < 1). The Syntax(Hint) group took a mean of

48.01 min to solve all the problems, and the Examples group took an average of

49.15 min.

50

- Example

40 —— Syntax(Hint)
é 30 —&— Exp. 1: Syntax(Hint)
=
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c
=
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Figure 7.1: Average time spent per problem
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Table 7.4
Experiment 4 Errors Per Participant

Examples

Syntax Semantics Total
Simple 3.92 (23%) 13.33 (77%) 17.25
Complex 5.50 (6%) 81.92 (94%) 87.42
Syntax(Hint)

Syntax Semantics Total
Simple 1.25 (8%) 14.33 (92%) 15.58
Complex 4.67 (5%) 82.00 (95%) 86.67
Errors

Table 7.4 displays the mean number of errors per participant, split into the
two different groups. The numbers for the earlier, simple problems are listed
separately from the later, complex problems. Since there was only one-step
problems, there were no addition or cancellation steps—every line was a sign
elimination step. In terms of total number of errors, there is no difference
between the two groups (#(22) = -1.57, p > .1). Looking at the various
subgroupings (e.g., syntax errors on simple problems), no significant differences
were found.

Sign elimination errors. The lack of difference in the total number of errors
was surprising, but a difference in the type of errors could still exist. Table 7.5
separates the errors made on the complex problems by the four operators that
could appear as the elimination symbol. For each elimination, the mean number
of errors made for each error type is listed, along with the percent of errors for
that elimination symbol’s total errors. Leave Same errors occurred when
participants did not do anything to the right~hand side of the character when
eliminating the elimination symbol (that is the proper thing to do for eliminating

a ®). A Switch Operators (or Switch Operands) error was when the participant
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Table 7.5
Experiment 4 Errors in Complex Problems by Sign Elimination Type

Examples
Leave  Switch Switch  Invert1st Invert2nd Invert Other | Total
Same Operators Operands Operator Operator Both

v 517 1.42 6.92 0.58 2.50 0.08 5.00 | 21.67
(24%) (7%) (32%) (3%) (12%) (1%) (23%) | (25%)
# 6.25 242 6.08 1.00 2.92 0.08 4.83 | 23.58
(27%) (10%) (26%) (4% (12%) (1%)  (20%) | (27%)
© 11.67 4.08 2.67 1.92 1.42 4.17 | 25.92
(45%) (16% (10%) (7%) (5%) (16%) { (30%)
® 3.08 6.17 1.67 0.83 1.00 350 | 16.25
(19%) (38%) (10%) (5%) (6%)  (22%) | (19%)

Syntax(Hint)

Leave Switch Switch Invert 1st Invert2nd Invert Other | Total
Same Operators Operands Operator Operator Both

vy 650 2.33 6.83 0.83 2.08 0.17 258 | 21.33
(30%)  (11%) (32%) (4%) (10%) (1%)  (12%) | (25%)
# 633 0.83 5.25 1.08 3.08 000 475 |21.33
(30%)  (4%) (25%) (5%) (14%) (0%)  (22%) | (25%)
© 1442 2.17 3.42 3.17 117 4.67 |29.00
(50%)  (7%) (12%) (11%) (4%)  (16%) | (34%)
® 1.33 5.75 2.17 1.58 058 358 | 15.00
(9%) (38%) (14%) (11%) (4%)  (24%) | (17%)

switched the operators (or Operands) when eliminating the leading operator.
Switching operators was a common mistake in the last experiments, because of
one of a misleading example (Example 5). Switching operands is the right
transformation for © elimination. The three inversion errors (Invert 1st, Invert
2nd, and Invert Both Operators) refer to when a participant inverted an operator
(either the first, the second, or perhaps both) incorrectly. Depending on the
operators on the right-hand side, inverting is sometimes the right thing to do for
v and # elimination. Finally, there is an Other category for errors that did not fall

into one of the other six. These included the syntax errors and also errors in
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clicking (e.g., clicking delta instead of omega). The percentage under the columns
labeled Total are the number of errors for that particular elimination symbol over
the total number of errors.

Overall, the correlation between the percentages of the Examples group
with those of the Syntax(Hint) group is 0.87, indicating that there are more
similarities between the two groups than differences. There are main effects of
elimination symbol (F(3,66) = 14.78, MSE = 6.08, p < .001) and error type (F(6,132)
= 23,12, MSE = 12.46, p < .001). The interaction of group by elimination symbol is
not significant (F(3,66) = 1.48, MSE = 6.08, p > .1), indicating that within the two
groups, the participants made a similar pattern of errors across the four
elimination symbols. The interaction of elimination symbol by error type and the
three-way interaction of operator by error type by group are significant
(F(18,396) = 30.31, MSE = 4.32, p < .001 for the two-way, and F(18,396) = 1.84,
MSE = 4.32, p < .05 for the three-way), meaning that the different elimination
symbols elicited different types of errors, and that those errors differed at least
slightly between the Syntax(Hint) and Examples participants. However, the
interaction of group by error type is not significant (F(6,132) = 1.64, MSE = 12.46,
p > .1), indicating that the two groups, on the whole, made similar error patterns
overall.

Variablization. One of the main interests in this experiment was to see how
people variablized the rules they are learning and how they generalized symbol
position and type. The best measurement of this is to look at transfer from the
simple to the complex problems. Table 7.6 displays percentages relating to the
first time participants had the opportunity to transfer knowledge to the complex
problems. It displays data collapsed across ® and # sign elimination problems,
which both involve inverting operators. The first column, Same Operator in 2nd

Position, refers to when participants correctly inverted the same operator they
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Table 7.6
Transfer from simple to complex problems

Same Operator | Related Operator | Related Operator

in 2nd Position in 1st Position in 2ndPosition
Examples 71% 25% 17%
Syntax(Hint) 88% ‘ 13% I 13%

had seen inverted in the simple problems, but in the second position, not the first
(e.g., a ® in second position when it was ® elimination). The other two columns
refer to correctly inverting the related operator when it appeared either in first or
second position (e.g., a ¥ in first or second position when it was ¥ elimination).
Only the Syntax(Hint) group knew that these two pairs of operators were related.
A test of the proportions show that the two groups are not significantly different
from one another, but both groups were much better at generalizing the same

operator than the related operator (p <.01).

Discussion

The main manipulation of this experiment, between the Examples group
and the Syntax(Hint) group, did not appear to make a difference. Only slight
differences existed in the error data, and people in the Syntax(Hint) group were
no different at transferring, in either position, to the related operator when it
needed to be inverted. Based on participants” answers to what they thought the
rules of the task were, the two groups were surprisingly equal. Several
participants in the Syntax(Hint) group could not articulate why the hint of the
inverse operators was important to the task. Due to this lack of difference
between the groups, only weak evidence was found for the Over Specificity
Contribution in this experiment:

3) Lack of adequate syntactic knowledge causes the analogy

mechanism to build over-specific rules from examples.
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The manipulations used in this experiment, transferring from the simple
to the complex problems and having just the sign elimination steps, might not
have been sufficient to elicit the effects seen in the previous experiments. An
informal examination of three protocol participants in the Syntax(Hint) condition
reveals that when transitioning from the simple to the complex problems, all of
participants felt that the two types of problems were disjoint, and one even felt
that the rules had radically changed. When solving the complex problems, two of
them did not fully reflect on how the hint might be able to help. All three of the
participants, and this was true of many of the other participants as expressed in e
exit interview, felt that when they were first trying to solve the complex
problems, that many rules existed.

The sign elimination steps by themselves might not be enough to engage
many participants in the right mindset to correctly learn the task. These steps
may be far enough removed from algebra that participants do not see it as such,
and so do not make use of that knowledge. Furthermore, the transformations
appear strange enough that even up-front knowledge of the inverse operators
helps. Perhaps it is only in combination with the addition and cancellation steps
that the differences in sign elimination between the Examples groups and the
Syntax groups seen in previous experiments emerge. The addition and
cancellation steps depend heavily upon the knowledge of inverse operators. The
sign elimination steps, while the most succinct set of rules use inverse operators,
can be adequately learned either by remembering a set of specific incidences or
by learning what many participants referred to as “heuristics” (e.g., “if a

appeared out front, and a ¥ appeared later, it tended to change to a ®”).
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Chapter 8

Conclusions

I began this dissertation by asking three questions: 1) How do people learn
a new task, given the instructions and information available to them? 2) How do
they bring their existing knowledge, when appropriate, to bear on learning the
new task? and 3) s there is a simple, underlying mechanism which can account
for this learning? The preceding chapters have provided four experiments and an
ACT-R model which attempted to shed light on these questions. In this chapter I
will summarize and discuss the results. In the first chapter [ presented three main
points I wanted to make in this dissertation. In service to answering the three
questions mentioned above. I will summarize the results of this dissertation in
the context of these three points, as well as how the model bears on these issues.
1) In learning the rules of a task such as Symbol Fun, learners
construct internal declarative representations of the examples
presented to them. These declarative representations are

influenced by knowledge of the task’s syntax, as well as other
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information particular to the task (e.g., knowledge of inverse
operators).

Experiments 1 and 3 clearly demonstrated this point. Both of these
experiments had groups that were only given examples and groups that were
given syntactical information with the examples. The groups given the additional
information performed better across most measures, even though in most cases
they only referred to the additional information once, at the time of initial
instruction. People would only refer back to the examples screen while actually
learning the task, but these examples are being interpreted through the
additional declarative information that the problem solver has. This declarative
knowledge could either be given to them, in the case of the syntax groups, or it
could be induced, in the case of the examples only groups. This interpretive
process results in a rich elaboration of the examples by which the rules of the task
can be more easily and accurately learned by the problem solver.

