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TOTAL ACQUISITION IN GRAPHS∗

TIMOTHY D. LESAULNIER† , NOAH PRINCE‡ , PAUL S. WENGER§ ,
DOUGLAS B. WEST¶, AND PRATIK WORAH‖

Abstract. Let G be a weighted graph in which each vertex initially has weight 1. A total
acquisition move transfers all the weight from a vertex u to a neighboring vertex v, under the
condition that before the move the weight on v is at least as large as the weight on u. The (total)
acquisition number of G, written at(G), is the minimum size of the set of vertices with positive weight
after a sequence of total acquisition moves. Among connected n-vertex graphs, at(G) is maximized
by trees. The maximum is Θ(

√
n lgn) for trees with diameter 4 or 5. It is �(n+ 1)/3� for trees

with diameter between 6 and 2
3
(n + 1), and it is �(2n − 1−D)/4� for trees with diameter D when

2
3
(n + 1) ≤ D ≤ n − 1. We characterize trees with acquisition number 1, which permits testing

at(G) ≤ k in time O(nk+2) on trees. If G �= C5, then min{at(G), at(G)} = 1. If G has diameter 2,
then at(G) ≤ 32 lnn ln lnn; we conjecture a constant upper bound. Indeed, at(G) = 1 when G has
diameter 2 and no 4-cycle, except for four graphs with acquisition number 2. Deleting one edge of
an n-vertex graph cannot increase at by more than 6.84

√
n, but we construct an n-vertex tree with

an edge whose deletion increases it by more than 1
2

√
n. We also obtain multiplicative upper bounds

under products.

Key words. Acquisition, total Acquisition, weighted graph

AMS subject classifications. 05C05, 05C22

DOI. 10.1137/110856186

1. Introduction. Consider an army dispersed among many cities. We wish to
consolidate the troops. Troops move only to neighboring occupied cities, and the
number of troops in a move cannot exceed the number already at the destination.
Can the troops all move to one city?

In another scenario, each person in a society starts with one vote. Person A may
conclude that friend B who has acquired at least as many votes as A has a better
chance to win. In such a situation, A can transfer all his votes to B. Is it possible for
the society to elect a leader by one person acquiring all the votes?

We model such situations using graphs with vertex weights. Initially, each vertex
has weight 1; let 1 denote this initial assignment. An acquisition move transfers some
weight from a vertex u to a neighboring vertex v, provided that before the move the
weight on v is at least the weight on u. The total weight is preserved. We want to
concentrate the weight on the fewest vertices. Acquisition moves can be made until
the set of vertices with positive weight is an independent set; the final independent
set is the residual set.
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Lampert and Slater [5] introduced acquisition in graphs, using acquisition moves
that transfer all the weight from a vertex to a neighbor. The total acquisition number,
written at(G), is the minimum possible size of the residual set after such acquisition
moves (starting from distribution 1). We refer to a succession of total acquisition
moves as an acquisition protocol. An acquisition protocol A on a graph G is optimal
if it starts with the weight assignment 1 and leaves positive weight on only at(G)
vertices.

Allowing flexibility in the amount of weight moved leads to variations. When
an acquisition move may transfer any integer portion of the weight on a vertex, the
minimum size of the residual set is the unit acquisition number au(G). When it may
transfer any positive amount of the weight on a vertex, the minimum size of the
residual set is the fractional acquisition number af(G). For results on au and af , see
[9, 12].

Lampert and Slater [5] proved that at(G) ≤ �(n+ 1)/3� when G is a connected
n-vertex graph (for n > 1), and that this is sharp. They also observed that a vertex
v cannot acquire weight more than 2d(v) and that no weight from u can reach v if the
distance between them is greater than d(v). Here dG(v) denotes the degree of vertex
v in a graph G, shortened to d(v) when G is understood. Slater and Wang [11] proved
that testing at(G) = 1 is NP-complete, and they provided a linear-time algorithm to
compute at(G) when G is a caterpillar.

Later, Slater and Wang [10] introduced “competitive acquisition”: a consolidator
C and an adversary A alternately perform acquisition moves until no more are possible.
The consolidator wants the residual set to be small; the adversary wants it large. The
competitive acquisition number is the resulting size when C moves first and both play
optimally. Slater and Wang [10] computed this for the n-vertex path Pn for all n.
The problem is studied in [7] for trees and complete bipartite graphs, under the name
game acquisition.

In this paper we study only total acquisition, so we abbreviate “total acquisition
number” to “acquisition number” but maintain the notation at. Deleting edges cannot
reduce at, so at is maximized among n-vertex connected graphs by trees. In section 2,
we present a family of trees showing that for k ≥ 3 and D ≥ 6, the largest acquisition
number among n-vertex graphs can be achieved by a tree with maximum degree k
and diameter D whenever n is between 3(k + D/2) − 10 and about 3(k − 2)�D/4�;
the lower bound is equivalent to D ≤ 2

3 (n+ 1). In this range, the family of extremal
trees is much richer than the single n-vertex example given in [5]. Actually, our
construction generates all n-vertex graphs with acquisition number (n + 1)/3 when
n ≡ 2 mod 3 (except for the 5-cycle); this is proved in [6]. For larger diameter, with
2
3 (n+ 1) ≤ D ≤ n− 1, we show that the maximum of at is �(2n− 1−D)/4�.

Trees with diameter less than 6 have smaller acquisition numbers. Trivially,
at(T ) = 1 when T is a tree with diameter at most 3. For n-vertex trees with di-
ameter 4 and diameter 5, we show in section 3 that the maximum is Θ(

√
n lgn),

where lg denotes log2. In fact, the maximum among n-vertex trees with diameter 4
is between

√
n lgn and

√
.5n lgn. We also characterize trees T for which at(T ) = 1,

which allows us to construct a polynomial-time algorithm to test at(T ) ≤ k for any
fixed positive integer k.

In section 4, we give sufficient conditions for a graph to have acquisition number
1. We show that if G 
= C5, then at(G) or at(G) is 1, where G denotes the complement
of G. Furthermore, if δ(G) ≥ (|V (G)| − 1)/2, then at(G) = 1 (again, if G 
= C5), and
no smaller minimum degree is sufficient.
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In section 5, we consider graphs with diameter 2. We conjecture that at(G)
is bounded by an absolute constant for such graphs, perhaps by 2. We prove that
at(G) ≤ 32 lnn ln lnn whenG has diameter 2 (the diameter of a graph is the maximum
of the distances between vertices). If in addition G has no 4-cycle, then at(G) = 1
except for C5, the Petersen graph, one graph with seven vertices, and one graph
with 13 vertices. The exceptions with seven and 13 vertices are the polarity graphs
of the projective planes of orders 2 and 3, and all four exceptions have acquisition
number 2.

In section 6, we consider edge deletion. Deleting one edge in an n-vertex graph
cannot increase the acquisition number by more than 6.84

√
n, but there is an n-vertex

tree having an edge whose deletion increases the acquisition number by more than
1
2

√
n. For the strong product � and Cartesian product �, we show in section 7

that at(G�H) ≤ at(G�H) ≤ at(G)at(H) and ask whether there are infinitely many
examples with at(G�H) < 1

2at(G)at(H).

In addition to the conjectures and open questions mentioned above, there are
several directions for further research on total acquisition in graphs. Motivated by
the sufficient conditions in section 4 for acquisition number 1, it is natural to consider
the more general problem of finding sufficient conditions for acquisition number at
most k. For example, one can ask for the least such value of the minimum degree,
the connectivity, or the minimum of d(u) + d(v) over uv /∈ E(G) (known as an “Ore-
type” condition). These questions also extend naturally to random graphs; what is
the threshold edge-probability function for acquisition number at most k?

