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 Partially-ordered set games, also called poset games, are a class of two-player 
combinatorial games.  The playing field consists of a set of elements, some of which are 
greater than other elements.  Two players take turns removing an element and all elements 
greater than it, and whoever takes the last element wins.  Examples of poset games include 
Nim and Chomp.  We investigate the complexity of computing which player of a poset 
game has a winning strategy.  We give an inductive procedure that modifies poset games to 
change the nim-value which informally captures the winning strategies in the game.  For a 
generic poset game G, we describe an efficient method for constructing a game G such 
that the first player has a winning strategy if and only if the second player has a winning 
strategy on G.  This solves the long-standing problem of whether this construction can be 
done efficiently.  This construction also allows us to reduce the class of Boolean formulas 
to poset games, establishing a lower bound on the complexity of poset games. 

 
1.  Introduction 
 
1.1. Definition of a poset game 
 
 A partially-ordered set consists of a set V of elements 
{v1, v2, v3,…}, and an ordering relation .  This ordering 
relation is reflexive, transitive, and anti-symmetric.  It is 
possible that for some elements, neither vi vj nor vj  vi 
holds.  A poset game is a two-player game played on a 
poset.  A move in a poset game consists of choosing an 
element vi and removing all elements vj such that vj  vi, so 
that a smaller poset remains.  The two players alternate 
moves.  If a player cannot move because all elements have 
been removed, that player loses. 
 
1.2. Impartial games and nim-values 
 
 Many different kinds of poset games have been 
studied by mathematicians.  The oldest such game is Nim, 
the winning strategy of which was discovered in 1902 [1].  
A game of Nim is played on several piles of elements, and 
a move consists in taking any number of elements from 
any one pile.  The player who cannot move loses.  Nim 
was solved by finding a simple method to determine if 
any position was winning or losing.  The nim-sum, 
denoted by , of two numbers is computed by 
representing the numbers in binary and taking the bitwise 
parity of the two.  In nim, the nim-value of a position is 
the nim-sum of the number of elements in each pile.  If a 
position does not have nim-value 0, elements can be 
removed from a pile so that the nim-value is 0.  The next 
player must change the nim-value to something else, but 
then the other player can just change it back to 0.  
Therefore, the player who first moves from a position of a 
nim-value of 0 can be forced to move from every position 

of nim-value 0 reached in the game.  The empty position 
without any elements left has nim-value 0, so the player 
who first moved from a position of nim-value 0 can be 
forced to lose.  If the nim-sum of the number of elements 
in each of the piles is 0, then the game is winning, and if it 
is not 0, then it is losing.  See [1] for a more detailed 
explanation and proof of the winning strategy. 
 A pile of x elements in Nim can be seen as an x-tower 
in a poset game, where an x-tower is a tower of x vertices 
with v1 v2  v3  …  vx.  Since any game of Nim can be 
represented like this, Nim is actually a specific type of 
poset game.  Other types of poset games include Schuh’s 
game of divisors [5], proposed in 1952 by F. Schuh, 
played with a number and all its divisors except 1, where a 
move consist of taking away a divisor and each of its 
multiples.  Another example is Chomp, proposed in 1974 
by D. Gale [3], played on a rectangular grid with the 
upper left square missing, where a move consists of taking 
away a square and all squares below and to the right of it. 
 
1.3. Poset games 
 
 The Sprague-Grundy theorem, discovered 
independently by Sprague [6] and Grundy [4], states that 
impartial games where the last player to move wins are 
equivalent to a pile in nim.  The nim-value Nim(G) of any 
impartial game G is defined recursively as the smallest 
non-negative integer for which there does not exist a 
move to a game of that nim-value.  Since only finite poset 
games will be considered, and poset games are impartial 
and have last-player-win rules, the Sprague-Grundy 
theorem can be applied.  By the Sprague-Grundy theorem, 
if two poset games, G1 and G2, are put next to each other 
to make a new game, then the resulting game has a nim-
value of ( 1) ( 2).  The second player has a 
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winning strategy on a poset game G if and only if 
( )   =   0. 

 
2. Constructing G 
 
2.1. Overview of the construction 
 
 Let poset game G have size g.  We will describe a 
method for construction a game G such that the first 
player has a winning strategy if and only if the second 
player has a winning strategy on G.  Nim (G) does not 
need to be computed to construct G.  We will add 
vertices to construct a game G’ such that Nim(G’), when 
expressed in binary, has a 1 in a known digit if and only if 
Nim(G)  0.  We will use this to construct a game G’’’ 
with a Nim(G’’’) equal to 2 ( ) , we have 
constructed a game G’’’ in which the first player has a 
winning strategy if and only if the second player has a 
winning strategy on G. 
 
2.2. Lemmas necessary for the construction 
 
 A bottom vertex is a vertex that is less than all other 
vertices in the game.  The process of adding a bottom 
vertex consists of adding a vertex that is defined as less 
than all other vertices at the time it is added.  If more 
vertices are added, they may be defined as less than, 
greater than, or incomparable to this vertex. 
 