The full ACT-SF model presented in Chapter 5 has the best representation
possible with which to learn the task. That is, the elaborations it has of the
examples enables it to learn the correct rules of the task with little difficulty. It
represents each character string as having a left- and right-hand side and that
each symbol within the character is separate from the others. It knows about the
inverse operators, and the examples are marked to allow the most efficient
learning of the sign elimination steps. This roughly corresponds to the elaborate,
declarative information that the Syntax(Hint) group had at the beginning of the
task, or the representation that successful Examples group participants
eventually build. The model takes into account the additional information it has
when it forms the rules, and the learning is better when such information is
available. If that information is taken out of the model (e.g., the knowledge of

inverse operators, or the underlying equation representation that the model uses
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is simplified), the model mimics performance of unsuccessful participants, or
participants who are just beginning to learn.

2) One of the strongest predictors of success for learning Symbol

Fun was if the learner was able to access and use their
knowledge of algebra.

In Experiment 1, the people in the Examples group had a significantly
better chance of learning the task if, while in the process of learning the task, they
were reminded of algebra. Of the 23 people in that condition, 12 learned the task.
Of those 12, 11 were reminded of algebra. Of the 11 people who did not learn the
task, only 1 person was reminded of algebra. In both the syntax groups, 9 of the
12 people who finished were reminded of algebra. People’s knowledge of algebra
was affecting how (and if) they learned this task, and Experiment 2 manipulated
people’s awareness as to how the task was related to algebra.

Experiment 2 directly tested this claim. Three levels of hint were provided,
each level subsuming the one below it. Twelve of 19 participants successfully
completed the task in the Algebra(Low) group (the group with the least verbose
hint), and 12 of 12 participants in the Algebra(Intermediate) and 12 of 13 in the
Algebra(High) groups did likewise. The latter two proportions are significantly
different from the Examples group (p < .05). All three of the algebra hint groups
completed the task in significantly shorter time (p < .05) than the Examples group
of Experiment 1. The algebra hint helped the participants considerably, with the
suggestion that the more explicit the hint, the better the learning.

The model does not explicitly represent people’s knowledge of algebra. A
safe assumption would be that all participants in these experiments had the
knowledge and representations of basic algebra that Symbol Fun utilizes, but
some participants may have been more practiced with it than others. Inasmuch

as Symbol Fun makes use of the same (or, at least, similar) underlying
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representations, providing people the information that the task is based on
algebra upfront should increase the levels of activation of those structures and
make them primed to be used. The Algebra(Intermediate) and Algebra(High)
groups were more successful than the Algebra(Low) group because their hint
specified better which parts of their algebraic knowledge would be needed.

3) Lack of adequate syntactic knowledge causes the analogy

mechanism to build over-specific rules from examples.

Experiment 4 was designed to directly test this claim, but the first three
experiments each provided some additional evidence. In these three experiments,
the more information people were given, the more liberal their generalizations.
The syntax groups were more likely to attempt to meld the ® and © sign
elimination rules together, and they did not perseverate in making the error of
switching the operators around for # elimination. These participants appeared to
be more theory-driven, whereas the participants in the Examples groups were
more data-driven. That is, since the participants in the syntax groups had more
declarative information with which to elaborate their rule formation, they did so.
The Examples groups were more conservative.

Unfortunately, this particular finding did not appear in Experiment 4. The
Syntax(Hint) group made similar errors as the Examples group. The main reason
for this lack of effect was that participants perceived the scaled-down version of
the task used in this experiment (which only used one-step problems) as less
algebra-like than the full version of the task used in the previous experiments.
This resulted in a number of participants not fully learning the rules of the task,
and instead either relying on specific instances or partial rules to do the task.

However, one can still use the results of this experiment to examine how
people variablize the rules of a task they are learning. Participants are extremely

likely to transfer to different positions. That is, for this task they would the same
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thing to the same operator when it appeared in a different position. They would
not, though, transfer to related operators. The participants in the Syntax(Hint)
group, who knew about the related operators, were no more likely than the
Examples group participants to invert the related operator, either when it
appeared in the same or a different location.

The model can account for these effects. It has supporting declarative
information, such as the syntax and hint information, which the examples are
filtered through. The model will use these marked-up examples in forming the
rules it is learning. These embellished rules can be more general in their
application, since they can take into account that a symbol is being inverted, and
that is why that change occurs. In the case of mis—-marked-up examples,
misgeneralizations occur. In Experiment 4, participants were not using, in the
case of the Syntax(Hint) group, the information provided to them to the best
advantage. Both the Examples and Syntax(Hint) groups had a sparse, non-
algebraic representation of the task, and so neither group transferred to the
related operator quickly. The model accounts for this by not using its knowledge

of inverse operators when given those kinds of transfer problems.

Implications

Psychological. Perhaps the main feature of this dissertation is in bringing
together several threads of past psychological research—learning from examples,
transfer of cognitive skill, and forming generalizations—and providing a model
of those processes within an existing unified theory of cognition, Anderson’s
ACT-R theory. As discussed in Chapter 2, few models of learning have
attempted to model the acquisition of a large part of a domain. Those that have,
Alex and ZBIE for example, have largely been separate models of learning, not
tied to any existing theory. Inasmuch as that indicates the generality of the

approach, that is good. However, humans have a specific implementation of such
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learning mechanisms, and ACT-R has been used to successfully model humans
in many other domains. Furthermore, both Alex and ZBIE, as well as many of the
other models discussed in Chapter 2 were not compared to empirical results
obtained from humans..

The model developed in Chapter 5 was created on the basis of the
empirical results of the first two experiments (Chapters 3 and 4), and had testable
predictions (Chapters 6 and 7). It can therefore stand as a strong test of
Anderson’s claim that all knowledge begins in a declarative form, and that
procedures arise out of that declarative knowledge. The model captures the
important aspects of people learning the task in all the conditions, and contains
explanations for why people in certain conditions are facilitated in their learning.
The only notable exception is the complete failure to learn the task in the
Examples group in the prefix version of the task (Chapter 6). Specifically, the
model, and the ACT-R analogy mechanism in general, is very good at matching
symbols between lines of a problem’s solution. Given the formal equivalence of
the prefix and infix version of the task, the model would predict the Examples
groups in both versions to perform the same. One could provide an explanation
within ACT-R, that the declarative representations that underlie infix notation
are stronger than those for a prefix notation (due to more previous exposure to
infix notation), and so the learning, and also the probability of being reminded of
algebra, is increased. This fact is not captured by the current model.

Pedagogical. 1 would like to conclude with a short discussion of the
implications of this research on educational issues. This dissertation lends itself
to such a discussion, even though it focused on modeling the initial learning of a
task, and not necessarily on retention of that knowledge. A future study would

bring back participants six months or a year later and measure how well they
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remembered the task. However, due to the moderately simplistic nature of it, this
task may not be the best one to use.!

The empirical results, and the model which was based on them, argue that
the best learning occurs when what is created within the student’s mind is an
appropriate representation of the examples used to illustrate the domain. Or put
another way, students can learn by example, but to be most effective, these
examples need to be embellished with additional declarative knowledge. For this
domain, this additional declarative information could be either telling the
student that the task is based on algebra (and how it is related), or by telling the
task’s syntax, including the fact that two pairs of symbols are related to one
another. This points to the importance of doing a careful task analysis of the
domain to be taught, and to use that task analysis in designing instructional
material. This has been argued before by other researchers (e.g., Resnick, 1973).
However, in the case of this dissertation, the model provides an explanation of
the importance of each piece of additional declarative information, and can

provide clues in diagnosing a student’s deficiency in learning the task.

1 Anecdotally, once learned, people remember this task. Out of the many Carnegie Mellon
University Subject Pool participants who have learned this task, three have mistakenly signed up
for different versions of this task conducted across different semesters. All three remembered the
task sufficiently well as soon as they started that they were able to perform the task with few
errors (though unmeasured).
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Appendix A: Additional Information

Information available to both the Syntax(Hint) and Syntax(No Hint) groups:

Syntax
The problem takes the form of a string of characters. The characters
are selected from the following:

©,®,#% v Are the connector symbols
AT Q @ Are the object symbols
o, 0 Are special symbols

The ¢ character serves to divide the character string into a left-
hand side and a right-hand side.

Object symbols always have a connector to their left, and may
appear on either the left or right side of the character string.

The ‘', which only appears on the left side, may or may not have
a connector to its left.

Goal

Your goal is to isolate the * ¢’ character on the left-hand side.

A set of rules exist that dictates how you can change the current
character string into a new character string.

Only one rule is applicable for any particular character string.

If a connector appears in front of the ‘', the last step is to remove
that connector from it.

