Upper Bounds

Consider $\sum a_n$ with $a_n \ge 0$.

Then $\{S_n\}$ is a non-decreasing sequence. Why?

If we consider this sequence $\{S_n\}$, where we have

either this sequence will increase without bound OR it will be bounded above.

If we can find a number M such that if $S_n \le M$ for all n, then we call M an upper bound of the sequence.

If a sequence is non-decreasing and it is bounded above, then the sequence will converge.

Example: Let $S_n = \frac{2n}{3n+1}$.

Find an upper bound of the sequence $\{S_n\}$.

State three other upper bounds for this sequence.

Which of these do you think is the most significant?

Why? In other words, what makes it special?

Theorem: Let $\{S_n\}$ be a non-decreasing sequence.

Either (1) If an upper bound exists, then there is a Least Upper Bound L and the sequence converges to L.

Or (2) The sequence diverges to $+\infty$. (This means the S_n eventually exceeds every given finite M.)

Now consider the harmonic series, $\overset{\neq}{\underset{n=1}{\circ}} \frac{1}{n}$. While the values of a_n approach 0 as n increases, it is not as obvious whether the series converges or diverges. Use technology to plot some terms of the sequence $\{S_n\}$. Any guesses about the convergence?

Theorem: The harmonic series diverges.

Proof: We need to show that the sequence of partial sums $\{S_n\}$ increases without bound. This can be done by showing that the value of S_n can be made arbitrarily large by taking an appropriate value of n.

Consider the following:

$$S_2 = 1 + \frac{1}{2} > \frac{1}{2} + \frac{1}{2} = \frac{2}{2}$$

$$S_4 = S_2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} > S_2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = S_2 + \frac{1}{2} > \frac{3}{2}$$

$$= S_4 + \frac{1}{2} > \frac{3}{2} + \frac{1}{2} = \frac{4}{2}$$

$$S_{16} = \ldots > \ldots = S_8 + \underline{\hspace{1cm}} > \underline{\hspace{1cm}}$$

:

$$S_{2n} > \underline{\hspace{1cm}}$$

Since this last expression (written in the blank above) is unbounded as $n \to \infty$, and since S_{2n} will always be larger, the sequence of partial sums increases without bound. Hence, the harmonic series diverges.