
Flipping the winner of a poset game
Adam O. Kalinich
Illinois Math and Science Academy, 1500 Sullivan Road, Aurora, IL 60506, United States

A R T I C L E I N F O A B S T R A C T

Article history:
Received 4 May 2011
Received in revised form 30 September 2011
Accepted 30 September 2011
Available online 15 October 2011
Communicated by J. Torán

Keywords:
Poset games
Computational complexity
Combinatorial game theory

 Partially-ordered set games, also called poset games, are a class of two-player
combinatorial games. The playing field consists of a set of elements, some of which are
greater than other elements. Two players take turns removing an element and all elements
greater than it, and whoever takes the last element wins. Examples of poset games include
Nim and Chomp. We investigate the complexity of computing which player of a poset
game has a winning strategy. We give an inductive procedure that modifies poset games to
change the nim-value which informally captures the winning strategies in the game. For a
generic poset game G, we describe an efficient method for constructing a game G such
that the first player has a winning strategy if and only if the second player has a winning
strategy on G. This solves the long-standing problem of whether this construction can be
done efficiently. This construction also allows us to reduce the class of Boolean formulas
to poset games, establishing a lower bound on the complexity of poset games.

1. Introduction

1.1. Definition of a poset game

 A partially-ordered set consists of a set V of elements
{v1, v2, v3,…}, and an ordering relation . This ordering
relation is reflexive, transitive, and anti-symmetric. It is
possible that for some elements, neither vi vj nor vj vi
holds. A poset game is a two-player game played on a
poset. A move in a poset game consists of choosing an
element vi and removing all elements vj such that vj vi, so
that a smaller poset remains. The two players alternate
moves. If a player cannot move because all elements have
been removed, that player loses.

1.2. Impartial games and nim-values

 Many different kinds of poset games have been
studied by mathematicians. The oldest such game is Nim,
the winning strategy of which was discovered in 1902 [1].
A game of Nim is played on several piles of elements, and
a move consists in taking any number of elements from
any one pile. The player who cannot move loses. Nim
was solved by finding a simple method to determine if
any position was winning or losing. The nim-sum,
denoted by , of two numbers is computed by
representing the numbers in binary and taking the bitwise
parity of the two. In nim, the nim-value of a position is
the nim-sum of the number of elements in each pile. If a
position does not have nim-value 0, elements can be
removed from a pile so that the nim-value is 0. The next
player must change the nim-value to something else, but
then the other player can just change it back to 0.
Therefore, the player who first moves from a position of a
nim-value of 0 can be forced to move from every position

of nim-value 0 reached in the game. The empty position
without any elements left has nim-value 0, so the player
who first moved from a position of nim-value 0 can be
forced to lose. If the nim-sum of the number of elements
in each of the piles is 0, then the game is winning, and if it
is not 0, then it is losing. See [1] for a more detailed
explanation and proof of the winning strategy.
 A pile of x elements in Nim can be seen as an x-tower
in a poset game, where an x-tower is a tower of x vertices
with v1 v2 v3 … vx. Since any game of Nim can be
represented like this, Nim is actually a specific type of
poset game. Other types of poset games include Schuh’s
game of divisors [5], proposed in 1952 by F. Schuh,
played with a number and all its divisors except 1, where a
move consist of taking away a divisor and each of its
multiples. Another example is Chomp, proposed in 1974
by D. Gale [3], played on a rectangular grid with the
upper left square missing, where a move consists of taking
away a square and all squares below and to the right of it.

1.3. Poset games

 The Sprague-Grundy theorem, discovered
independently by Sprague [6] and Grundy [4], states that
impartial games where the last player to move wins are
equivalent to a pile in nim. The nim-value Nim(G) of any
impartial game G is defined recursively as the smallest
non-negative integer for which there does not exist a
move to a game of that nim-value. Since only finite poset
games will be considered, and poset games are impartial
and have last-player-win rules, the Sprague-Grundy
theorem can be applied. By the Sprague-Grundy theorem,
if two poset games, G1 and G2, are put next to each other
to make a new game, then the resulting game has a nim-
value of (1) (2). The second player has a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Mathematics and Science Academy: DigitalCommons@IMSA

https://core.ac.uk/display/233991534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

winning strategy on a poset game G if and only if
() = 0.

2. Constructing G

2.1. Overview of the construction

 Let poset game G have size g. We will describe a
method for construction a game G such that the first
player has a winning strategy if and only if the second
player has a winning strategy on G. Nim (G) does not
need to be computed to construct G. We will add
vertices to construct a game G’ such that Nim(G’), when
expressed in binary, has a 1 in a known digit if and only if
Nim(G) 0. We will use this to construct a game G’’’
with a Nim(G’’’) equal to 2 () , we have
constructed a game G’’’ in which the first player has a
winning strategy if and only if the second player has a
winning strategy on G.

2.2. Lemmas necessary for the construction

 A bottom vertex is a vertex that is less than all other
vertices in the game. The process of adding a bottom
vertex consists of adding a vertex that is defined as less
than all other vertices at the time it is added. If more
vertices are added, they may be defined as less than,
greater than, or incomparable to this vertex.