Information available only to the Syntax(Hint) group:
Hint

The ® and the ¥ symbols, as well as the © and the # symbols, are
associated with one another.
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Appendix B: The Annotated Examples

Example 1
POPoB®A
POPYDHBAYD
PoBAvD

Example 2
v pileovd
v P#[ClroedOT
voovdber
P oEPOT

Example 3
© p o#IBA
O HABT

Example 4
foeleovd
72 JRCIRE 10Ol
O vOB

X+A=+C
X+A-A=+C-A
X=+C-A

-X*B=-A
-X*B+B=-A+B
-X=-A+B
X=+A+B

+X=*B+C
X=*C+B

X-B=-A
X-B+B=-A+B
X=-A+B

Example 5
# ppo#I0CA
O 0Ol#A

Example 6
®pP®AOT
®pPAYA-CI vA
® ppClvA
Pe>ClvA

Example 7
P #[—O0A
P#IClrooACT
EoOCACT

Example 8
C pCIr-®Q
CpBlrel—®Qel
©pe®Qelr
POBIvQ
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*X=*B=+C
X=+B*C

+X+C=+B
+X+CLC=+B-C
+X=+B-C
X=+B-C

X*B=+C
X*B+B=+C+B
X=+C+B

+X+B=+D

+X+B-B=+D -B

+X=+D -B
=+B-D
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Appendix C: The ACT-SF Model

{clearall)

(sgp :ea 'restricted :at nil)

(wmetype transform-string left
right)

(wmetype
(wmetype

(wmetype
(wmetype

(wmetype

opl argl op2 arg2)

change operator argument
string result)

invert operator opl argl)
setup operator argument
string result left right)
operator inverse type)

(addwm

’

I

'

Problem 1

X -A=*2C
({Probleml
isa transform-string
lefr ProblemlLeft
right ProblemlRight)
{ProblemlLeft
isa expression
specop blankl
specarg X
opl -
argl A)
(ProblemlRight
isa expression
specop blankl
specarg blank2
opl *
argl C)

Problem 2

+ X=-8B/D
{Problem2

isa transform-string
left ProblemZLeft
right Problem2Right)
(Problem2Left

isa expression
specop plus

specarg X)
(Problem2Right

isa expression
specop blankl
specarg blank?2

opl -

argl B

op2 /

arg2 D)

expression specop specarg

; Problem 3

; / X *D=+B
{Problem3
isa transform-string
left Problem3Left
right Problem3Right)
(Problem3Left
isa expression
specop divide
specarg X
opl ~*
argl D)
(Problem3Right
isa expression
specop blankl
specarg blank2
opl =+
argl B)

; Problem 4

: -X=-D*A
(Problemd
isa transform-string
left ProblemdLeft
right Problem4Right)
(Problemd4Left
isa expression
specop minus
specarg X)
(Problemd4Right
isa expression
specop blankl
specarg blank2
opl -
argl D
op2 *
argl A)

; Problem 5

; *X=*A+C
(Problem5
isa transform-string
left ProblemSLeft
right ProblemSRight}
(ProblemSLeft
isa expression
specop multiply
specarg X
opl +
argl C)
(ProblemS5Right
isa expression
specop blankl
specarg blank2

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C: The ACT-SF Model

opl *
argl &)

(NewLeft

isa expression)
(NewRight

isa expression)

(t

isa operator
inverse /

type multiplication)
(/

isa operator
inverse *

type multiplication)
(_.

isa operator
inverse +

type addition)

{+

isa operator
inverse -

ctype addition))

;: Example 1
;0 X + A= "B

(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Examplel-Dependency
isa dependency
goal ExamplelLinel

subgoals (SubgoallLl SubgoallRl)

modified (Newgoall-1)
constraints {Leftl-1)
dont-cares (blankl blank2 X))
(Examplellinel

isa transform-string
leftc Lefrl-1

right Rightl-1)
(Lefrl-1

1sa expression
specop blankl
specarg X

opl +

argl A)

(Rightl-1

isa expression
specop blankl
specarg blank2

opl *

argl B)

(Subgoallll

isa change

operator +

argument A
string Leftl-1
result NewLeft)
(SubgoallR1l

isa change
operator +
argument A
string Rightl-1
result NewRight)
(NewGoall-1

isa transform-string
left NewLeft
right NewRight)

;Adds a - A to the left hand side

;of the equation
(SubgoalllL2-Dependency
isa dependency
goal SubgoalllL2
subgoals (Leftl-2)
modified (Subgoalll3)
constraints (+ Leftl-1)
dont-cares (addition)
generals (blankl X)
success 1
actions ((!pop!)))
(SubgoalllL2
isa change
operator +
argument A
string Leftl-1
result nil)
(Leftl-2
isa expression
specop blankl
specarg X
opl +
argl A
op2 -
arg2 A)
(Subgoalll3
isa change
operator +
argument A
string Leftl-1
result Leftl-2)

;Adds a - A to the right hand side

;of the equation
(SubgoallR2-Dependency
isa dependency
goal SubgoallR2
subgoals (Rightl-2)
modified (SubgoallR3)
constraints (+ Rightl-1)
dont-cares (addition)
generals (blankl blank2)
success 1
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Appendix C: The ACT-SF Model

actions ((ipop!)))
(SubgoallR2

isa change
operator +
argument A
string Rightl-1
result nil)
(Rightl-2

isa expression
specop blankl
specarg blank2
opl *

argl B

op2 -

arg2 A)
{SubgoallR3

isa change
operator +
argument A
string Rightl-1
result Rightl-2)

;Cancels the + A - A on the left

;side of the equation
(ExamplellineZ-Dependency
isa dependency
goal Examplelline2
subgoals (Leftl-3
modified (Subgoallid)
constraints (Leftl-2)
success 1
generals (+ - A))
(ExamplellLineZ2
isa transform-string
lefr Leftl-2
right Rightl-2)
(Lefrl1-3
isa expression
specop blankl
specarg X)
{Subgoalll4
isa transform-string
lefr Leftl-3
right Rightl-2))

;: Example 2
;0 - X *C=-A

{addwm

;Used by analogy mechanism to set
;the initial 2 subgoals of adding

;to both sides
(Example2Llinel-Dependency
isa dependency
goal Example2Zlinel

subgoals (Subgoal2Ll Subgoal2Rl)

modified (Newgoal2-1l)

constraints (Left2-1)

116

dont-cares (minus blankl blank2

X))
(Example2linel
isa transform-string
left Left2-1
right Right2-1)
(Left2-1
isa expression
specop minus
specarg X
opl *
argl C)
(Right2-1
isa expression
specop blankl
specarg blank2
opl -
argl Aa)
(Subgoal2Lll
isa change
operator *
argument C
string Lefr2-1
result NewlLeft)
{Subgoal2R1
isa change
operator *
argument C
string RightzZ-1
result NewRight)
(NewGoal2-1
isa transform-string
left NewLeft
right NewRight)

;Adds a / C to the left hand side

;of the equation
(SubgoalZLZ-Dependency
isa dependency
goal Subgoal2L2
subgoals (LeftzZ-2)
modified (SubgoallL3)
constraints (* Left2-1)
dont-cares {(multiplication)
generals (minus X)
success 1
actions ((!pop!)))
({Subgoal2L2
isa change
operator *
argument C
string Left2-1
result nil)

(Left2-2

isa expressiocn
specop minus
specarg X
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Appendix C: The ACT-SF Model 117

opl ~

argl C

op2 /

arg2 C)
(Subgoal2L3

isa change
operator *
argument C
string Left2-1
result Left2-2)

;Adds a / C to the right hand side
;of the equation
(Subgoal2R2-Dependency
isa dependency
goal Subgoall2R2
subgoals (Right2-2)
modified (Subgoal2R3)
constraints (* Right2-1)
dont-cares (multiplication)
generals (blankl blank2)
success 1
actions (('pop!)))
(Subgoal2R2
isa change
operator *
argument C
string Right2-1
result nil)
(Right2-2
isa expression
specop blankl
specarg blank2
opl -
argl A
op2 /
arg? C)
(SubgoallZR3
isa change
operator *
argument C
string Right2-1
result Right2-2)

;Cancels the * C / C on the left
;side of the equation
(Example2Line2-Dependency
isa dependency
goal Example2Line?2
subgoals (Left2-3)
modified (Subgoal2L4)
constraints (Left2-2)
success 1
generals (* / C))
(Example2Line2
isa transform-string
left Left2-2
right Right2-2)

(Left2-3

isa expression
specop minus

specarg X)
(Subgoal2L4

isa transform-string
left Left2-3

right Right2-2)

;Used by analogy mechanism to set
;the subgoals of eliminating the
;sign in front of X, then doing
;correct thing to the RHS

({Example2Line3-Dependency

isa dependency

goal Example2Line3

subgoals (Subgoal2L5 Subgoal2R4)

modified (NewGoal2-2)

constraints (Left2-4))

(Example2Line3l

isa transform-string

left Left2-4

right Right2-2)

(Subgoal2L5

isa change

operator minus

string Left2-4

result NewLefrt)

(Left2-4

isa expression

specop minus

specarg X)

(Subgoal2R4

isa setup

operator minus

string Right2-2

result NewRight)

(NewGoal2-2

isa transform-string

left NewLeft

right NewRight)

; Remove sign in front of X
{Subgoal2L6-Dependency
isa dependency
goal Subgoalllé
subgoals (Left2-5)
modified (Subgoal2l?)
constraints (Left2-4)
generals {(minus)
success 1
actions ((!pop!)))
(Subgoal2Lé
isa change
operator minus
string Left2-4
result nil)
(Left2-5
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isa expression
specop nil
specarg X)
(Subgoal2l?
isa change
operator minus
string Lefr2-4
result Left2-5)

Set up RHS for possible
inversion, subgocaling on the two
pairs
(Subgoal2R5-Dependency
isa dependency

goal Subgoal2R5
subgoals (Right2-3 Right2-4)
modified (Subgoal2Ré€)
constraints (Right2-2)
specifics (minus))
(Subgoall2R5

isa setup

operator minus

string Right2-2

result nil)

(Right2-3

isa invert

operator minus

opl -

argl 3a)

{Right2-4

isa invert

operator minus

opl

argl C)

{SubgoalZRé

isa setup

string Right2-2

result Right2-2

left Right2-3

right Right2-4)

Invert the first op
(Right2-3-Dependency
isa dependency

goal Right2-3
modified (Right2-5)
constraints (+)
success 1)
(Right2-5

isa invert

opl +

argl A)