Alternatively, one can seek the maximum of at(G) over other families of n-vertex
graphs. For example, what is the maximum of at(G) when G is k-connected or when
δ(G) ≥ k? Similarly, what is the behavior of the acquisition number of the random
graph G(n, p) with edge-probability p(n)? Of particular interest would be p ∼ lnn

n ,
the threshold for connectivity.

More generally, one can study the trade-off between at(G) and other parameters.
In particular, for n-vertex graphs, how does at(G) decrease as κ(G) or δ(G) increases.
Is at(G)κ(G) or at(G)δ(G) bounded by a linear function of |V (G)|? Similarly, how
does at(G(n, p)) decrease as p → 1? The material of section 2 can be viewed as
exploring the trade-off between diameter and acquisition number for trees.

We conclude this introduction with elementary observations about total acquisi-
tion. Let α(G) denote the maximum size of an independent set in G, and let γ(G)
denote the minimum size of a dominating set in G, where a dominating set is a vertex
set S such that every vertex outside S has a neighbor in S.

Observation 1.1. For a graph G, the following statements hold:

(1) at(G) ≤ α(G) and at(G) ≤ γ(G).
(2) The set of edges used in an acquisition protocol is acyclic, and each is used

at most once.
(3) at(G) = min{at(F ) : F ∈ F}, where F is the set of spanning forests of G.

Proof. (1) An acquisition protocol can consolidate weight onto any maximal
independent set or any minimal dominating set.

(2) Weight can never be moved to a vertex once it has weight 0. Hence a cycle
cannot be completed and an edge cannot be reused (and every acquisition protocol is
finite).

(3) By (2), the set of edges used in an optimal acquisition protocol on G is
the edge set of a spanning forest. Deleting the unused edges does not change the
residual set.
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Example 1.2. With Pn and Cn denoting the n-vertex path and n-vertex cycle,
at(Pn) = at(Cn) = �n/4�. As noted earlier, the weight on a vertex of degree d cannot
exceed 2d when starting with weights 1 [5]. Hence the acquisition number of any
graph with maximum degree 2 is at least �n/4�. The vertices of a path or cycle with
n vertices can be covered by �n/4� paths with at most four vertices, each having
acquisition number 1.

The acquisition problem generalizes to every graph G with vertex weights; let
at(G) denote the minimum size of the residual set after an acquisition protocol starting
with the weighted graph G. A cut-set in a graph G is a set S ⊆ V (G) such that G−S
is disconnected, where G− S is the result of deleting the vertices of S from G.

Observation 1.3. Let S be a cut-set in a weighted graph G. If each vertex in
S has weight 0, then at(G) is at least the number of components of G − S having
positive total weight.

Proof. No weight can move to a vertex of weight 0, so no weight can move from
one component of G− S to another.

2. Extremal trees. Lampert and Slater [5] showed that �(n + 1)/3� is the
maximum of at(G) over n-vertex graphs, when n > 1. For n ≡ 2 mod 3, they provided
a tree achieving this bound but its maximum degree is (n+1)/3 and its diameter is 6.
We construct a more general family of extremal trees. Note that since at(Pn) = �n/4�,
the bound is not sharp when Δ(G) = 2, where Δ(G) denotes the maximum vertex
degree in G.

It is sometimes useful to view the initial weight on each vertex as a chip that
moves from vertex to vertex under total acquisition moves. One can then follow a
given chip to see where that weight goes during an acquisition protocol.

Lemma 2.1. Let x and y be vertices in a tree T . If the unique x, y-path in T
contains a vertex of degree 2 not adjacent to x or y, then the initial weight from x
and y cannot reach a common vertex via total acquisition moves.

Proof. Let v be a vertex of degree 2 on the x, y-path. For the weight from x and y
to reach the same vertex, vertex v must be used. The first move involving v transfers
weight 1 to or from it, so this move cannot transfer the weight that was originally on
x or y. After this move, v or one of its neighbors has weight 0. By Observation 1.3,
the weight from x and y cannot then reach the same vertex.

Theorem 2.2. Starting with P5, let T be the family of trees constructed by
iteratively growing a path with three edges from the neighbor of a leaf. If T ∈ T , then
at(T ) = (|V (T )|+ 1)/3.

Proof. We use induction on j, the number of augmentations. Each augmentation
adds a path of length 3 through three new vertices, so |V (T )| = 3j + 5. Each aug-
mentation adds one new leaf, so T has j + 2 leaves. Initially, the central vertex of P5

is a vertex of degree 2 separating the two leaves and adjacent to neither.

With each augmentation, the vertex v at distance 2 from the new leaf x is a vertex
of degree 2 that separates x from all earlier leaves. Since v was made adjacent to a
neighbor w of an earlier leaf, it is not adjacent to any earlier leaf. Also, w is not a
vertex that was nonadjacent to all earlier leaves, so the vertices previously chosen to
witness separation between leaves still have degree 2. By Lemma 2.1, at(T ) ≥ j + 2.

Equality holds, because at(P5) = 2, and for j > 0 the weight on each added path
can be acquired to the central vertex among the three new vertices.

Corollary 2.3. For k ≥ 3 and D ≥ 6 with D even, there is an n-vertex tree
with maximum degree k, diameter D, and acquisition number �(n+ 1)/3� if 3(k +
D/2)− 10 ≤ n ≤ nk,D, where
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Fig. 2.1. An extremal tree with maximum degree 6 and diameter 10.

nk,D =

⎧⎪⎪⎨
⎪⎪⎩

3
2D − 1 for k = 3,

2 + 3(k − 1) (k−2)(D−2)/4−1
k−3 for k > 3 and D ≡ 2 mod 4,

5 + 6(k − 2) (k−2)(D−4)/4−1
k−3 for k > 3 and D ≡ 0 mod 4.

Proof. Suppose first that n ≡ 2 mod 3. We construct such a tree T in the family
T of Theorem 2.2, which guarantees at(T ) = (n+ 1)/3.

To reach maximum degree k, begin with P5 in which v is the neighbor of a leaf,
and augment at v exactly k − 2 times. Now the diameter is 6, and v has degree k.
Next increase the diameter to D by iteratively augmenting at the neighbor of a leaf
on a longest path, (D − 6)/2 times. The resulting tree T has diameter D, maximum
degree k, and 3(k+D/2)−10 vertices, since there were k−2+D/2−3 augmentations
to P5. Figure 2.1 shows such a construction for k = 6 and D = 10.

When k = 3, the lower bound 3(k + D/2) − 10 on n equals the upper bound
3D/2− 1, so the construction is finished. Henceforth we assume k > 3.

To increase the number of vertices, note that except for v, the neighbors of leaves
have degree 3 or 2. Augmenting at neighbors of endpoints of longest paths would in-
crease the diameter (see Figure 2.1), but we can augment at neighbors of other leaves,
increasing the number of vertices by 3 with each augmentation. We can continue such
augmentations until every neighbor of a leaf that is not an endpoint of a longest path
has degree k.

To count the vertices, it is helpful to grow such a tree in another way. When
D/2 is odd, let � = (D − 2)/4. Again start with P5 and let v be the neighbor of
a leaf; v has degree 2. Augmenting k − 2 times at v completes level 1; now v has
degree k, and the k − 1 vertices at distance 2 from v are neighbors of leaves (see the
leftmost part of Figure 2.1). For i ≥ 1, augment k − 2 times at the neighbor of each
leaf introduced when forming level i, until � levels are complete. After level 1, the
diameter is 6. Each successive level adds 4 to the diameter, so the resulting diameter
is 6+4(�−1), which equals D. Counting the initial P5 as a (degenerate) augmentation

of P2 to start level 1, reaching the largest possible tree takes
∑�

i=1(k − 1)(k − 2)i−1

augmentations, so that tree has 2+3(k−1) (k−2)�−1
k−3 vertices. The augmentations can

be reordered to begin with the initial example above having 3(k+D/2)− 10 vertices,
so all intermediate values congruent to 2 modulo 3 are attainable.