Lemma 1. Adding a bottom vertex increases the nim-
value of a poset game by 1.

Proof. We will use induction on j, the size of the game.
For the base case, a poset game of size 1 has a nim-value
of 1, and when a bottom vertex is added, the nim-value is
2. For a poset game of size j with a nim-value of k, there
exist moves to games of nim-values 0, 1, 2, 3, …, k – 1,
but no move to a game of nim-value k exists. By the
induction hypothesis, the nim-values of these games
change to 1, 2, 3, 4, …, k when a bottom vertex is added,
since these games all have fewer vertices than the original
game. A move to a zero game exists, by taking away the
bottom vertex. No move to a game of nim-value k + 1
exists, since no game with nim-value k existed before the
bottom vertex was added. Since there are moves to games
of nim-values 0, 1, 2,3, k, but not k + 1, the nim-value has
changed from k to k + 1 by adding a bottom vertex. This
proves the lemma.

Lemma 2. An x-tower has nim-value of x.

Proof. We will use induction on k. A 1-tower has nim-
value of 1. From a k-tower there exist moves to towers of
every size from 0 to k – 1, and by the induction hypothesis
those games have nim-values of every value from 0 to k –
1. Thus, the k-tower has nim-value k, proving the lemma.

 We have two operations for modifying nim-values in
a predictable way. When we add a bottom vertex, we
increase the nim-value by one, so adding x bottom vertices
in sequence to a game G will result in a game with nim-
value of Nim(G) + x. By putting an x-tower next to a
game G, we get a game with a nim-value of Nim(G)
Nim(x-tower) = Nim(G) x. By using the operations

 x and +x in pairs, we can modify positive nim-values
without modifying the nim-value of games with nim-value
0. We will first describe how the process affects games
with non-zero nim-values, and then we will show how it
affects games with nim-value 0.

2.3. Constructing G

 First, we will look at the case where the nim-value is
not zero, and show a construction that flips the winner.
After, we will show that this construction also flips the
winner if the nim-value is zero.

Theorem 1. For any poset game G with g vertices, if
Nim(G) 0, the following procedure will create a game

G with Nim (G) = 0:

1. Set i = 0.
2. While 2i g, add 2i bottom vertices, then put it next to

a 2i-tower, then increment i by 1.
3. Let the resulting graph be G’.
4. Add 2i bottom vertices, and put it next to a 2i-tower to

get G”. Increment i by 1.
5. Put G’ next to G” and a 2i tower to get G.

Proof. The first step of the construction of G is to add
a bottom vertex to G and then to put a 1-tower (a single
vertex) on the side. Then, add 2 bottom vertices and then
a 2-tower to the side. We will keep repeating this process
for powers of 2. Since we are using powers of 2, this only
acts on a single digit at a time, although carrying that
results from the addition could modify digits further to the
left. If we continue this process, then there will always be
a binary digit “1” to the left of the last digit modified
directly. We will show this by examining the step in
which we add 2k and then nim-add 2k to a nim-value
Nim(G). 2k has only one digit in binary, so it is easy to
add and nim-add with it.
 Case 1:

a0b
 + 100000…
 100000…
 = a0b

So if the 2kth digit of Nim(G) is “0”, then there is no
change to Nim(G). The “1” to the left has not been
changed and there is still a “1” to the left.
 Case 2:

a01b

 + 100000…
 100000…
 = a11b

If the 2kth digit of Nim(G) is “1” and there is a “0” to its
immediate left, then that “0” gets changed to a “1”. A
new “1” has been generated to the left.
 Case 3:

a0111…1111b
 + 100000…
 100000…
 = a1000…0001b

If the 2kth digit of Nim(G) is “1” and there is a string of
“1”s of any non-zero length to its immediate left, then that
string of “1”s is changed to a string of “0”s and the “0” to
the left of the string is changed to a “1”. A new “1” has
been generated to the left.
 Because there are only g possible moves, Nim(G) g.
Therefore, when Nim(G) is expressed in binary notation, it
has at most log () + 1 digits. Let the continuation of
this process for log () + 2 total steps result in game
G’ with nim-value Nim(G’). We will have acted on every
digit in the original nim-value, with 2 () being the
last digit that was directly acted on. There still will be a
“1” to the left of the last digit modified directly. This
digit could not have been part of the original nim-value,
and since a new “1” can only be created to the immediate
left of a “1”, there must have been a “1” in the 2 ()
place during some point of the process. If that “1” was
created by case 3, then only “0”s would be acted on from
that point on, so the nim-value would not change
anymore. If that “1” was created by case 2, then it was
created in the last step, and thus the nim-value did not
change after that. So, there is a “1” in the 2 () digit
of (’) place.
 We then construct another copy of G’ using the same
process. With this copy of G’, add 2 () bottom
vertices and then put a 2 () -tower on the side, and
let the resulting game be G”. Then, we put G’ next to G”
to make game G’’’.

(’) = 01
(”) = 11
() = () () = 1000… = 2 ()

(”) only differs from (’) in a single, known
digit, so when they are nim-added, the resulting game

(’’’) has a nim-value of 2 () . The final step is
to put a 2 () -tower next to ’’’, resulting in game
’’’’ that has nim-value of 0 if the original game was

winning.

