\qquad
Upper Bounds

Consider $\sum a_{n}$ with $a_{n} \geq 0$.
Then $\left\{S_{n}\right\}$ is a non-decreasing sequence. Why?

If we consider this sequence $\left\{S_{n}\right\}$, where we have

$$
\begin{array}{lllllll}
S_{1} & S_{2} & S_{3} & \square & S_{n} & S_{n+1}
\end{array} \square,
$$

either this sequence will increase without bound OR it will be bounded above.
If we can find a number M such that if $S_{n} \leq M$ for all n, then we call M an upper bound of the sequence.

If a sequence is non-decreasing and it is bounded above, then the sequence will converge.

Example: Let $S_{n}=\frac{2 n}{3 n+1}$.
Find an upper bound of the sequence $\left\{S_{n}\right\}$.
State three other upper bounds for this sequence.
Which of these do you think is the most significant?
Why? In other words, what makes it special?

Theorem: Let $\left\{S_{n}\right\}$ be a non-decreasing sequence.
Either (1) If an upper bound exists, then there is a Least Upper Bound L and the sequence converges to L.
Or (2) The sequence diverges to $+\infty$. (This means the S_{n} eventually exceeds every given finite M.)

Now consider the harmonic series, ${ }_{n=1} \frac{1}{n}$. While the values of a_{n} approach 0 as n increases, it is not as obvious whether the series converges or diverges. Use technology to plot some terms of the sequence $\left\{S_{n}\right\}$. Any guesses about the convergence?

Theorem: The harmonic series diverges.
Proof: We need to show that the sequence of partial sums $\left\{S_{n}\right\}$ increases without bound. This can be done by showing that the value of S_{n} can be made arbitrarily large by taking an appropriate value of n.

Consider the following:

$$
\begin{aligned}
& S_{2}=1+\frac{1}{2}>\frac{1}{2}+\frac{1}{2}=\frac{2}{2} \\
& S_{4}=S_{2}+\ldots+\ldots S_{2}+\ldots+\ldots=S_{2}+\frac{1}{2}>\frac{3}{2} \\
& S_{8}=S_{4}+\ldots+{ }_{C}+\ldots S_{4}+\ldots+Z_{+}^{+}+\ldots+ \\
& =S_{4}+\frac{1}{2}>\frac{3}{2}+\frac{1}{2}=\frac{4}{2} \\
& S_{16}=\ldots>\ldots . . . \\
& \begin{array}{l}
\vdots \\
\vdots
\end{array} \\
& S_{2^{n}}>
\end{aligned}
$$

Since this last expression (written in the blank above) is unbounded as $n \rightarrow \infty$, and since $S_{2 n}$ will always be larger, the sequence of partial sums increases without bound. Hence, the harmonic series diverges.