When D/2 is even, instead build � levels equally from the neighbors of both
leaves of P5, where � = (D− 4)/4. There are k− 2 augmentations at each of them to
complete level 1, reaching diameter 8. Augment k − 2 times at the neighbor of each
new leaf to complete level 2, and so on through level �. Starting with the initial P5
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and counting the subtree from the neighbors of both leaves, the resulting maximum

number of vertices is 5 + 6(k − 2) (k−2)�−1
k−3 .

When n 
≡ 2 mod 3, simply use the construction T ′ for the next smaller number
of vertices congruent to 2 modulo 3 and duplicate a leaf at the end of a longest path.
Lemma 2.1 again yields the desired lower bound, and the Lampert–Slater bound
requires equality.

As noted in the introduction, when n ≡ 2 mod 3, the family T is the family of
all n-vertex graphs achieving the maximum value of the aquisition number, (n+1)/3
(except also C5 when n = 5). The proof that this is the complete extremal family
appears in [6].

Theorem 2.2 solves the extremal problem for n-vertex trees with diameter D
whenever 6 ≤ D ≤ 2

3 (n + 1), the upper bound being imposed by requiring k ≥ 3
in the construction. When D is larger, fewer vertices are available outside a longest
path, and hence we cannot have as many of the leaves that by Lemma 2.1 force up
the acquisition number. At D = n − 1, the graph reduces to Pn. More generally,
when D > 2

3 (n+1), the maximum of the acquisition number is achieved by a special
caterpillar. We begin by bounding the value on caterpillars.

Proposition 2.4. If T is an n-vertex caterpillar with diameter D, then at(T ) ≤⌈
2n−1−D

4

⌉
.

Proof. We will use induction on D. If D ≤ 3, then T is P1, P2, a star, or
a double-star. In each case at(T ) = 1 ≤

⌈
2n−1−D

4

⌉
. Let T be a caterpillar with

diameter D, where D ≥ 4, and let P be a longest path in T . Let the vertices of
P be v1, . . . , vD+1, indexed by their order along the path P . Let C and C′ be the
components of T − v3v4 containing v3 and v4, respectively. Observe that C is a
caterpillar with diameter at most 3 and that C′ is a caterpillar with diameter at most
D − 2 and with at most n − 3 vertices. Applying the induction hypothesis yields

at(T ) ≤ at(C) + at(C
′) ≤ 1 +

⌈2(n−3)−1−(D−2)
4

⌉
=
⌈
2n−1−D

4

⌉
.

Theorem 2.5. For 2
3 (n+ 1) < D ≤ n− 1, the maximum of at(T ) when T is an

n-vertex tree with diameter D is
⌈
2n−1−D

4

⌉
.

Proof. We first provide a construction to prove sharpness of the upper bound.
When D = n−1, the tree is a path and has the desired acquisition number, so assume
D < n − 1. Begin by letting T ′ be the tree produced in Corollary 2.3 for maximum
degree 3 and diameter 2(n−D) (when D = n−2 this initial subtree is P5). Note that
T ′ has 3(n−D)− 1 vertices and n−D leaves. From the neighbor of an endpoint of
a longest path in T ′, grow a path P of length 3D− 2n+ 1 through 3D− 2n+ 1 new
vertices; this completes T with n vertices and diameter D (see Figure 2.2).

By Lemma 2.1, weight from two leaves of T ′ cannot reach a common vertex, and
they cannot combine with weight from P that starts farther along P than the second
vertex. Since at(Pr) = �r/4� (Example 1.2), we have at(T ) ≥ n−D+at(P3D−2n−1) =⌈
2n−D−1

4

⌉
. Equality holds, since the neighbors of leaves in T ′ can each acquire weight

3, with the endpoint of P also acquiring the weight from the second new vertex
along P .

•
• • • • • • • • • • • • • • • • •

• • •

Fig. 2.2. An extremal tree with high diameter.
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Now we prove the upper bound. For fixed D, we use induction on n. If n = D+1,
then T = Pn and at(T ) =

⌈
2n−1−D

4

⌉
. For a larger tree T , let P be a longest path in

T . If T is a caterpillar, then Proposition 2.4 applies. Otherwise, there is a nontrivial
component C of T −V (P ). Let s = |V (C)|. Note that at(T ) ≤ at(C)+at(T −V (C)).
The tree T − V (C) has diameter D and n− s vertices. By the induction hypothesis,

at(T − V (C)) ≤
⌈2(n−s)−1−D

4

⌉
. The bound of Lampert and Slater gives at(C) ≤⌊

s+1
3

⌋
. We compute

⌊
s+ 1

3

⌋
+

⌈
2n− 2s− 1−D

4

⌉
=

⌈
s− 1

3

⌉
+

⌈
2n− 2s− 1−D

4

⌉

≤
⌈
2n− 1−D

4
+

2s− 3s− 2

6

⌉
≤
⌈
2n− 1−D

4

⌉
.

3. Trees of small diameter. Since trees with diameter 2 or 3 have total acqui-
sition number 1, Theorem 2.2 and Proposition 2.5 leave only the extremal problems
for diameter 4 and 5. These are settled in Theorems 3.3 and 3.4. We next define an
acquisition protocol used in the proof of Theorem 3.3 and also in section 5. It moves
the maximum amount of weight to the central vertex in a tree of diameter 4.

Definition 3.1. Let T be a tree with diameter 4, and let u be the center of T .
Let v1, . . . , vk be the neighbors of u labeled in nondecreasing order of degree (as in
Figure 3.1). Define the u-greedy protocol, denoted A(u), as follows. Let wi denote
the weight on u at the beginning of step i; initially, w1 = 1. In step i, first move
weight min{wi, d(vi)} − 1 from leaf neighbors of vi to vi; the weight on vi is now
min{wi, d(vi)}. Complete step i by transferring all weight on vi to u. Thus wi+1 =
wi +min{wi, d(vi)}.

A closer look at the u-greedy protocol yields an upper bound for at(T ).

Lemma 3.2. Let T be a tree with diameter 4, let u be the center of T , and run the
u-greedy protocol A(u) on T . No weight remains on NT (u). Also, if r is the degree
of the highest-indexed neighbor of u having leaf neighbors with positive weight after
A(u), then at most �lg r� neighbors of u have leaf neighbors with positive weight after
A(u). Consequently, at(T ) ≤ r�lg r�.

Proof. By construction, no weight remains on N(u). Now, let S be the set
of neighbors of u having leaf neighbors with positive weight after A(u). Let m =
max{i : vi ∈ S}, so d(vm) = r. If vi ∈ S, then d(vi) > wi. Therefore, the weight at u
doubles during step i for each i ∈ S, and r > wm. Hence the weight on u has doubled
at most lg(r− 1) times by step m, so |S| ≤ 1+ �lg(r − 1)� = �lg r�. Since each vertex
in S has at most r − 1 leaf neighbors, at(T ) ≤ r �lg r�.

Our upper bound for trees with diameter 4 uses the u-greedy protocol when the
degree of the central vertex is large and it has no neighbor with large degree.

•

• • • • • •

u

v1 vk

• •• •• •• •• •• •• •• •• •• ••

Fig. 3.1. Vertex labeling for trees of diameter 4.
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Theorem 3.3. Let T be an n-vertex tree. If T has diameter 4, then at(T ) ≤√
n lgn. If T has diameter 5, then at(T ) ≤

√
2n lgn.