Lemma 1. Adding a bottom vertex increases the nim-
value of a poset game by 1. 
 
Proof. We will use induction on j, the size of the game.  
For the base case, a poset game of size 1 has a nim-value 
of 1, and when a bottom vertex is added, the nim-value is 
2.  For a poset game of size j with a nim-value of k, there 
exist moves to games of nim-values 0, 1, 2, 3, …, k – 1, 
but no move to a game of nim-value k exists.  By the 
induction hypothesis, the nim-values of these games 
change to 1, 2, 3, 4, …, k when a bottom vertex is added, 
since these games all have fewer vertices than the original 
game.  A move to a zero game exists, by taking away the 
bottom vertex.  No move to a game of nim-value k + 1 
exists, since no game with nim-value k existed before the 
bottom vertex was added.  Since there are moves to games 
of nim-values 0, 1, 2,3, k, but not k + 1, the nim-value has 
changed from k to k + 1 by adding a bottom vertex.  This 
proves the lemma.   
 
Lemma 2. An x-tower has nim-value of x. 
 
Proof. We will use induction on k.  A 1-tower has nim-
value of 1.  From a k-tower there exist moves to towers of 
every size from 0 to k – 1, and by the induction hypothesis 
those games have nim-values of every value from 0 to k – 
1.  Thus, the k-tower has nim-value k, proving the lemma.  

 
 

 We have two operations for modifying nim-values in 
a predictable way.  When we add a bottom vertex, we 
increase the nim-value by one, so adding x bottom vertices 
in sequence to a game G will result in a game with nim-
value of Nim(G) + x.  By putting an x-tower next to a 
game G, we get a game with a nim-value of Nim(G)  
Nim(x-tower) = Nim(G)  x.  By using the operations 

 x and +x in pairs, we can modify positive nim-values 
without modifying the nim-value of games with nim-value 
0.  We will first describe how the process affects games 
with non-zero nim-values, and then we will show how it 
affects games with nim-value 0. 
 
2.3. Constructing G 
 
 First, we will look at the case where the nim-value is 
not zero, and show a construction that flips the winner.  
After, we will show that this construction also flips the 
winner if the nim-value is zero. 
 
Theorem 1. For any poset game G with g vertices, if 
Nim(G) 0, the following procedure will create a game 

G with Nim ( G) = 0: 
 
1. Set i = 0. 
2. While 2i  g, add 2i bottom vertices, then put it next to 

a 2i-tower, then increment i by 1. 
3. Let the resulting graph be G’. 
4. Add 2i bottom vertices, and put it next to a 2i-tower to 

get G”. Increment i by 1. 
5. Put G’ next to G” and a 2i tower to get G. 

 
Proof.  The first step of the construction of G is to add 
a bottom vertex to G and then to put a 1-tower (a single 
vertex) on the side.  Then, add 2 bottom vertices and then 
a 2-tower to the side.  We will keep repeating this process 
for powers of 2.  Since we are using powers of 2, this only 
acts on a single digit at a time, although carrying that 
results from the addition could modify digits further to the 
left.  If we continue this process, then there will always be 
a binary digit “1” to the left of the last digit modified 
directly.  We will show this by examining the step in 
which we add  2k  and then nim-add  2k  to a nim-value 
Nim(G).  2k has only one digit in binary, so it is easy to 
add and nim-add with it. 
 Case 1: 
 
a0b 
 + 100000… 
   100000… 
 = a0b 

So if the 2kth digit of Nim(G) is “0”, then there is no 
change to Nim(G).  The “1” to the left has not been 
changed and there is still a “1” to the left. 
 Case 2: 
 
a01b 



 + 100000… 
  100000… 
 = a11b 

If the 2kth digit of Nim(G) is “1” and there is a “0” to its 
immediate left, then that “0” gets changed to a “1”.  A 
new “1” has been generated to the left. 
 Case 3: 
 
a0111…1111b 
 + 100000… 
  100000… 
 = a1000…0001b 

If the 2kth digit of Nim(G) is “1” and there is a string of 
“1”s of any non-zero length to its immediate left, then that 
string of “1”s is changed to a string of “0”s and the “0” to 
the left of the string is changed to a “1”.  A new “1” has 
been generated to the left. 
 Because there are only g possible moves, Nim(G)  g.  
Therefore, when Nim(G) is expressed in binary notation, it 
has at most log ( ) + 1 digits.  Let the continuation of 
this process for log ( ) + 2 total steps result in game 
G’ with nim-value Nim(G’).  We will have acted on every 
digit in the original nim-value, with 2 ( )  being the 
last digit that was directly acted on.  There still will be a 
“1” to the left of the last digit modified directly.  This 
digit could not have been part of the original nim-value, 
and since a new “1” can only be created to the immediate 
left of a “1”, there must have been a “1” in the 2 ( )  
place during some point of the process.  If that “1” was 
created by case 3, then only “0”s would be acted on from 
that point on, so the nim-value would not change 
anymore.  If that “1” was created by case 2, then it was 
created in the last step, and thus the nim-value did not 
change after that.  So, there is a “1” in the 2 ( )  digit 
of ( ’) place. 
 We then construct another copy of G’ using the same 
process.  With this copy of G’, add 2 ( )  bottom 
vertices and then put a 2 ( ) -tower on the side, and 
let the resulting game be G”.  Then, we put G’ next to G” 
to make game G’’’. 