Leave the second one
(Right2-4-Dependency
isa dependency

goal Right2-4
modified (Right2-6)

118

constraints (/)
dont-cares (*)
success 1)
(Right2-6

isa invert

opl /

argl C))

;; Example 3
;v / X = *C + B

{addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Example3Linel-Dependency
isa dependency
goal Example3Linel
subgoals (Subgoal3Ll Subgoalirl)
modified (NewGoal3-1)
constraints (Left3-1))
(Example3Linel
isa transform-string
left Lefri-1
right Right3-1)
(Subgoal3Ll
isa change
operator divide
string Left3-1
result NewLefrt)
(Left3-1
isa expression
specop divide
specarg X)
(Right3-1
isa expression
specop blankl
specarg blank2
opl *
argl C
op2 +
argz B)
(Subgoal3R1l
isa setup
operator divide
string Right3-1
result NewRight)
(NewGoal3-1
isa transform-string
left NewLeft
right NewRight)

; Remove sign in front of X
{Subgoal3L2-Dependency
isa dependency
goal Subgoal3l3lL2
subgoals (Left3-2)
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Appendix C: The ACT-SF Model 119

modified (Subgoal3L3) modified (Newgoald-1)
constraints (Left3-1) constraints (Lefcd-1)
success 1 dont-cares (blankl blank2 X))
actions ((!pop!))) (Exampled4Linel
(Subgoal3L2 isa transform-string
isa change left Left4-1
operator divide right Rightd4-1)
string Left3-1 (Left4-1
result nil) isa expression
(Lefr3-2 specop blankl
isa expression specarg X
specop nil opl -
specarg X) argl C)
{SubgoalilL3 (Right4-1
isa change isa expression
operator divide specop blankl
string Left3-1 specarg blankz
result Left3-2) opl -
argl a)
; Switch the two operands around (Subgoal4ll
(Subgoal3R2-Dependency isa change
isa dependency operator -
goal Subgoal3R2 argument C
subgoals (Right3-2) string Left4-1
modified (Subgoal3R3) result NewLef:)
constraints (Right3-1) {Subgoald4R1l
success 1 isa change
actions {(('pop!))) operator -
(SubgoalliR2 argument C
isa setup string Right4-1
operator divide result NewRight)
string Right3-1 (NewGoald-1
result nil) isa transform-string
(Right3-2 left NewlLeft
isa expression right NewRight)
specop blankl
specarg blank2 ;Adds a + C to the left hand side
opl * ;of the equation
argl B (Subgoal4l2-Dependency
op2 + isa dependency
arg2 C) goal SubgoaldlL?2
(Subgoal3R3 subgoals (Left4-2)
isa setup modified (SubgoaldlL3)
string Right3-1 constraints (- Leftd-1)
result Right2-2)) dont-cares {(addition)

generals (blankl X)
success 1

v

;; Example 4 actions ((!pop!)))
;0 X - C= -2 (Subgoaldl2
H isa change
{addwm operator -
;Used by analogy mechanism to set argument C
;the initial 2 subgoals of adding string Left4-1
;to both sides result nil)
(Exampledlinel-Dependency " (Leftd4-2
isa dependency isa expression
goal Exampled4linel specop blankl
subgoals (Subgoal4Ll SubgoaldRl) specarg X
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opl -

argl C

op2 +

arg2 C)
(Subgoal4l3

isa change
operator -
argument C
string Left4-1
result Left4-2)

;Adds a + C to the right hand side
;of the equation
{Subgoald4R2-~Dependency
isa dependency

goal SubgoaldR2
subgoals (Right4-2)
modified (SubgoaldR3)
constraints (- Rightd4-1)
dont-cares (addition)
generals (blankl blank2)
success 1

actions ((!pop!)))}
(Subgoal4R2

isa change

operator -

argument C

string Right4-1
result nil)

(Right4-2

isa expression

specop blankl

specarg blank?2

opl -

argl A

op2 +

arg2 C)

{Subgoal4R3

isa change

operator -

argument C

string Right4-1
result Right4-2)

;Cancels the - C + C on the left
;side of the equation
(Example4LineZz-~Dependency
isa dependency

goal Example4Line2
subgoals {(Leftd-3)
modified (Subgoaldld)
constraints (Left4-2)
success 1

generals (- + C))
(Exampled4Line2

isa transform-string
left Left4-2

right Right4-2)

120

(Left4-3

isa expression
specop blankl
specarg X)
{SubgoaldlL4

isa transform-string
left Left4-3

right Right4-2))

;; Example 5
;; *X=*C /D

{addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(ExampleSLinel-Dependency

isa dependency

goal ExampleSLinel

subgoals (SubgoalSLl SubgoalSR1)

modified (NewGoal5-1)

constraints (LeftS5-1))
(ExampleSLinel

isa transform-string

left Left5-1

right Right5-1)
(SubgoalSLl

isa change

operator multiply

string Lefc5-1

result NewLeft)

(Left5-1

isa expression

specop multiply

specarg X)

(Right5-1

isa expression

specop blankl

specarg blank?2

opl *

argl C

op2 /

arg2 D)

{SubgoalS5SR1

isa setup

operator multiply

string Right5-1

result NewRight)
(NewGoalS5-1

isa transform-string

left NewLeft

right NewRight)

; Remove sign in front of X
(SubgoalsSL2-Dependency
isa dependency
goal SubgocalSL2
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subgoals (Left5-2)
modified (SubgoalSL3)
constraints (Left5-1)
success 1

actions ((!pop!}))
(SubgoalSL2

isa change

operator multiply
string Left5-1
result nil)

(LeftS5-2

isa expression
specop nil

specarg X)
(SubgoalSsSL3

isa change

operator multiply
string Left5-1
result Left5-2)

;Set up RHS for possibile
;inversion, subgoaling on the two

;pairs
{Subgoal5R2-Dependency
isa dependency
goal Subgoal5R2

subgoals (Right5-2 RightS5-3)

modified (Subgocal5R3)
constraints (Right5-1)
specifics (multiply))
(SubgoalsSR2

isa setup

operator multiply
string Right5-1
result nil)

(Right5-2

isa invert

operator multiply
opl *

argl C)

(Right5-3

isa inver:

operator multiply
opl /

argl D)

(SubgoalSR3

isa setup

string Right5-1
result RightS5-1

left RightS5-2

right Right5-3)

; Invert the first op
(Right5-2-Dependency
isa dependency
goal Right5-2
modified (Right5-4)
constraints (*)

121

success 1)
(Right5-4
isa invert
opl /

argl Q)

; Invert the second op
(Right5-3-Dependency
isa dependency
goal RightS5-3
modified (Right5-5)
constraints (*)
success 1)

(Right5-5
isa invert
opl *

argl D))

;; Example 6
;0 + X +B=/C
(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Exampleélinel-Dependency
isa dependency
goal ExampleélLinel
subgoals (Subgoal6lLl Subgoal€=xl)
modified (Newgoalé-1)
constraints {(Lefté-1)
dont-cares (plus blankl blank2
X))
(ExampleéLinel
isa transform-string
left Left6-1
right Righteé-1)
(Lefte-1
isa expression
specop plus
specarg X
opl +
argl B)
(Right6-1
isa expression
specop blankl
specarg blank2
opl /
argl C)
(Subgoalf6Ll
isa change
operator +
argument B
string Lefté-1
result NewLeft)
(Subgoal6Rl
isa change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C: The ACT-SF Model

operator +

argument B

string Righté-1
result NewRight)
(NewGoal6-1

isa transform-string
left NewLeft

right NewRight)

;Adds a - B to the left hand side

;of the equation
{Subgoalél2-Dependency
isa dependency
goal Subgoal6LZ
subgoals (Left6-2)
modified (SubgoaléL3)
constraints (+ Lefté6-1)
dont-cares (addition)
generals {(plus X)
success 1
actions ((!pop!)))
(Subgoalg&L2
isa change
operator +
argument B
string Lefté6-1
result niil)
(Left6-2
1sa expression
specop plus
specarg X
opl +
argl B
opz -
arg2 B)
(Subgoal6l3
isa change
operator +
argument B
string Left6-1
result Lefté-2)

;Adds a - B to the right hand side

;of the equation
(Subgoal€R2-Dependency
isa dependency
goal SubgoaléR2
subgocals (Right6-2)
modified (Subgoal6R3)
constraints (+ Righté-1)
dont-cares (addition)
generals (blankl blank2)
success 1
actions ((!pop!)))
(Subgoal6R2
isa change
operator +
argument B

string Righté-1
result nil)
(Right6-2

isa expression
specop blankl
specarg blank2
opl /

argl C

op2 -

arg2 B)
{Subgoal6R3

isa change
operator +
argument B
string Righté-1
result Right6-2)

;Cancels the * C / C on the left
;side of the equation
(Example6Line2-Dependency
isa dependency
goal Example6lLine2
subgoals (Left6-3)
modified (SubgoaléL4)
constraints (Left6-2)
success 1
generals (+ - B))
(Example6Line2
isa transform-string
left Left6-2
right Right€-2)
(Left6-3
isa expression
specop plus
specarg X)
(Subgoal6L4
isa transform-string
left Lefté-3
right Right€-2)

;Used by analogy mechanism to set
;the subgoals of eliminating the
;sign in front of X, then doing
;correct thing to the RHS

({Example6Line3-Dependency

isa dependency

goal ExampleéLine3

subgoals (Subgoal6L5 SubgocaléRd)

modified (NewGoal€-2)
constraints (Left6-4))
{Example6lLinel

isa transform-string
left Lefté6-4

right Right6-2)
(Subgoal6L5

isa change

operator plus

string Lefté6-4
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result NewLeft) specarg blankZ2