Proof. First consider diameter 4; we prove the bound by induction on n. Let u
be the central vertex of T , and label its neighbors v1, . . . , vk in nondecreasing order
of degree, as in Figure 3.1.

If k ≤
√
n lgn, then it suffices to let the neighbors of u absorb all the weight. If

k >
√
n lgn, then k ≥ n/2 if n ≤ 16. We will show in Lemma 4.3 that at(G) = 1

when G has a vertex of degree at least |V (G)|/2 whose neighborhood is a dominating
set. Hence we may assume that k >

√
n lgn and n > 16.

If d(vk) ≥
√
n, then we let vk acquire the weight on its leaf neighbors and apply

the induction hypothesis to the tree obtained by deleting vk and its leaf neighbors.
Thus at(T ) ≤ 1 +

√
(n−√

n) lg n. Note that 1 +
√
A−B ≤

√
A if and only if

B ≥ 2
√
A− 1. Since

√
n lg n ≥ 2

√
n lgn when n ≥ 16, this case is complete.

Hence we may assume that k >
√
n lgn, that d(vk) <

√
n, and that n > 16.

Let S be the set of neighbors of u having leaf neighbors with positive weight after
running the u-greedy protocol A(u). Let m = max{i : vi ∈ S}. By Lemma 3.2,
at(T ) ≤ d(vm)�lg d(vm)�.

We will prove that d(vm) < 2n/k − 1. Given this, and using k ≥
⌈√

n lgn
⌉
,

at(T ) ≤ d(vm)�lg d(vm)� ≤
⌊

2n⌈√
n lgn

⌉ − 1

⌋⌈
lg

⌊
2n⌈√
n lgn

⌉ − 1

⌋⌉
≤
√
n lgn.

For n > 216, the last bounds follows, since in this case

⌊
2n⌈√
n lgn

⌉ − 1

⌋⌈
lg

⌊
2n⌈√
n lg n

⌉ − 1

⌋⌉
< 2

√
n

lgn

[
lg

(
2

√
n

lg n

)
+ 1

]
≤
√
n lgn.

For n ≤ 216, the desired inequality holds by explicit computation.

To prove d(vm) < 2n/k− 1, we first argue that m < k/2. Since u acquires weight
with each step, m ≤ wm. Since m ∈ S, we have wm < d(vm). We are in the case
where d(vk) <

√
n. Finally, k >

√
n lgn yields

√
n < k/2 when n > 16. Thus

m ≤ wm < d(vm) ≤ d(vk) <
√
n < k/2.

Since the k−m+1 neighbors of u in {vm, . . . , vk} each have at least d(vm)−1 leaf
neighbors, and at least m vertices are outside the subtrees rooted at those neighbors,
d(vm) < n−m

k−m . With m < k/2, we have d(vm) < 2n/k − 1. This completes the proof
for diameter 4.

When T has diameter 5, deleting the central edge of T leaves two subtrees with
diameter at most 4, using p and n − p vertices, for some p. Applying the bound for
diameter 4 and the concavity of that bound yields

at(T ) ≤
√
p lg p+

√
(n− p) lg(n− p) ≤ 2

√
(n/2) lg(n/2) <

√
2n lgn,

which completes the proof.

The bound of Theorem 3.3 for diameter 4 is within a factor of
√
2 of being sharp.

Theorem 3.4. For sufficiently large n, there is an n-vertex tree Tn with diameter
4 and at(Tn) ≥ (1− o(1))

√
(1/2)n lgn.
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Proof. Let Tn have central vertex u, and let r =
√
2n/lgn. Let u have degree k,

where k =
⌊

n−1
�r�+1

⌋
. Let the neighbors v1, . . . , vk of u all have degree �r� or �r�. Note

that k = (1 − o(1))
√
(1/2)n lgn. We prove that at(Tn) ≥ k.

Let A be an optimal acquisition protocol on Tn, and let q be the number of
neighbors of u that transfer weight to u. Without loss of generality, we can assume
that weight moves from v1, . . . , vq to u in order. To minimize the residual set, A
transfers the weight from all the leaf neighbors of vi to vi for q < i ≤ k.

Let T ′ be the subtree obtained by deleting vq+1, . . . , vk and their leaf neighbors.
Since weight moves from vi to u for 1 ≤ i ≤ q, the residual set in T ′ consists of u
and some of the leaves. To minimize the number of leaves in the residual set, on T ′

the weight of u should be maximized, and hence A should run the u-greedy protocol
on T ′.

If q < lg r, then weight remains on a leaf neighbor of each vi with 1 ≤ i ≤ q
and also on vq+1, . . . , vk, so weight remains on at least k vertices, and at(Tn) ≥ k =

(1− o(1))
√

(1/2)n lgn.

If q > lg r, then because each neighbor has degree at least �r�, the u-greedy
protocol on T ′ puts weight at least �r� on u. Now u is able to acquire all the weight
from each vi and its leaf neighbors when i > q, so it is not optimal to leave any weight
there. Given that A is optimal, we conclude that q = k when q > lg r. Since the
moved weight will double with each iteration for the first �lg r� iterations, the number

of vertices stranded is at least
∑�lg r�

i=1 (r − (2i−1 − 1)). We compute

at(Tn) ≥ r �lg r� −
�lg r�∑
i=1

(2i−1 − 1) = (1− o(1))(r lg r)

= (1− o(1))

√
2n

lg n
lg

√
2n

lgn
= (1− o(1))

1

2

√
2n

lg n
lg n = (1 − o(1))

√
n lgn

2
.

Slater and Wang [11] proved that the problem of determining at(G) for general
graphs is NP-complete. In fact, it is NP-complete even to test whether at(G) = 1.
They asked whether the same statements are true when the problem is restricted to
trees. We partly answer this by providing for any fixed k a polynomial-time algorithm
to determine whether at(T ) ≤ k. We start by characterizing trees with acquisition
number 1.

A rooted tree (T, r) consists of a tree T and a distinguished vertex r ∈ V (T ).
A rooted acquisition tree is a rooted tree (T, r) such that some acquisition protocol
transfers all the weight in T to r.

Lemma 3.5. A rooted tree (T, r) is a rooted acquisition tree if and only if

(1) |V (T )| = 1, or
(2) T has an edge rr′ whose deletion leaves rooted acquisition trees rooted at r

and r′ such that the component containing r′ is no bigger than the component
containing r.

Proof. For necessity, let rr′ be the last edge used in an acquisition protocol
that moves all weight to r. For sufficiency, use rr′ after such protocols in the two
subtrees.

The recursive characterization of rooted acquisition trees in Lemma 3.5 is just the
definition of union trees, a class of trees used as a data structure in computer science.
Thus

(T, r) is a rooted acquisition tree if and only if it is a union tree.
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Cai [3] characterized union trees and gave an O(n2)-time algorithm to recognize them.
We use it in our algorithm for testing at(T ) ≤ k.

Theorem 3.6. For each positive integer k, there is an O(|V (T )|k+2)-time algo-
rithm for testing at(T ) ≤ k when T is a tree.

Proof. The edges along which weight moves to an element of the residual set
form a subtree, and these subtrees are disjoint. Thus at(T ) ≤ k if and only if there
are k disjoint rooted acquisition trees in T that together span V (T ). Deletion of an
edge from a tree increases the number of components by 1. Thus k disjoint subtrees
spanning V (T ) are obtained by deleting k − 1 edges of T .