( ’)   =   01   
( ”)   =   11   
( ) = ( ) ( ) = 1000… = 2 ( )  

( ”) only differs from ( ’) in a single, known 
digit, so when they are nim-added, the resulting game 

( ’’’) has a nim-value of 2 ( ) .  The final step is 
to put a 2 ( ) -tower next to ’’’, resulting in game 
’’’’  that has nim-value of 0 if the original game was 

winning.   
 

 Now, we will look at how the same exact process 
would affect a game with nim-value zero. 
 
Theorem 2. For any poset game G, if ( ) = 0, the 
procedure described earlier will create a game  with 

( ) 0. 
 
Proof. Since adding a number to 0 and then nim-adding 
the same number cancel each other out, nearly every step 
had no effect on the nim-value. 

( ) = ( ) = ( ) = 0 

( ) = ( ) ( ) = 0 0 = 0 
( ) = ( ) + 2 ( ) = 2 ( )  

We have found that if ( ) was positive, ( ’’’’) is 
0, and if ( ) was 0, ( ’’’’) is positive.  The first 
player had a winning strategy for ’’’’  if he did not have a 
winning strategy for G, and he will not have a winning 
strategy for ’’’’ if he did have a winning strategy for G.  
Therefore, ’’’’   =    .   
 
 The relation between any two vertices in the graph 
can easily be computed in polylogarithmic time given the 
edges of the old graph.  If one vertex was added as a 
bottom vertex, it can be checked if the other vertex was 
added before it or not.  If a vertex was added as part of a 
side tower, it can easily be checked whether the other 
vertex is higher in the tower.  If a vertex was in the 
original frame, then the other vertex can only be greater 
than it if it was greater in the original game. 
 
Lemma 3. The size of G is only a linear blowup from 
G. 
 
Proof. 

( ) = ( ) + 2 2
( )

 

 = + 2 ( ) 2 5  
( ) = ( ) + 2 2 ( )  

 5 + 8 = 13  
( ) = ( ) + ( ) 

 5 + 13 = 18  
( ) = ( ) + 2 ( )  

 18 + 8 = 26  

 This shows that it is possible to construct the NOT of 
a game with only a linear blowup.    
 
2. Reduction of Boolean formulas to poset games 
 
3.1. Constructing OR and AND gates 
 
 We will now show how to construct  of two 
games  and  with only a linear blowup.  Computing the 
OR of poset games is a folklore result, but we give the 



construction and proof for completeness.  Given Game  
with elements , , , …  and game B with elements 
, , , … , game  has elements , , , … , 
, , , …  and the additional set of relations . 

 If the first player can win , he plays the winning 
move in game .   disappears, so only the remainder of 
game  is being played, and since the first player just 
played the winning move there, he will win.  If the first 
player cannot win game , but he can win game , he can 
play the winning move in game .  Both players would 
try to avoid playing in game  since any move there is 
losing.  So, they both play in game , trying to force the 
other to make the first move in .  Since the first player 
can win game , he can force the second player to play 
first in game , so will be able to win.  If both game  and 
game  are losing, then the second player can force the 
first player to make the first move in , so the first player 
will not be able to win.  We see that the first player will 
win this game if and only if he can win game  or game 

. 
 It is possible to construct an OR of two games and a 
NOT of a game with only a linear blowup, and since 
( ) = , we can construct the AND of 
two games with only a linear blowup by using ORs and 
NOTs.  Before our results, there was no known efficient 
procedure for computing the AND of poset games. 
 
3.2. Reducing NC1 circuits to poset games 
 
 Given a Boolean formula, we can represent false 
variables with a poset game of two isolated vertices, a 
game which is losing for the first player.  We can 
represent true variables with a single-vertex game, which 
is winning for the first player.  By using the constructions 
we have shown, we can model Boolean circuits with 
bounded fan-in.  The result of a Boolean formula will be a 
single poset game, which will be a first-player win if and 
only if the formula evaluates to true.  If the Boolean 
formula is one that can be evaluated by log-depth circuits, 
the poset game it is reduced to will have polynomial-size.  

This shows that finding the winning player of a poset 
game is an NC1-hard problem. 
 
4. Future work 
 
 The gap between NC1 –hard and PSPACE is very 
large, and closing the gap is a possible topic for future 
work.  The method of modifying poset games used in this 
paper might be used to reduce to and from other problems.  
Results by Byrnes [2] suggest that poset games may not 
be PSPACE-complete, and could in fact be far easier.  
Expanding periodicity theorems to multiple rows of 
chomp might lead to a way to calculate the nim-value of a 
generic poset game. 
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