(Left6-4 opl /

isa expression argl C
specop plus op2 -
specarg X) arg2 B)
(Subgoal6Rr4 {SubgoaléRé

isa setup
string Right6-2
result Right6-3))

isa setup
operator plus
string Right6-2
result NewRight)

(NewGoal6-2 i
isa transform-string ;; Example 7
left NewLeft ;; X *C=/B
right NewRight) ¥

(addwm

;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides

; Remove sign in front of X
(SubgoalbL6-Dependency
isa dependency

goal SubgoalbLé
subgoals (Lefté6-5)
modified (Subgoal6L7)
constraints {(Left6-4)
generals (plus)
success 1

actions ((!pop!)})
{Subgoal€Le6

isa change
operatcr plus
string Left6-4
result nil)
(Lefté-~5

1sa expression
specop nil
specarg X)
(Subgoalél?

isa change
operator plus
string Lefté6-4
result Left6-5)

;Nothing happens to the RHS for
;plus elim
(SubgoalbRS-Dependency
isa dependency
goal Subgoal6bR5
subgoals (Right6-3)
modified (Subgoal6RE€)
constraints (Right6-2)
success 1
actions ((!pop!}}))
(SubgoalbR5
isa setup
operator plus
string Righté6-2
result nil)
(Right6-3
isa expression
specop blankl

(Example7Linel -Dependency
isa dependency

goal Example7Linel
subgoals (Subgoal7ll Subgoal7R1)
modified (Newgoal7-1)
constraints (left7-1)
dont-cares (blankl blank2 X))
(Example7Linel

isa transform-string
lefr left7-1

right right7-1)
(left7-1

lsa expression
specop blankl
specarg X

opl ~*

argl C)

(right7-1

isa expression
specop blankl
specarg blank?2

opl /

argl B)

(Subgoal7Ll

isa change

operator *

argument C

string left7-1

result NewLeft)
(Subgoal7R1l

isa change

operator *

argument C

string right7-1
result NewRight)
(Newgoal7-1

isa transform-string
left NewLeft

right NewRight)
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;Adds a / C to the left hand side arg2 C)

;of the equation (Subgoal7R3
{Subgoal7L2-Dependency isa change
isa dependency operator -

goal Subgoal7L2
subgoals (left7-2)
modified (Subgoal7L3)
constraints (* left7-1)
dont-cares (addition)
generals (blankl X)
success 1

actions ((!'pop!})))
{Subgoal7L2

isa change

operator *

argument C

string left7-1

result nil)

(lefc7-2

isa expression
specop blankl

specarg X

opl *

argl C

op2 /

arg2 C)

(Subgoal?7L3

isa change

operator -

argument C

string lefc<7-1

result left7-2)

;Adds a / C to the right hand side
;of the equation
(Subgoal7RZ-Dependency
1sa dependency

goal Subgoal7R2

subgoals (right7-2)
modified (Subgoal7R3)
constraints (* right7-1)
dont-cares (addition)
generals (blankl blank2)
success 1

actions ((!pop!)})
(Subgoal7R2

isa change

operator *

argument C

string right7-1

result nil)

(right7-2

isa expression

specop blankl

specarg blank2

opl /

argl B

op2 /

argument C
string right7-1
result right7-2)

;Cancels the * C / C on the left
;side of the equation
(Example7Line2-Dependency
isa dependency
goal Example7Line?2
subgoals (left7-3)
modified (Subgoal7L4)
constraints (left7-2)
actions ({(!pop!)}
success 1
generals (* / C))
{Example7Line?2
isa transform-string
lefr lefc7-2
right right7-2)
(lefc7-3
isa expression
specop blankl
specarg X)
(Subgoal7L4
isa transform-string
left lefr7-3
right right7-2))

;; Example 8
F / X + C = + D
(addwm
;Used by analogy mechanism to set
;the initial 2 subgoals of adding
;to both sides
(Example&Linel-Dependency
isa dependency
goal Example8Linel
subgoals (Subgoal8Ll Subgoal8R1)
modified (NewgoalB8-1)
constraints (left8-1)
dont-cares (divide blankl blank2
X))
(Example8Linel
isa transform-string
leftr left8-1
right right8-1)
(leftg-1
isa expression
specop divide
specarg X
opl +
argl C)
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(right8-1

isa expression
specop blankl
specarg blank2
opl +

argl D)
(Subgoal8Ll

isa change
operator +
argument C
string left8-1
result NewLeft)
(Subgoal8Rl

isa change
operator +
argument C
string right§-1
result NewRight)
{NewgoalB8-1

isa transform-string
left NewLeft
right NewRight)

;Adds a - C to the left hand side

;of the equation
(Subgoal8L2-Dependency
isa dependency
goal SubgoalB8L2
subgoals (left8-2)
modified (Subgoal8lL3)
constraints (+ left8-1)
dont-cares (addition)
generals (divide X)
success 1
actions ((!pop!)})
(Subgoal8L2
isa change
operator +
argument C
string left8-1
result nil)
(leftg-2
isa expression
specop divide
specarg X
opl +
argl C
op2 -
arg2 C)
(Subgoal8L3
isa change
operator +
argument C
string left8-1

{Subgoal8R2-Dependency
isa dependency

goal SubgoalB8R2
subgoals (right8-2)
modified (Subgoal8R3)
constraints (+ right8-1)
dont-cares (addition)
generals (blankl blank2)
success 1

actions ((!'pop!'}))
(SubgoalB8R2

isa change

operator +

argument C

string right8-1
result nil)

(right8-2

isa expression
specop blankl

specarg blank2

opl +

argl D

op2 -

arg2 C)

(SubgoalgR3

isa change

operator +

argument C

string right8-1
result right8-2)

;Cancels the + C - C on the left
;side of the equation

(Example8Line2-Dependency
isa dependency

goal Example8Line2
subgoals (left8-3)
modified (Subgoal8L4)
constraints (left8-2)
success 1

generals (+ - C))
(Example8Line2

isa transform-string
lefr left8-2

right right8-2)
(left8-2

isa expression
specop divide
specarg X)
(Subgoal8L4

isa transform-string
left left8-3

right right8-2)

;Used by analogy mechanism to set
;the subgoals of eliminating the
isign in front of X, then doing
;correct thing to the RHS

result left8-2)

;Adds a - C to the left hand side
;of the equation
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(Example8Line3-Dependency

isa dependency
goal Example8Line3

subgoals (Subgoal8LS5 Subgoal8R4)

modified (Newgoal8-2)
constraints (left8-4))
(Example8Line3

isa transform-string
leftr left8-4

right right8-2)
{Subgoal8L5

isa change

operator divide
string left8-4
result NewLeft)
(lefc8-4

isa expression
specop divide
specarg X)
(Subgoal8R4

lsa setup

operator divide
string right8-2
result NewRight)
(Newgoal8-2

isa transform-string
left NewLeft

right NewRight)

; Remove sign in front of X

(Subgoal8L6é-Dependency
isa dependency

goal Subgoal8Lé
subgoals (left8-5)
modified (Subgoal8L7
constraints (left8-4)
generals (divide)
success 1

actions ((!pop!}))
(SubgoalSLé

isa change

operator divide
string left8-4
result nil)

(left8-5

isa expression
specop nil

specarg X)
(Subgoal8L7

isa change

operator divide
string left8-4
result left8-5)

; Switch the two operands
{Subgoal 8RS5-Dependency
isa dependency
goal Subgoal8R5

around

subgoals (Right8-3)
modified (Subgoal8R6)
constraints (right8-2)
success 1

actions ((!'pop!)}))
{Subgoal8R5

isa setup

operator divide
string right8-2
result nil)
(right8-3

isa expression
specop blankl
specarg blank2

opl +

argl C

op2 -

argz D)

(Subgoal8Ré

isa setup

string right8-2
result right8-3))

(wmfocus probleml)

(p glue

=subgoal>
isa setup
result =original
lefc =parcl
right =part2

=partl>
isa invert
opl =opl
argl =argl

=part2>
isa invert
opl =op2
argl =arg2

=original>
isa expression
opl =opl
argl =argl
op2 =op2
argz =arg2
'pop!)

(p detectgoalstate
=goal>
isa transform-string
left =left
=lefc>
isa expression
specop nil
specarg X
==>

'pop!)
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Appendix D: Model Run

Below is a listing of the model solving five problems. These five problems are:

1) X -2a=+*C

2) + X=-B /D
3) / X*D=+8B
4) - X =-D * A
5) * X =*AaA+C

In the actual runs (the cycle statements), the productions that are being created
by the analogy mechanism are bolded. After the model has solved the problem,
those productions which were newly created are titled and displayed. The
notation in the parentheses (like P1) refers to the production numbers in Chapter
5, which illustrate how those particular productions arose.

The model is solving the problem:
X-A=*C

? (run)

cycle 0 time 0.000: transform-
string-productiond2

action latency: 0.050

cycle 1 time 0.050:
change-productiond?
action latency: 0.050

cycle 2 time 0.100: change-
production4?
action latency: 0.05C

cycle 3 time 0.150: transform-
string-productionds
action latency: 0.050

1) Production that sets up either a
two- or three-step problem (P1):

(p transform-string-production4?2
=example8linel-variable>
isa transform-~string
left =left8-1-variable
right =right8-l-variable
=left8-1-variable>
isa expression
opl =+-variable
argl =c-variable
opZ nil
arg? niil

i
0]
v

=subgoal8ll-variable>
isa change
operator =+-variable
argument =c-variable
string =left8-1l-variable
result =newleft-variable
=subgoal8rl-variable>
isa change
operator =+-variable
argument =c-variable
string =right8-1l-variable
result =newright-variable
=example8linel-variable>
left =newleft-variable
right =newright-variable
'Push! =subgoal8rl-variable
!Push! =subgoal8ll-variable)

2) Production adds the proper

operator and operand to one side of
the equation (P2):

(p change-productiond?