For all B ⊆ E(T ) with |B| = k − 1, let T1, . . . , Tk be the components of T − B.
For each vertex r ∈ V (Ti), use Cai’s algorithm to test whether (Ti, r) is a rooted
acquisition tree. Conclude at(T ) ≤ k if and only if, for some B, each component of
T − B is a rooted acquisition tree rooted at one of its vertices.

There are O(nk−1) choices for B. Given B, testing whether a vertex of T is a
suitable root for its component takes at most quadratic time, using Cai’s algorithm,
and we need only test a linear number of roots. Thus our algorithm runs in O(nk+2)
time.

4. Sufficient conditions for at(G) = 1. Since recognizing graphs with acqui-
sition number 1 is NP-hard, it is natural to seek sufficient conditions for that property;
such conditions are the goal of this section. A clique in a graph is a set of pairwise
adjacent vertices; a dominating clique is a clique that is a dominating set.

Proposition 4.1. If a graph G has a dominating clique, then at(G) = 1.
Proof. When K is a dominating clique, we can move all weight from V (G) −K

onto K and then consolidate all weight onto a single vertex using edges
within K.

An H-free graph is a graph not having H as an induced subgraph. Bacsó and
Tuza [1] showed that every connected graph that is both P5-free and C5-free has a
dominating clique. Thus Proposition 4.1 has a corollary.

Corollary 4.2. If a graph G is connected, P5-free, and C5-free, then at(G) = 1.
Our next objective is to show that if G 
= C5, then at(G) = 1 or at(G) = 1. We

first prove that at(G) = 1 if the neighborhood of a vertex with sufficiently high degree
is a dominating set. We then show that if G 
= C5 and G is (|V (G)| − 1)/2-regular,
then at(G) = 1. Together with Proposition 4.1, these results will complete the proof.
Let NG(v) or N(v) denote the set of neighbors of vertex v, and let N [v] = N(v)∪{v}.

Lemma 4.3. If G is an n-vertex graph having a vertex v such that d(v) ≥ n/2
and N(v) is a dominating set, then at(G) = 1.

Proof. Since N(v) is a dominating set, we can first move all weight from V (G)−
N [v] onto N(v). Let α be the maximum of the weights on vertices of N(v) at this
point. Note that α−1 units of weight came to one vertex of N(v) from vertices among
the n− 1− d(v) vertices of V (G)−N [v]. Since d(v) ≥ n/2, at most n/2− α units of
weight have been moved from V (G)−N [v] to other vertices of N(v), and hence there
remain at least α − 1 vertices in N(v) with weight 1. Moving the weight from each
neighbor of v with weight 1 to v gives v weight at least α, after which all remaining
weight can be moved to v.

Lemma 4.4. If G is an n-vertex, (n − 1)/2-regular graph other than C5, then
at(G) = 1.

Proof. Since C5 is excluded, we may assume n ≥ 7. Choose v ∈ V (G). Since any
two nonadjacent vertices have a common neighbor, N(v) is a dominating set. Let x
be a vertex of N(v) with the most neighbors outside N [v]. Let R = V (G)−N [v].
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If |N(x)∩R| ≥ 2, then move all weight fromN(x)−N [v] onto x; let its weight now
be α. Move the rest of the weight from R onto N(v) − {x}. Choose y ∈ N(v) − {x}
having maximum weight at this point; let its weight be β.

We have moved weight α+ β − 2 from R onto {x, y}. Hence weight (n− 1)/2−
(α+β−2) was moved onto the (n−1)/2−2 vertices of N(v)−{x, y}, leaving at least
α + β − 4 vertices there with weight 1. Let v acquire the weight on those vertices,
reaching weight α+ β − 3. Since α ≥ 3, now v has weight at least β and can acquire
the weight from all vertices of N(v)− {x}, after which weight remains on only v and
x, which are adjacent.

The remaining case is α = 2. This requires each vertex of N(v) to have at most
one neighbor in R, so each vertex of R has exactly one neighbor in N [v] and (n−3)/2
neighbors in R. Thus R is a clique, and each vertex of N(v) is adjacent to all but
one vertex of N(v). Since d(v) ≥ 3, there is an edge within N(v). Each such edge is
a dominating clique for the subgraph induced by N [v], and we can acquire all weight
from that subgraph onto a vertex z of N(v). Since R is a clique, we can move all its
weight to the neighbor of z in R. Now all weight from G rests on two neighboring
vertices.

Theorem 4.5. If G is a graph and G 
= C5, then at(G) or at(G) equals 1.
Proof. If G has diameter at least 3, then any pair of vertices x and y satisfying

dG(x, y) ≥ 3 form a dominating clique in G, so at(G) = 1 by Proposition 4.1. By
symmetry, we may assume that G and G both have diameter 2.

Let n = |V (G)|. If G has a vertex v of degree at least n/2, then N(v) dominates
G (since G has diameter 2), so Lemma 4.3 implies at(G) = 1. We may assume,
therefore, that Δ(G) and Δ(G) (by symmetry) are at most (n− 1)/2. It follows that
G is (n− 1)/2-regular, and Lemma 4.4 yields at(G) = 1.

Ore’s Theorem [8] states that if any two nonadjacent vertices in an n-vertex graph
have degree sum at least n, then the graph has a spanning cycle. A similar condition
guarantees total acquisition number 1.

Theorem 4.6. Let G be an n-vertex graph other than C5. If d(u)+ d(v) ≥ n− 1
whenever u and v are nonadjacent vertices in G, then at(G) = 1.

Proof. The hypothesis guarantees that any two nonadjacent vertices have a com-
mon neighbor, so every vertex neighborhood is a dominating set. If some vertex has
degree at least n/2, then Lemma 4.3 applies. Otherwise, G is (n− 1)/2-regular and
Lemma 4.4 applies.

Theorem 4.6 implies that at(G) = 1 when δ(G) ≥ (|V (G)| − 1)/2. This threshold
is sharp, since 2Kn/2 has minimum degree (n− 2)/2 and acquisition number 2 (when
n is even).

5. Diameter 2. Intuitively, graphs with diameter 2 should have small acquisi-
tion numbers, since it is easier to move weight smaller distances. Because every graph
with diameter 2 has a spanning tree with diameter at most 4, it is natural to apply
Lemma 3.2 to these graphs. Lemma 3.2 implies that if u is a vertex in a graph G with
diameter 2, and d = maxv∈N(u)(N(v) −N [u]), then at(G) ≤ d�lg(d)�. Our first goal
in this section is to prove a better bound that is nearly logarithmic in the number of
vertices.

Nevertheless, we conjecture a much stronger upper bound.
Conjecture 5.1. There is an absolute constant c such that at(G) ≤ c whenever

G has diameter 2.
In fact, we know of no graph with diameter 2 having acquisition number more than

2. For example, the only nontrivial Cartesian products with diameter 2 are Cartesian
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products of two complete graphs, and at(Kr�Ks) = 1. Also, at(C5 � C5) = 1 (see
section 7). Although we cannot prove Conjecture 5.1, we will prove the constant
bound for graphs having diameter 2 and no 4-cycle. With four exceptions, these
graphs all have acquisition number 1.

Of course, many graphs with diameter 2 have 4-cycles, which brings us back to the
general bound for graphs with diameter 2. To prove this bound, we will use another
protocol in conjunction with the u-greedy protocol. Roughly speaking, it provides a
better bound when the degree of the center is large and the number of vertices at
distance 2 is small.

Lemma 5.2. Let T be a tree with diameter 4 and let u be the center of T . Let
d = dT (u), and let R = V (T ) − N [u]. Suppose d ≥ 256. If |R| ≤ d�lg d�, then
at(T ) ≤ 10 lg d lg lg d. Also, under some protocol achieving this bound, u acquires
weight at least d− 4 �lg d�.