 Now, we will look at how the same exact process
would affect a game with nim-value zero.

Theorem 2. For any poset game G, if () = 0, the
procedure described earlier will create a game with

() 0.

Proof. Since adding a number to 0 and then nim-adding
the same number cancel each other out, nearly every step
had no effect on the nim-value.

() = () = () = 0

() = () () = 0 0 = 0
() = () + 2 () = 2 ()

We have found that if () was positive, (’’’’) is
0, and if () was 0, (’’’’) is positive. The first
player had a winning strategy for ’’’’ if he did not have a
winning strategy for G, and he will not have a winning
strategy for ’’’’ if he did have a winning strategy for G.
Therefore, ’’’’ = .

 The relation between any two vertices in the graph
can easily be computed in polylogarithmic time given the
edges of the old graph. If one vertex was added as a
bottom vertex, it can be checked if the other vertex was
added before it or not. If a vertex was added as part of a
side tower, it can easily be checked whether the other
vertex is higher in the tower. If a vertex was in the
original frame, then the other vertex can only be greater
than it if it was greater in the original game.

Lemma 3. The size of G is only a linear blowup from
G.

Proof.

() = () + 2 2
()

 = + 2 () 2 5
() = () + 2 2 ()

 5 + 8 = 13
() = () + ()

 5 + 13 = 18
() = () + 2 ()

 18 + 8 = 26

 This shows that it is possible to construct the NOT of
a game with only a linear blowup.

2. Reduction of Boolean formulas to poset games

3.1. Constructing OR and AND gates

 We will now show how to construct of two
games and with only a linear blowup. Computing the
OR of poset games is a folklore result, but we give the

construction and proof for completeness. Given Game
with elements , , , … and game B with elements
, , , … , game has elements , , , … ,
, , , … and the additional set of relations .

 If the first player can win , he plays the winning
move in game . disappears, so only the remainder of
game is being played, and since the first player just
played the winning move there, he will win. If the first
player cannot win game , but he can win game , he can
play the winning move in game . Both players would
try to avoid playing in game since any move there is
losing. So, they both play in game , trying to force the
other to make the first move in . Since the first player
can win game , he can force the second player to play
first in game , so will be able to win. If both game and
game are losing, then the second player can force the
first player to make the first move in , so the first player
will not be able to win. We see that the first player will
win this game if and only if he can win game or game

.
 It is possible to construct an OR of two games and a
NOT of a game with only a linear blowup, and since
() = , we can construct the AND of
two games with only a linear blowup by using ORs and
NOTs. Before our results, there was no known efficient
procedure for computing the AND of poset games.

3.2. Reducing NC1 circuits to poset games

 Given a Boolean formula, we can represent false
variables with a poset game of two isolated vertices, a
game which is losing for the first player. We can
represent true variables with a single-vertex game, which
is winning for the first player. By using the constructions
we have shown, we can model Boolean circuits with
bounded fan-in. The result of a Boolean formula will be a
single poset game, which will be a first-player win if and
only if the formula evaluates to true. If the Boolean
formula is one that can be evaluated by log-depth circuits,
the poset game it is reduced to will have polynomial-size.

This shows that finding the winning player of a poset
game is an NC1-hard problem.

4. Future work

 The gap between NC1 –hard and PSPACE is very
large, and closing the gap is a possible topic for future
work. The method of modifying poset games used in this
paper might be used to reduce to and from other problems.
Results by Byrnes [2] suggest that poset games may not
be PSPACE-complete, and could in fact be far easier.
Expanding periodicity theorems to multiple rows of
chomp might lead to a way to calculate the nim-value of a
generic poset game.

Acknowledgements

 This work would not have happened without the
guidance and supervision of Dr. Lance Fortnow. He
introduced me to the problem and advised me in preparing
this paper. I would also like to thank Dr. Robert Sloan
and Dr. Gyurgy Turan for introducing me to Professor
Fortnow, and Steve Fenner for his useful comments on
this paper. I am grateful to my past and current teachers,
to MathPath and Canada/USA Mathcamp, and to the
Illinois Mathematics and Science Academy’s SIR
program. Professor Fortnow is partially supported by
NSF grants CCF-0829754 and DMS-0652521.

References

[1] C.L. Bouton, Nim, a game with a complete mathematical theory, Annals

of Mathematics 3 (1) (1901) 35-39.
[2] S. Byrnes, Poset game periodicity, INTEGERS: The Electronic Journal of

Combinatorial Number Theory 3 (2003).
[3] D. Gale, A curious nim-type game, Amer. Math. Monthly 81 (1974) 876-

879.
[4] P.M. Grundy, Mathematics and games, Eureka (University of Cambridge

Magazine) 2 (1939) 6-8.
[5] F. Schuh, Spel van delers (game of divisors), Nieuw Tijdschrift voor

Wiskunde 39 (2003) 299.
[6] R.P. Sprague, Uber mathematische kampfspiele, Tohoku Mathematical

Journal, First Series 41 (1935) 438-444.

