Alternative Energy February 27, 2015

Mark Carlson, Ph. D.
Peter Clancy, Ph. D.

mcarlson@imsa.edu, 630-907-5975
 pclancy@imsa.edu, 630-907-5986

- IMSA offers an "Engineering" class—a one-semester, project-based class, in which students apply concepts and principles of science in constructing their projects.
- One of the projects traditionally required for all students was a wind turbine project. Students optimized the design with the goal of producing maximum sustained power.

Goal

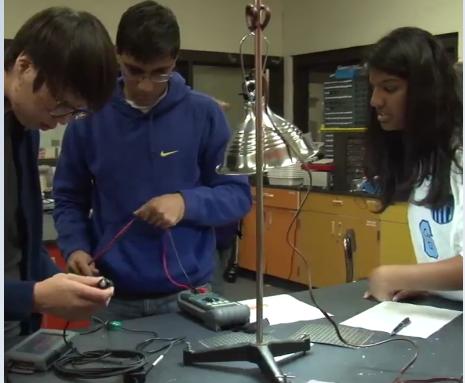
Expand the wind-turbine project to an alternative energy project which addresses the four Engineering NGSS standards.

How did we do this?

- Students divided into 6 groups of 3-4 students
- 3 technologies available: wind; solar-electrical; microbial fuel cells (MFC)—2 groups per technology
- Time of project expanded from 2 weeks (for old wind unit) to 4-1/2 weeks.
- Students:
 - 1) learn basics of all 3 technologies;
 - 2) learn the principles of their technology;
 - **3**) create an alpha-version;
 - 4) design and build a scale-up beta version;
 - 5) measure the power production for both alpha and beta;
 - **6**) present and report their findings.

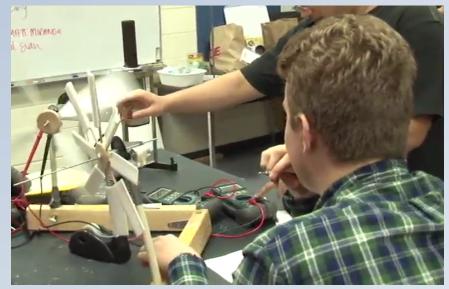
NGSS Engineering Standards

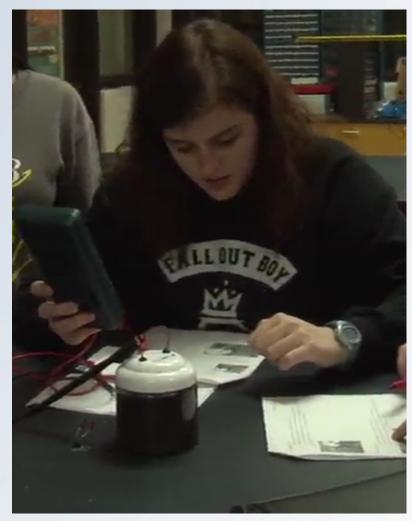
HS-ETS1-1 (Analysis)	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
HS-ETS1-2 (Design)	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
HS-ETS1-3 (Evaluation)	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
HS-ETS1-4 (Modelling)	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.


Activities: Preliminary

Activity	<u>Approximate Class</u> <u>Time (hrs)</u>	Standard Addressed
Lesson: Energy introduction; issues; electrical circuits and power; solar, wind, MFC technology basics	1	Analysis
Exploration Stations: Wind turbine; electrical generator; hydrogen spectrum; solar panels; galvanic cell, MFC	1	Analysis, Design
Discussion and development of evaluation rubric	0.5	Evaluation

Activities: Preliminary





J[⊥][⊥]**IMS**A[®]

Activities: Preliminary

Activities: Alpha

Activity	Approximate Class <u>Time (hrs)</u>	Standard Addressed
Alpha build: students build small/basic model and experiment with a few parameters to inform beta design and optimization.	6	Analysis, Design, Evaluation

Activities: Beta

Activity	Approximate Class Time (hrs)	Standard Addressed
Beta Design: Students lay out their plans for a scaled-up system. They report on performance and "lessons learned" from alpha.	0 (assignment)	Analysis, Design, Evaluation
Beta Build/Test: Students construct scaled-up beta system; optimization continues; energy production measurements	8	Analysis, Design, Evaluation
Final Presentations: students present results, further scale-up calculations, and environmental impact assessment.	2	Analysis, Design, Evaluation, Modelling
Final Report: students assess performance and efficiency; report on CO2 savings; assess issues of scale-up	0 (individual assignment)	Analysis, Design, Evaluation, Modelling