Proof. Let N1 be the set of neighbors of u with degree less than 4 lg d, let N2 be
the set of neighbors of u with degree at least 4 lg d and less than d/4, and let N3 be
the set of neighbors of u with degree at least d/4 (see Figure 5.1). For i ∈ {1, 2}, let Ti

be the subtree of T with vertex set
⋃

x∈Ni
N [x]. We will apply the u-greedy protocol

to T1 and then show that this gives u enough weight to acquire all the weight in T2.

We have |N1| ≥ d/4, since otherwise |R| > 3d
4 (4 lg d − 1) > d�lg d� ≥ |R|. By

Lemma 3.2 there is a total acquisition protocol on T1 that moves weight from all but
4 lg d�lg(4 lg d)� vertices in T1 to u. Note that 4 lg d �lg(4 lg d)� ≤ (4 lg d)(3+ lg lg d) ≤
8 lg d lg lg d, since d ≥ 256. Also, u now has weight at least |N1|. Since |N1| ≥ d(x)
for x ∈ N2, we can transfer all the weight in T2 to u. Finally, transfer all weight from⋃

x∈N3
N(x)− u to N3.

Since |R| ≤ d�lg d�, we have |N3| ≤ |R|/(d/4) ≤ 4 + 4 lg d. Therefore,

at(T ) ≤ 1 + 8 lg d lg lg d+ |N3| ≤ 10 lg d lg lg d,

since d ≥ 256. Also, the weight on u is at least |N1| + |N2|, which is at least
d− 4 �lg d�.

We now prove our bound for graphs with diameter 2. The proof starts by applying
the u-greedy protocol to a subgraph of G, where u is a vertex of maximum degree.
We then apply Lemma 5.2 to a subtree where the leaves are the vertices with weight
1 after the application of the u-greedy protocol. Combining the two protocols yields
a much stronger bound.

•

N1 N2 N3

deg< 4 lg d deg< d/4 deg≥ d/4

• • • • • • • • •

u

R • • • • • • • •

Fig. 5.1. The partition of N(u) for Lemma 5.2.
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•

•

u

v

W ′

N(u) S M

R Q W

Fig. 5.2. The structure of the diameter 2 graph G in Theorem 5.3.

Theorem 5.3. If G is an n-vertex graph with diameter 2, then at(G) ≤
32 lgn lg lgn.

Proof. For the main case, we will need n > 2562. For n ≤ 2562, we apply
Theorem 3.3. We obtain a spanning tree of diameter 4 in G showing that at(G) ≤√
n lgn, and therefore

at(G) ≤ 16 lgn lg lgn.

Henceforth we assume that n > 2562. Let d = Δ(G), and let u be a vertex
of maximum degree. Since G has diameter 2, we have d ≥

√
n− 1 ≥ 256. Let

N(u) = {v1, . . . , vd} and let R = V (G) − N [u]. Among all vertices in N(u), let v
be one with the most neighbors in R. Let r = |N(v) ∩ R|. If r < 256, then G has
a spanning tree T with diameter 4 centered at u such that maxx∈NT (u) dT (x) ≤ 256.
Lemma 3.2 then yields

at(G) ≤ 256�lg 256� = 32 lg 2562 lg lg 2562 ≤ 32 lgn lg lg n.

Thus we may assume r ≥ 256. Let S = N(u) ∩ N(v) and M = N(u) − N [v].
Let W be the subset of R consisting of vertices with no neighbor in S ∪ {v} (see
Figure 5.2).

Since all of W is within distance 2 of u, every vertex of W has a neighbor in M .
Let T be a spanning tree of diameter 4 with center u in the subgraph of G induced
by {u} ∪ M ∪ W . Let k = maxx∈M |NT (x) ∩ W | − 1; note that k < r. Lemma 3.2
applied to the subtree yields a protocol on T that leaves weight on fewer than k�lg k�
vertices in W and no weight on M . Let W ′ be the set of vertices in W that retain
positive weight; note that |W ′| < k �lg k�.

Since all of W ′ is within distance 2 of v, vertices of W ′ have common neighbors
with v, which can only be in N(v) ∩ R. Let H be the subgraph of G induced by
W ′ ∪ {v} ∪ (N(v) ∩ R). Note that dH(v) = r ≥ 256; we will apply Lemma 5.2 to a
suitable spanning tree of H . Since all of H is within distance 2 of v, there is in H
a spanning tree T ′ of diameter 4 with v as its center such that dT ′(v) = r > k and
|W ′| < k�lg k�. Because k < dH(v) = r, Lemma 5.2 implies at(H) ≤ 10 lg r lg lg r,
and there is a protocol achieving this bound such that the weight at v is m, where
m ≥ r − 4 �lg r�.

Let Q = R − W − N(v). The only remaining vertices outside of V (H) ∪ {u}
with positive weight are in S ∪ Q. Among vertices in S, let y be one with the most
neighbors in Q. If m > |Q∩N(y)|, then the weight on v is greater than |Q∩N(vi)| for
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all vi ∈ S, and we can transfer all weight from S∪Q to v. By then transferring weight
along the edge uv, the weight is consolidated on at most 1 + 10 lg d lg lg d vertices.

Ifm ≤ |Q∩N(y)|, then transfer weight fromm−1 vertices in Q to y and then move
weight m from y to v. After this move, the weight on v is 2m, and 2m ≥ 2r− 8 �lg r�.
Since r ≥ 256, we have 2r − 8 �lg r� > r, so the weight now on v exceeds |N(vi) ∩Q|
for each vi ∈ S. In N(y) ∩Q, we left weight on at most r −m+ 1 vertices; note that
r −m+ 1 ≤ 4 �lg r�+ 1.

Now all the weight in G lies on u, at most 10 lg d lg lg d vertices in H , and at most
4 �lg r�+ 1 vertices in Q. Since r < d,

at(G) ≤ 2 + 10 lg d lg lg d+ 4 �lg d� ≤ 12 lgn lg lg n.

In all cases, at(G) ≤ 32 lgn lg lg n.
In the remainder of this section, we prove that at(G) = 1 when G has diameter

2 and no 4-cycle, with four exceptions. Note that graphs with diameter 2 have girth
at most 5. Very few have girth 5; these are called Moore graphs. They are regular
and exist only for degrees 2, 3, 7, and possibly 57 [4]. The other possible graphs have
triangles. The arguments for upper bounds will proceed by bringing the weight to a
shortest cycle.

We begin by presenting the exceptional graphs: two with girth 5 and two with
girth 3. The two examples with triangles happen to be the polarity graphs of the
projective planes of orders 2 and 3; for this reason we call them F2 and F3.

Lemma 5.4. Graphs with diameter 2, no 4-cycle, and acquisition number 2 in-
clude C5, the Petersen graph, and the graphs F2 and F3 in Figure 5.3.

Proof. Consider first C5 and the Petersen graph. They have acquisition number
at least 2, because that is required by 2Δ(G) < |V (G)|. On the other hand, since the
independence number of C5 is 2, the acquisition number of any graph having a 5-cycle
whose vertices form a dominating set is at most 2.

To prove the lower bound for F2 and F3, consider rooted acquisition trees. In a
graph with maximum degree D, the weight of the root in a rooted acquisition tree
before the final acquisition is at most 2D−1. Hence in a 7-vertex graph with D = 3,
the final move combines weights 4 and 3, while in a 13-vertex graph with D = 4, the
final move combines weights 8 and 5 or weights 7 and 6. Hence both vertices in the
final move have degree D in the tree. However, in both cases every subgraph having

•
•

•

• • •

• • • • •
1 2 3 4

•

•

•

• • • • • •

x1

x2

x3

12 34 14 23 31 24

F2 F3

Fig. 5.3. Graphs with diameter 2, no 4-cycle, and acquisition number 2.
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adjacent vertices of degree D has a triangle and cannot be a tree. With no rooted
acquisition tree, the acquisition number cannot be 1.