=subgoalér2-variable>
isa change
operator =+-variable
argument =b-variable
string =righté-1l-variable
result nil
=+-variable>
isa operator
inverse =--variable
=righté-1l-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
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opl =/-variable cycle 5 time 0.250:
argl =c-variable change-productiond?9
op2 nil action latency: 0.050
arg2 nil
==> cycle 6 time 0.300: setup-
=right6-2-variable> production50
isa expression action latency: 0.050
specop =blankl-variable
specarg =blank2-variable Cycle 7 time 0.350:
opl =/-variable detectgoalstate
argl =c-variable Action latency: 0.050
op2 =--variable
arg2 =b-variable Top goal popped.
=subgoalér2-variable> Run latency: 0.200
result =righté-2-variable
'Push! =right6-2-variable 4) Production that sets up the sign
tPop! elimination step (P4):
'Pop!)
- £ v - 3
3) Production that eliminates four ‘e “f:i;gizgi;;?iifozgigionw
symbols from the LHS (P3): isa transform-string
left =left8-4-variable
(p transform-string-productionds right =right8-2-variable
=zexample8line2-variable> =lefr8-~4-variable>

=>

isa transform-string
left =leftB8-2-variable
right =right8-2-variable

opl =+-variable
argl =c-variable
op2 =--variable
arg2 =c-variable

=lefr§-3-variable>

isa expression
specop =divide-variable
specarg =x-variable

'Push! =left8-3-variable
!Pop!)

The model is solving the problem:

+X

=-B/D

Cycle 4 time 0.200: transform-

string-productiond?9

Action latency: 0.050

isa expression
specop =divide-variable
specarg x

=lefrB8-2-variable> opl nil
isa expression argl nil
specop =divide-variable op2 nil
specarg =x-variable arg? nil

==>
=subgoalflS-variable>
isa change
operator =divide-variable
argument nil
string =left8-4-variable
result =newleft-variable
=subgoalfrd-variable>
isa setup

opl nil operator =divide-variable

argl nil argument nil

op2 nil string =right8-2-variable

arg2 nil result =newright-variable
=zexample8line2-variable> left nil

left =left8-3-variable right nil

=example8linel-variable>
left =newleft-variable
right =newright-variable

!Push! =subgoal8rd4-variable

!'Push! =subgoal8l5-variable)

5) Production that deletes the sign in
front of X (P5):

(p change-production4®
=subgoal8l6-variable>
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isa change
operator =divide-variable
argument nil
string =left8-4-variable
result nil
=left8-4-variable>
isa expression
specop =divide-variable
specarg =x-variable
opl nil
argl nil
op2 nil
arg2 nil
==>
=lefrB8-5-variable>
isa expression
specop nil
specarg =x-variable
opl nil
argl nil
op2 nil
arg?2 nil
=subgoalBlé-variable>
result =left8-5-variable
'Push! =lefrB8-5-variable
!Pop!
{Pop!)

6) Production that does plus (®)
elimination:

(p setup-productions0
=subgocalérS-variable>
isa setup
operator plus
argument nil
string =righté-2-variable
result nil
left nil
right nil
=right6-2Z2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable

opl =/-variable
argl =c-variable
op2 =--variable

arg2 =b-variable
==>
=righté-3-variable>
1sa expression
specop =blankl-variable
specarg =blank2-variable
opl =/-variable
argl =c-variable
op2 =--variable
arg2 =b-variable
=subgoalér5-variable>

operator nil

result =righté-3-variable
'Push! =righté-3-variable
‘Pop!
'Pop!)

The model is solving the problem:
/IX*D=+B

Cycle 8 time 0.400: transform-
string-production4?2
Action latency: 0.050

cycle 9 ctime (0.450:
change-productiond?’
action latency: 0.050

cycle 10 time 0.500: change-
productiond?
action latency: 0.050

Cycle 11 time 0.550: transform-
string-production48
Action latency: 0.050

Cycle 12 time 0.600: transform-
string-production49
Action latency: 0.050

cycle 13 time 0.650:
change-production4?
action latency: (.050

cycle 14 time 0.700: setup-
production51
action latency: 0.0580

Cycle 15 time 0.750:
detectgoalstate
Action latency: 0.050

Top goal popped.
Run latency: 0.400

7) Production that does divide (©)
elimination:

{(p setup-productionSl
=subgoal8rS-variable>
isa setup
operator divide
argument nil
string =right8-2-variable
result nil
left nil
right nil
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=right8-2-variable>
isa expression
specop =blankl-variable
specarg =blank2-variable
opl =+-variable
argl =d-variable
op2 =--variable
arg2 =c-variable

1]
1}
v

=right8-3-variable>
isa expression
specop =blankl-variable
specarg =blankZ-variable
opl =+-variable
argl =c-variable
op2 =--variable
arg2 =d-variable
=subgoal8r5-variable>
operator nil
result =right8-3-variable
'Push! =right8-3-variable
'Pop!
'Pop!)

The model is solving the problem:
-X=-D*A

Cycle 16 time 0(0.800: transform-
string-productiond9
Action latency: 0.050

cycle 17 time 0.850:
change-production4$g
action latency: 0.050

cycle 18 time 0.900: setup-
production56
action latency: 0.050

cycle 19 time 0.950:
invert-production5s9
action latency: 0.050

cycle 20 time 1.000:
invert-production62

action latency: 0.050
cycle 21 time 1.050: glue
action latency: 0.050

Cycle 22 time 1.100:
detectgoalstate
Action latency: 0.050

Top goal popped.
Run latency: 0.350

8) Production that does minus (»)
elimination (P6):

(p setup-productionSé

=subgoall2rS5-variable>

isa setup

operator minus

argument nil

string =right2-2-variable

result nil

left nil

right nil
=rightZ-2-variable>

isa expression

specop blankl

specarg blank2

opl =--variable

argl =a-variable

op2 =/-variable

argz =c-variable

==>

=right2-2-variable>

isa invert

operatcr minus

opl =--variable

argl =a-variable
=right2-4-variable>

isa invert

operator minus

opl =’-variable

argl =c-variable
=subgoal2rS-variable>

operator niil

result =rightz-2-variable

left =right2-3-variable

right =right2-4-variable
tPush! =right2-4-variable
'Push! =right2-3-variable)

9) Production that inverts for minus
(v) elimination (P7):

(p invert-production59
=right2-3-variable>
isa invert
operator minus
opl =--variable
argl =a-variable
=+-variable>
isa operator
inverse =--variable
type addition
==>
=right2-3-variable>
operator nil
opl =+-variable
'Pop!)
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10) Production that does not invert for

minus (») elimination (P8):

(p invert-production62
=right2-4-variable>
isa invert
operator minus
opl =/-variable
argl =c-variable
=/-variable>
isa operator
type multiplication
==>
=right2-4-variable>
operator nil
'Pop!)

The model is solving the problem:
*X=*A+C

Cycle 27 time 1.350: transform-
string-productiond?9
Action latency: 0.050

cycle 28 time 1.400:
change-production4?
action latency: 0.050

cycle 29 time 1.450: setup-
productioné6d
action latency: 0.050

cycle 30 time 1.500:
invert-productioné4
action latency: 0.050

no instantiation found.
run latency: (0.400

11) Production that does multiply (#)

elimination (P6):

(p setup-productionéd
=subgoalSr2-variable>
isa setup
operator multiply
argument nil
string =rightS-1l-variable
result nil
left nil
right nil
=right5-1-variable>
isa expression
specop blankl

specarg blank2

opl =*-variable

argl =c-variable

op2 =/-variable

arg2 =d-variable

==>

=right5-2-variable>

isa invert

operator multiply

opl =*-variable

argl =c-variable
=right5-3-variable>

isa invert

operator multiply

opl =/-variable

argl =d-variable
=subgoalSr2-variable>

operator nil

result =rightS-l-variable

left =rightS-2-variable

right =rightS5-3-variable
'Push! =rightS5-3-variable
'Push! =right5-2-variable)

12) Production that inverts for
multiply (#) elimination (P7):

(p invert-productioné&4
=rightS5-3-variable>
isa invert
operator multiply
opl =/-variable
argl =d-variable
=*-variable>
isa operator
inverse =/-variable
type multiplication
==>
=rightS5~3-variable>
operator nil
opl =*-variable)

Note that the main 8 Examples (Table
3.3) do not have an example of a sign
not inverting during # elimination.
Going off these examples, ACT-R
cannot generate the last production
necessary to do all problems. One way
around this is to have the model
remember the past problems it has
solved, and have those as reference as
well (such a model is trivial and has
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been implemented). This last
production looks like this:

13) Production that does not invert for
multiply (#) elimination (P7):

(p invert-productionéd
=rightS5-3-variable>
isa invert
operator multiply
opl =/-variable
argl =d-variable
=+-variable>
isa operator
type addition
==>
=rightS-3-variable>
operator nil)
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This protocol is from Participant #22 and was taken on March 15, 1995. He was in
the Examples group of Experiment 1. In the following transcription, P is the
Participant, E is the Experimenter, and C is the Computer. Lines that are
asterisked and italicized indicate either what the participant typed, what
information the computer gave, or specific examples referred to by the
participant. The second column (appearing through Problem 19) contains
comments concerning the participant’s acquisition of the rules of the task,
including references to rules in Appendix D.