Student Evaluation Criteria

Students tasked to create a rubric
 Small group brainstorming
 Listing of top criteria
 Grouping into manageable categories
 Building consensus on category weights

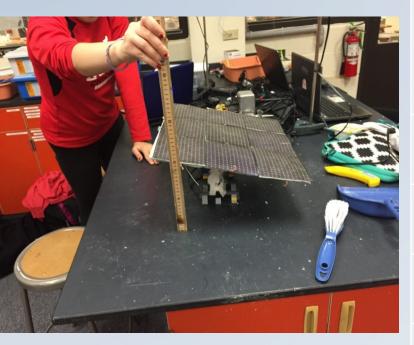
Student Evaluation Criteria

Example:

Performance 30%
Improvement 25%
Health and Safety 15%
Nuisance and Aesthetics 15%
Marketability & Global Impact 15%

Performance Evaluation

How should success be measured?
 Technologies have different capabilities.
 What would constitute a fair comparison?
 How should efficiency be defined?
 What is most valued?
 What are the real costs?


Microbial Fuel Cell Data

Group	Beta Energy 10 min (J)	Beta Notes	Alpha Energy 10 minutes (J)	Alpha Notes
1	0.642	2 MudWatts + 1 shoebox	0.295	1 MudWatt
2	0.048	2 MudWatts + 1 shoebox	0.077	1 MudWatt
3	0.003	2 MudWatts + 1 shoebox	0.023	1 MudWatt
4	2.310	2 MudWatts + 1 shoebox	0.003	1 MudWatt
Average V=570mV; Average R=1230 ohm; Average (Voltage) Efficiency = 26%				
r≞IMSA°				

Solar Data

Group	Beta Energy 10 min (J)	Beta Notes	Alpha Energy 10 minutes (J)	Alpha Notes
1	93	0.25 sq meters	11	2 Panels
2	265	0.25 sq meters	14	2 Panels
3	57	0.25 sq meters	14	2 Panels
4	345	0.25 sq meters	8	2 Panels

Average V=2.9V; Average I=89 mA; R=33 ohm; Average Efficiency = 16%

J[⊥][⊥]**IMSA**[®]

Wind Data

Group	Beta Energy 10 min (J)	Beta Notes	Alpha Energy 10 minutes (J)	Alpha Notes
1	230	0.25 sq meters	30	1 mill; 1 generator
2	94	0.25 sq meters	48	1 mill; 1 generator
3	39	0.25 sq meters	19	1 mill; 1 generator
4	49	0.25 sq meters	38	1 mill; 1 generator

Average V=2.9V; Average I=580 mA; R = 330hm; Average efficiency = 2%

Fall Semester—Self Assessment

- What worked well
 - Exploration stations
 - Beta design and build
 - Final report
- What didn't work
 - Alpha presentations and rubric development
 - Alpha testing was an extended exploration—could use focusing questions developed by groups

Revisions & Future Plans Revisions from F14 to S15 Add Discussion of Motivation Eliminate Project Proposal Add Discussion of Criteria and Rubric Alpha Prototype Report from Oral to Written What could be improved (F15 and beyond) Add parallel vs series exploration station Alpha phase—have groups develop focusing questions Optimizing load for all technologies Add summative discussion

, **≝IMSA**°

Materials

Wind

- Wind turbine kit
- Styrofoam meat trays

Solar

- Solar panels
- Copper solder wick ribbon
- Microbial fuel cells
 - Microbial fuel cell kit
 - Electrode material?
 - Potting soil or topsoil
 - Titanium wire
 - 6 quart "Shoebox" storage totes

Tools/Equipment

- Cutting blade (Exacto Knife)
- Hot glue guns
- Blower
- Grow lights with metal lamp reflector
- Pyranometer (to measure radiant energy density)
- Ring stand
- Lego Mindstorm (optional)
- LoggerPro current/voltage sensors OR multimeter
- Resistors
- Nutrients for MFC (sugar, corn syrup, GatorAde, etc.)