For the upper bound, the vertices of the graph on the left partition into two sets
inducing graphs with acquisition number 1: a star and a triangle. For the graphs
represented on the right, it suffices to show that all the weight except that on vertex
4 can be acquired to a single vertex. Simply aquire weight from {1, 2, 3, 34, 14, 24} to
{12, 23, 31, x1, x2, x3} along a matching, after which there is weight 2 on every vertex
of a 6-vertex graph with a dominating triangle.

In order to prove that the other graphs with diameter 2 and no 4-cycle have
acquisition number 1, we need an old lemma that is not hard to prove.

Lemma 5.5 (Bondy, Erdős, and Fajtlowicz [2]). If a graph G has diameter 2
and no 4-cycle, and x and y are nonadjacent vertices with a common neighbor u,
then N(x)−N [u] and N(y)−N [u] have the same size and are joined by a matching
in G.

Proof. Let A = N(x) − N [u] and B = N(y) − N [u]. For z ∈ A, distance 2 to
y requires z to have a neighbor in B, and avoiding 4-cycles prevents it from having
more than one such neighbor. Hence each vertex of A has exactly one neighbor in B,
and by symmetry each vertex of B has exactly one neighbor in A.

In fact, the theorem proved in [2] is that if G has diameter 2 and no 4-cycle,
then one of the following holds: (a) G has a dominating vertex, or (b) G is a Moore
graph (girth 5), or (c) G is a polarity graph. Rather than use that conclusion and
study the structure of these types of graphs separately using known properties, we
instead develop common aspects directly from the hypothesis that allow us to bound
the acquisition number when case (a) does not hold.

Lemma 5.6. Let G be a graph with diameter 2 and no 4-cycle, and let x1, . . . , xg

(in order) induce a shortest cycle C in G. Also let R be the set of vertices having
no neighbor in C, and let Xi = N(xi)− V (C). The sets X1, . . . , Xg are disjoint and
of equal size, k. Every vertex of R has exactly one neighbor in each such set. For
z ∈ Xi, the set N(z) ∩R also has size k if g = 3, and it has size k − 1 if g = 5.

Proof. Since graphs with girth g have diameter at least (g − 1)/2, we have g ∈
{3, 5}. Avoiding 4-cycles (and 3-cycles when g = 5) forces X1, . . . , Xg to be disjoint.
In order to stay within distance 2 of each vertex of C (and avoid 4-cycles), each vertex
of R must have exactly one neighbor in each Xi.

If G = C5, then k = 0 and the statements about z are vacuous. Otherwise, note
that N(z)∩V (C) = {xi} and view indices modulo g. Since z and xi+1 are nonadjacent
and have xi as a common neighbor, Lemma 5.5 applies. Deleting N [xi] eliminates
xi−1 and all of Xi, leaving a matching that joins N(z)−N [xi] to N(xi+1)−N [xi]. If
g = 3, then these sets are N(z) ∩R and Xi+1. If g = 5, then reaching xi+2 and xi−2

in two steps requires z to have one neighbor each in Xi+2 and Xi−2, and the second
set is Xi+1 ∪ {xi+2}; thus |N(z) ∩R| = |Xi+1| − 1 in this case.

The same argument with i− 1 in place of i+ 1 establishes the same relationship
between |N(z) ∩R| and |Xi−1|. Thus |Xi+1| = |Xi−1|. Calling this common value k,
we also have |N(z) ∩R| = k when g = 3, and |N(z) ∩R| = k − 1 when g = 5.

Since z and i were arbitrary, the full claim follows.

We can now complete the analysis for graphs of diameter 2 with no 4-cycles. Ob-
viously at(G) = 1 when G has a dominating vertex, so we consider only the remaining
cases.

Theorem 5.7. Let G be a graph with diameter 2, no 4-cycle, and no dominating
vertex. Define g, C, and k and the various vertex subsets as in the statement of
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Lemma 5.6. If k ≥ 3, then at(G) = 1. Otherwise, G is one of the four graphs in
Lemma 5.4.

Proof. Each vertex of R has one neighbor in Xi, and each vertex of Xi has k or
k− 1 neighbors in R, depending on g. Thus |R| = k2 when g = 3, and |R| = k(k− 1)
when g = 5. When k ≥ 3, we will gather all weight onto C (mostly at x1 and x2) and
then to one vertex.

If k = 0, then G = C. If k = 1 and g = 3, then |R| = 1 and G = F2. If k = 1 and
g = 5, then |R| = 0; since the one vertex of Xi has neighbors in Xi+2 and Xi−2, we
obtain the Petersen graph.

Before excluding k = 2, we develop structure for R. Let X1 = {u1, . . . , uk} and
X2 = {v1, . . . , vk}. If g = 3, then R is partitioned into neighborhoods of size k by
both X1 and X2. Avoiding 4-cycles ensures that no two vertices of R have the same
neighbors in X1 and X2. Let wr,s be the common neighbor of ur and vs in R.

If g = 5, then by Lemma 5.5 matchings join X4 to both X1 and X2. Index X1 and
X2 so that uj and vj have a common neighbor called wj,j in X4. Now R is partitioned
into neighborhoods of size k − 1 by both X1 and X2. Again let wr,s be the common
neighbor of ur and vs in R, but now only when r 
= s. The vertices of the form wj,j

augment R to a set R′ of size k2. When g = 3, let R′ = R.

Now consider k = 2. If g = 5, then the various matchings we have obtained yield
an 8-cycle through u1, w1,1, v1, w2,1, u2, w2,2, v2, w1,2 in order. We still must add edges
joining R to X4, but each possible edge creates a triangle. Hence this case does not
occur.

If k = 2 and g = 3, then |R| = 4 and |V (G)| = 13. In Figure 5.3, let u1, u2, v1, v2
be the vertices labeled 12, 34, 14, 23, respectively; now w1,1, w1,2, w2,2, w2,1 are labeled
1, 2, 3, 4, respectively. Any two vertices of R have a common neighbor in X1∪X2∪X3,
so P3 
⊆ G[R]. With no 4-cycles, distance 2 between vertices of Xi and R requires
exactly one of (a) an edge in Xi or (b) a matching in R joining the neighbors of one
vertex of Xi to the neighbors of the other. If each Xi induces an edge, then now
G = F3. Otherwise, R induces a matching, which forbids edges in two of X1, X2, X3

and requires an edge in the third; by symmetry, assume u1u2 ∈ E(G). Now G ∼= F3

by an automorphism sending {u1, u2, x1} to {x3, x2, x1}.
The remaining case is k ≥ 3; we show at(G) = 1. Recall that wi,j is adjacent to

ui and vj . First x1 acquires the weight from X1 and almost all wi,j with j ≤ i via a
weakening of the x1-greedy protocol. That is, x1 acquires weight from the following:
(1) u1, (2) u2 and w2,1, and (3) for 3 ≤ i ≤ k, all of ui and {wi,j : j ≤ i}. Note that
x1 acquires enough weight to permit each subsequent step. After this phase, x1 has
weight (k + 2)(k + 1)/2− 2.

Next x2 acquires the weight from X2 and almost all the remaining weight on R′.
That is, x2 acquires weight from the following: (1) v1, (2) v2 and w2,2, and (3) for
3 ≤ j ≤ k, all of vj and {wi,j : j > i}. After this phase, x2 has weight k(k+1)/2+ 1.