Problem 1: 0 ®'«&0Od

Protocol Notes
P: Problem #1. Workspace. Right now I'm just
putting in the exact same thing they have.

* Participant typed o ®I'e->OP

C: Try again.

P: Okay. Umm. Examples 1. Going to the examples.
Umm mumble Click on a box to reveal the whole
problem. Umm.

E: This up here is showing you the last correct thing
that has been typed in.

P: Oh, okay. Okay. So I'm going to look for a match.
With the first three characters. I don’t see one.
Okay, for the next two? See. No. We have
something like, something similar. So I'll try...
Umm, Example 7, the last correct line, everything
is the same except for this R comes this number
symbol, and this phi, I guess, becomes a delta. So,
if R is a number symbol...

* Participant typed ®«>#
C: Here's the correct line.

* Computer responded @I eI'—-Cdel

P: No. Okay. Heart, heart that, heart that. Okay. Well.
Umm. Okay, so they just added on to what they
had. So maybe I'll try adding on to it. You got the
heart, and it’s not clear to me... Example 1, R and
heart. That’s what I had before. So next line, well,
we'll try that.

133
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* Participant referred to Example 1 Participant has no

P: We're just going to go by Example 1, mumble understanding of the

* Participant typed p«>©dwI” inverse relation of the ®
C: Excellent.  and v but rather simply
P: Oh, okay. deletes the four symbols.

Problem 2: # p o#ACT

P: All right, I'll try what they did, on the first Participant recognizes
problem. Oops. that in some cases the

* Participant typed # ¥ 2 >#ACT® same thing needs to be

C: Try again. added to both sides of

P: Okay. Go back to the examples. Select this one. the string, but has no
Swap those. We'll try example 3. idea of when that is

* Participant referred to Example 1 appropriate or what

* Participant typed goe>#I©A exactly to add.

C: Here’s the correct line.

* Computer responded o ®T vI'->Obwl

P: This is the correct line? Okay. Oh, they swapped...
Hmm, okay. Swapped those two. Go to next
problem.

* Participant referred to Example 3

Participant assumed the
operators have swapped,
not inverted.

Problem 3: pv[<—0O®

P: So heart, C. This one is exactly like, three Participant picked an
characters, two. And that one is three. So example example based on
1 and example 4 and example 7 have the same number of symbols on
form, 3 characters, with arrow, 2 characters. So, either side of the

I'm going to assume, you can solve it by one of the character string.
these examples. Using one of these examples.

* Participant referred to Example 4 No real understanding of
P: Umm, C. Okay, we’'ll try, we'll try it by example 4. why ® was added (a
R, we justadd R. lucky guess in this case).
* Participant typed o 9 ®I ->©POI
C: Good.
P: It worked! Okay. Now click the arrow. Umm, so  Again, no understanding
example 4 works, so we’ll keep going with it. It of why the symbols can

keeps the first character, and everything else is the be eliminated.
same order. So we’'ll go this, arrow C phi R

* Participant referred to Example 4

* Participant typed (o0 >©POI

C: Excellent.
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Problem 4: v o ©'&>©®

P: Okay, problem 4. Has 4 characters and 2 character,
so I'm looking for something 4, 2. Four, 2, 4, 2. This
is 3 of the same, on the left hand side, so we'll try
this one. Umm, see here. Keeps the heart, should
add a C and last character.

* Participant referred to Examples 2 and 6

* Participant typed v o©I €I -O©POI"

C: Try again.

P: Okay. Well, we'll try example 6 then, since it has
one similar character, and what does it do? It adds
a heart to the end, and last character. Try this, if
this doesn’t work...

* Participant referred to Examples 2, 6 and 8

* Participant typed ¢ o©I'v[ ->OPeI
C: Here’s the correct line.

* Computer responded w g CT #T>OD#T

* Participant referred to Examples 2, 6 and 8

P: A number. Okay. Number symbol. Why did it add
a number symbol? So it added a C?. Number
symbol. Don’t know why it added a number
symbol. It’s 2, that’s 3.

* Participant referred to Examples 2, 6 and 8

P: Okay, I guess we’ll go on. Number symbol. This is
on at the beginning, keeps the back the same.
Okay. According to the three examples, they keep
the first 2 characters, and lose everything else on
the left-hand side of the arrow, and keep the
right-hand side the same.

* Participant typed @ g0>@D#

C: Good.

* Participant referred to Examples 2, 6 and 8

P: Good, and next, what do they do. They lose the
very leftmost thing, and flop around... Or do they?
This one flops, this with that, so... Hmm. Okay.
Ahh, we'll stick this thing to the left-hand side,
arrow, after that, and R in there, a C here. C just
stays the same, the R flops things around, so we’ll
see what the C one does. C phi number this.

* Participant referred to Examples 2, 6 and 8

* Participant typed o —©D#I

C: Excellent.
P: Okay.
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Problem 5: ® p«—©I'vA

P: Two, 4. We need something with a 2, 4. There’s a 2,

4.1t goes to 1, 4. It goes to 1, 4. Loses the leftmost
thing, umm. Has a C, doesn’t have a C. So this has
a C, I'll just follow this example. Umm, instead of a
C there, wait, it flopped it. If the C is at the front,
I'm going to keep it the same. Okay. Arrow, let’s
see.

* Participant referred to Examples 3, 5, and 6

* Participant typed foe->OI'vA
C: Excellent.

Problem 6: © p#d—®A

P:A4,2.50,a4,2; 4,2 Herewe go. There’s a R, that
has a C. So this has a C at the front, go by that.
And example 8. Stick a heart with the last, yeah,
and last symbol on left side. C this, number, phi,
heart, phi, arrow, R triangle, heart phi.

* Participant referred to Examples 1, 2, 6, and 8

* Participant typed © o #Q v P>®AVD

C: Try again.

P: Hmm. That R has anything to do with it. No, it
shouldn’t. Triangle. Ends with a triangle. That
shouldn’t do anything. Number symbol, does it do
anything. Maybe try a C, since that number
symbol is there, maybe that means you're
supposed to add a C. Let’s try that. C number phi

* Participant referred to all examples

* Participant typed © go#@OPBAOP

C: Good.

P: Okay, umm. Follow example 7. Sort of. Okay, after
that, all the ones that start out with 4 on the left
and two on the right, umm, after they add
something, they lose everything, and just keep the
two characters on he left side, the two leftmost
ones. Umm, so we lose all that, and what do we
put on the right? Since it starts with a R, we’ll
follow this example, example 8. We'll just keep
that and that, and R triangle C phi.

* Participant referred to Examples 2, 6, 7, and 8

* Participant typed © g2 ¢>®AOP
C: Good.

136

The participant is paying
attention to the wrong
symbol—to the first
symbol of the right-hand
side, not the frontmost
symbol.

The participant might
have made a connection

between the # and the €.

The participant used a 2-
step problem to help
with a 3-step problem.

Again, though, paying
attention to the wrong
symbol.
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P: And the R at the front, you flip things around. Flip
the second, so we have arrow R phi C delta.
* Participant referred to Example 8

* Participant typed foe>®POA
C: Excellent.
P: Okay, got that right.

Problem 7: © o «>#I'#d

P: Got two and four. Two and four. Well, just lose it. However, here he did
Hmm. It's a C, since there’s a C in iront, we’llgo  use the correct symbol to
by this one. Keep the number, flop those two figure out the proper
around. Okay, I'll try that. Arrow, keep the rule.
number symbol, phi.

* Participant referred to Examples 1, 2, 3,4, 5and 7

* Participant typed o «>#D#I

C: Excellent.

Problem 8: o ®A—vd
P: Got it right. Three and 2. Umm, a heart. Youadd a Even here, though,

R. R delta. So let’s try this. R delta. believed first symbol of
* Participant referred to Examples 1 and 4 the right-hand side
* Participant typed @ ®AGA¢> ¢DBA dictates what should be
C: Try again. done.

P: What do I do now? R delta. Okay. So since it’s a R,
maybe we'll try this. We need three. Go by
example 1. With a heart. Triangle heart delta.

* Participant referred to Examples 1, 3,5, 6, 7, and 8

* Participant typed o ®AvAe—>vDPwA

C: Good.

P: Okay, so it’s like example 1. And for example 1,
lose everything except for the very first character
on the left, keep the right the same. Okay, we'll try
that. Arrow heart phi, heart delta.

* Participant referred to Example 1

* Participant typed goe>vPvA
C: Excellent.

Problem 9 # <> v ®#"

P: Okay, we have a 2 and 4. That flops those two. Made the common
We'll try by example 5. Number symbol, phi heart, mistake of swapping
this. operators for #

* Participant referred to Example 5 elimination.

* Participant typed g &#del
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C: Try again.P: It's not by example 5. Two... Keep it
the same? Or we could... Six. Two, 2, 2. There’s a
heart there. What does it do? Changes the heart to
a R. We'll try by the last two steps of example 2.
Change the heart to a R.

* Participant referred to all examples

* Participant typed o >®@P#I

C: Here’s the correct line.

P: No, don’t change the heart, change the number to
a C. Okay, why do we change the number sign to a
C? Change a number sign to a C—that confuses
me. R over heart, number symbol’s over C I think
that’s what it says. Okay. We always end up with
that. Okay.

* Participant referred to all examples

Problem10 o vQo©P

P: Three to 2. Since it’s a C we’ll add a, maybe we’ll
add a C omega. C omega. C phi C omega.
* Participant referred to Examples 1, 4, and 7

* Participant typed o vQ0Q->0PECS2

C: Try again.

P: Okay, so it’s not like example 7. So most likely add
a heart or a R. If you have a heart there you add a
R, and if you have a R you add a heart. So if you

have a heart you’d add a R. R omega. This is clearly where the
* Participant referred to Examples 1 and 4 participant figured out
* Participant typed (o v QEQR>OPEN the inverse relation

C: Good. between v and ®.

P: Okay. Next what do we do? Just lose everything
now? And keep it all the same. Okay. Simple
enough.

* Participant referred to Example 4

* Participant typed 0 ->©PEL

C: Excellent.

Problem 11 ® p#d—#A

P: Starts out with a R. Starts out with this. Okay,
umm. Start out with a R at the beginning. But it
has a number symbol there. So what does the And here the relation
number symbol mean? Number symbol means between # and ©.
you write a C. Number symbol means you add a
C. Number phi, add a C phi, delta, oops, delete,
delete, arrow, C, delete, triangle, C phi.
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* Participant referred to Examples 2, 6, and 8

* Participant typed ® p#POD—#AOP
C: Good.
P: Okay, knowing that, then you lose everything
except for the R and that. And we keep them all
the same. Keep the R, that the same, number
triangle.
* Participant referred to Example 6
* Participant typed ® fo S#AOP
C: Good. . o
P: And we got left, the R, keep everything the same. ~ Sign elimination for ®.
* Participant referred to Example 6

* Participant typed (o0 <>#A0P
C: Excellent.

Problem 12 v 0 ©Qo®A

P: Starts out with heart and has a C. Having a C,
probably add a number symbol. Let’s try it.
Number symbol, R triangle.

* Participant typed @ g0 ©Q#Qe>BA#S2

C: Good.

P: Yup, I was right. You lose everything, except for
the heart and that funny symbol. Arrow, and what
does heart imply? Keep everything the same when
you change it to a R. That was a R already.

* Participant referred to Example 2

* Participant typed # 90&>®A#Q

C: Good.

P: Should be this. Triangle.

* Participant typed 2 ¢>®A#S2

C: Try again.

P: Maybe exchange all Rs and hearts. Try that. Heart
triangle.

* Participant referred to Example 2

* Participant typed 0> wA%S2

C: Excellent.

P: Okay.

Sign elimination for .
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Problem 13 @I -©Q

P: Umm, [ got 3 and 2. It starts out with the symbol
you solve for, and has a C. What does the C mean?
C means you add a number symbol.

* Participant typed o ©I#Ie>©OQ#I"

C: Good.

P: Okay, then you're supposed to lose everything
and leave it like it is. Is that right? That’s right.
Don’t change anything.

* Participant referred to Examples 1, 4, and 7

* Participant typed (p—>©Q#I

C: Excellent.

Problem 14 ® 0 v Q@I

P: This one starts out with a R and a heart. A heart
should be, okay. R heart, omega, R omega, arrow,
R.

* Participant typed ® 9 9QB®QEBIES2

C: Good.

P: Hmm, and the R at the beginning. Shouldn’t do
anything yet.

* Participant typed ® 2 >®I ®S2

C: Good.

P: And this means replace all Rs with hearts or Initially confused with v
something like that. R, so replace all hearts with ~ elimination, but figured
Rs. The R means delete. We'll try to just put it in ~ Out the correct rule again.
the way it is.

* Participant referred to Examples 2, 3, and 6

* Participant typed 0«<>@®I'GS2

C: Excellent.

P: Okay.

Problem 15 v 0 &#A#Q

* Participant typed (0 e>#4#2
C: Excellent.
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Problem 16 @dPe—rvA

P: Okay, umm. The R means to add a heart phi. And
then, on both sides.

* Participant typed o ®Pvd—>vAvd

C: Good.

P: Then we lose everything, and just keep that the
way it is.

* Participant typed goe>vAv®

C: Excellent.

Problem 17 © p —©A®Q

P: The C means, what does the C mean? Lose He might have thought
everything and exchange. Delta with those. that inverses existed for

* Participant referred to Example 3 the Greek letters as well.

* Participant typed (2¢>©I'®X2

C: Try again.

P: Didn’t think so. C, see if just swapping them
makes any sense. It probably won't, but.

* Participant typed f0e->@Q®A
C: Excellent.
P: Okays, it did.

Problem 18 # p#AcC®

P: Has a number symbol, and a number symbol, so I
believe you add a C. C phi C Delta.

* Participant typed # (o #A@Ae>©POA

C: Good.

P: Then you lose everything on that side. And you
should keep this side the same.

* Participant typed # g0 >©PO©A

C: Good.

P: And the number symbol means. Swap, but they’re
the same. Maybe you switch it with a number

symbol. I think you do. rule for # elimination is.
* Participant referred to Example 5

* Participant typed (o >#P#A
C: Excellent.

Guesses at what the right
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Problem 19 v o ->®AOI

P: Okay, umm. A heart means you, something to do  The participant
with the R. Put all, for all hearts putina R, but apparently didn’t

there are no hearts, so. generalize inverting ®s to
* Participant referred to Example 2 vs from inverting ¥s to
* Participant typed foe>®AC@I ®s
C: Try again. '

P: That means put the heart in here.

* Participant typed go<>9AOI
C: Excellent.

Problem 20 p©A—#0

P: Delta, the C means you add a number symbol, the last character, add a
number symbol delta.

* Participant typed o ©A#Ae>#DHA

C: Good.

P: And you just keep it the same.

* Participant typed go>#D#A

C: Excellent.

Problem 21 # p#A0©OT

P: Number symbol, delta, so the number symbol means you add a C, delta,
arrow, C, add a C delta.

* Participant typed # o #A©A>OI' ©A

C: Good.

P: You lose everything else. That side stays.

* Participant typed # go >@I'©A

C: Good.

P: Number symbol, put number symbols in for Cs.

* Participant typed fo¢>#I#A

C: Excellent.

P: Yeah.

Problem 22 © & #POQ

P: Okay, umm. This should be C is swap, right? C, swap the, yeah. Same for the
R, right. No. R you keep the same. Okay the C swaps. Umm, on the right side,
that, then that. Oops.

* Participant referred to Example 6

* Participant typed o >#Q0®

C: Excellent.
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Problem 23 ® p ®T->®Q

P: Okay, R symbol, R, this, second R means you add a heart.

* Participant typed ® g ®Ir eI 'e>@Qwl”

C: Good.

P: Then you lose everything to the right of that symbol. Umm, yeah, always keep
this side the same.

* Participant typed ® o ~>®QwI”

C: Good.

P: And then, the R means you keep everything the same. It means you don’t
switch the R and the heart. No, it means you keep everything the same.

* Participant typed foe>®QeI”
C: Excellent.
P: Yeah.

Problem 24 o vd—®A

P: Okay, phi, the heart means you add a R phi.

* Participant typed o v POP—B®AOP
C: Good.
P: Then you lose everything, keep everything the same on the right.

* Participant typed 0e>®AGP
C: Excellent.

Problem 25 ® 0 ->©@I'CA

P: R means you keep everything the same.
* Participant typed 0e>©I'©A
C: Excellent.

Problem 26 o ®d«s vl

P: Okay, R phi. R means you add a heart phi.
* Participant typed o @DePe> [ 0D

C: Good.

* Participant typed gpe>wlvd

C: Excellent.

Problem 27 © p#Q«>#1"

P: Number symbol means you put a C there. Phi arrow, number symbol, C
omega.
* Participant typed © o#Q082e4I©S2

C: Good.
P: Drop off that stuff.
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* Participant typed © g «—>#I'©S2

C: Good.

P: And the C means you, the C means you swap. The C means you swap, yeah.
The C means you swap the omega and that symbol.

* Participant referred to Example 8

* Participant typed fo—#QOI
C: Excellent.

Problem 28 # o > ©Q0OA

P: A number symbol means you replace Cs with number symbols and vice versa.

* Participant typed (o <>#Q#A
C: Excellent.

Problem 29 pvd-0OI

P: Phi, heart means you add a R. R phi.

* Participant typed o vPO@P—CTIEP
C: Good.
P: And then just put everything.

* Participant typed oe>@I®PD
C: Excellent.

Problem 30 v 0Ol vd

P: Heart, that thing, the C means number symbol.

* Participant typed @ o ©I'#I'«—>w®#I”
C: Good.
P: Now, drop everything, keep everything the same.

* Participant typed @ o> 0 P#
C: Good.
P: And the heart means you replace all hearts with R and vice versa.

* Participant typed (oe>®P#I
C: Excellent.

Problem 31 ®p o vdvA

P: This means replace all hearts with a R.

* Participant typed 2 ¢>®@PBA

C: Try again.

P: Oh, the R you keep the same. No, yeah. R keeps, R you keep the same. I forgot.
* Participant typed o> vdeA
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Information available to both the Syntax(Hint):

Syntax
The problem takes the form of a string of characters. The characters
are selected from the following:

C.®.#w Are the connector symbols
AT.Q ¢ Are the object symbols
. 0 Are special symbols

The < character always comes first.

After the «, either 0, 1, 2, or 3 connector symbols will appear. Next
comes the 42, followed by either 0, 1, or 2 object symbols. Consider

this part 1 of the string (if there are any object symbols after the (2,
they belong to this part).

Part two of the string consists of either one connector and then one
object symbol, or two connectors and then two object symbols.

Goal

Your goal is to make the g character the second symbol of the
string.

A set of rules exist that dictates how you can change the current
character string into a new character string.

Only one rule is applicable for any particular character string.

Hint
The ® and the ¥ symbols, as well as the © and the # symbols, are
associated with one another.
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