Besides x1 and x2, weight remains on w1,1, w1,2, x3, and X3. If g = 5, then weight
also remains on x4, x5, and X5 (note that X4 ⊂ R′ when g = 5). Since w1,1 and w1,2

have u1 as a common neighbor, their neighbors in X3 are distinct; move their weight
to X3. Since k ≥ 3, there is another vertex in X3; move its weight to x3. Now x3 can
aquire the remaining weight from X3, reaching weight k + 3.

Note that k(k+1)/2+ 1 > k+3, so x2 can acquire the weight from x3. If g = 5,
then next x5 acquires the weight from x4 and X5, reaching weight k + 2, and x1 can
acquire this weight since (k + 2)(k + 1)/2 − 2 > k + 2. Whether g is 3 or 5, end by
combining x1 and x2.
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6. Operations on graphs. We now consider the effect of edge deletion on the
acquisition number. We show that the effect can be large, as there are graphs G
having an edge e such that at(G) = 1 and at(G − e) ∈ Θ(

√
|V (G)|). We will also

show that always at(G− e)− at(G) ∈ O(
√

|V (G)|).
We begin with a lemma about the amount of weight that can move to one vertex.

Lemma 6.1. Let T be a tree, with v ∈ V (T ), and suppose some acquisition
protocol puts weight w on v. If 1 ≤ k ≤ w, then there is a protocol that puts weight k
on v.

Proof. We use induction on k. The base case k = 1 is clear. Also, the case k = w
is given, so assume k < w.

Let A be a protocol that yields weight w on v. Let v1, . . . , vt be the neighbors of
v that transmit weight to v, indexed by their order in A, and let wi be the amount
of weight sent from vi to v. Let j be the largest integer such that 1 +

∑j
i=1 wi ≤ k,

and let k′ = k− 1−
∑j

i=1 wi. Let T
′ be the component of T − vvj+1 containing vj+1.

The restriction of A to T ′ puts weight wj+1 on vj+1, since weight does not move
to vj+1 from v. Since k′ < k, the induction hypothesis yields a protocol A′ on T ′

putting weight k′ on vj+1. To put weight k on v, run the restriction of A on T −V (T ′)
until it moves weight from vj to v, then run A′ on T ′, and finally move the resulting
weight on vj+1 to v.

Recall that the rooted acquisition trees are the trees with acquisition number 1.

Lemma 6.2. Let (T, r) be an n-vertex rooted acquisition tree containing an edge
rv. If T ′ is the component of T − rv containing r, then a(T ′) ≤ 2

√
n.

Proof. Index the components of T − r as T1, . . . , Tk so that |V (T1)| ≤ · · · ≤
|V (Tk)|. Let vi be the root of Ti, with vq = v. By the recursive characterization of
rooted acquisition trees, Ti is a rooted acquisition tree, so a(Ti) = 1 for all i.

Let t be the least index such that |V (Tt)| >
√
n, if some such index exists, and

otherwise let t = k + 1. Note that t ≥ k − √
n. Define a total acquisition protocol

for T ′ as follows. Transfer all weight from
⋃q−1

i=1 Ti onto r. Next, transfer weight
|V (Ti−1)| from Ti to r for q + 1 ≤ i ≤ t − 1; this is possible by Lemma 6.1. Finally,
transfer all weight from Ti to vi for i ≥ t, leaving this weight on vi. This protocol
establishes the following bound on at(T − e):

at(T − e) ≤ 1 +

t∑
i=q+1

(|V (Ti)| − |V (Ti−1)|) + max{k − t, 0} ≤ 1 + |V (Tt−1)|

+
√
n ≤ 2

√
n.

We now consider deleting an arbitrary edge in a rooted acquisition tree.
Lemma 6.3. If (T, r) is an n-vertex rooted acquisition tree and e ∈ E(T ), then

a(T − e) ≤ 1 + c
√
n, where c = 2

√
2√

2−1
< 6.84.

Proof. Let x0 be the endpoint of e whose distance to r is greater. Let the vertices
of the x0, r-path in T be x0, . . . , xk, with r = xk. Let T

′ = T − {xj−1xj : 1 ≤ j ≤ k}
and let Ti be the component of T ′ containing xi (see Figure 6.1). Since T ′ is a
spanning subgraph of T − e, we have at(T − e) ≤ at(T

′).
For 0 ≤ i ≤ k − 1, let Si be the component of T − xixi+1 containing xi, and let

Sk = T . By the recursive definition, (Si, xi) is a rooted acquisition tree, for each i.
Thus at(T0) = 1. For 1 ≤ i ≤ k, Lemma 6.2 allows all the weight from Ti to be moved
to at most 2

√
|V (Si)| vertices (Ti plays the role of T

′ in the statement of Lemma 6.2).
Therefore
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•

•

•

•

T0 T1

x0

x1

Ti Tk

xi

xk

Fig. 6.1. The subgraph T ′ of T .

at(T
′) ≤ 1 +

k∑
i=1

2
√
|V (Si)|.(6.1)

Since (Si, xi) is a rooted acquisition tree, |V (Si−1)| ≤ 1
2 |V (Si)|. With |V (Sk)| =

n, it follows that |V (Si)| ≤ n/2k−i. Thus we establish the following bound on at(T ):

at(T ) ≤ at(T − e) ≤ 1 +

k∑
i=1

2

√
n

2k−i
≤ 1 + 2

√
n

( √
2√

2− 1

)
.

The bound extends to all graphs.
Corollary 6.4. If e is an edge of an n-vertex graph G, then at(G − e) ≤

at(G) + 6.84
√
n.

Proof. If at(G) = k, then G contains k acquisition trees T1, . . . , Tk that together
span V (G). If e does not belong to any of these trees, then at(G − e) = at(G).
If e ∈ E(Ti), then at(Ti − e) ≤ 6.84

√
n + 1 from Lemma 6.3, and at(Tj) = 1 for

j 
= i.
The order of growth in these upper bounds cannot be reduced.
Theorem 6.5. For each positive integer n, there is an n-vertex rooted acquisition

tree T having an edge e such that at(T − e) ≥
√
n/2.

Proof. Let � = �lg
√
n� and m = �n/2�� − 1. We construct a tree T of diameter

4 with central vertex r. The neighbors of r are v1, . . . , v�+m. For 1 ≤ i ≤ �, vertex
vi has degree 2i−1. The total number of vertices in the subtree consisting of r, its
children v1, . . . , v�, and their leaf neighbors is 2�. For i > �, vertex vi has degree 2�

or 2� − 1, chosen so T has n vertices. By construction, the r-greedy protocol on T
transfers all weight to r, so at(T ) = 1.

Let e = rv1; we show at(T − e) ≥
√
n/2. Let A be an optimal protocol on T − e.

If no weight moves from vi to r for i > �, then at(T − e) ≥ m+ 1, since v1 is isolated
in T − e. Since m = �n/2�� − 1 and � = �lg

√
n�, we have at(T − e) ≥

√
n/2 in this

case.
If A transfers weight from vi to r for some i > �, then let vq be the first such

vertex. Since v1 is not available, r has only � − 1 neighbors that can send it weight
before all neighbors with index greater than �. Thus the weight on r is at most 2�−1

before r receives weight from vq. Hence vq sends weight at most 2�−1 to r. Since
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d(vq) ≥ 2� − 1, at least 2�−1 − 1 leaf neighbors of vq retain their weight in A. Also v1
is isolated in T − e, so weight remains on at least 2�−1 vertices. Hence at(T − e) ≥√
n/2.

7. Graph products. In this section we consider the behavior of acquisition
number under graph products. Let G�H and G �H denote the Cartesian product
and strong product of G and H , respectively. Each has vertex set V (G) × V (H). In
the Cartesian product, (u, v) and (u′, v′) are adjacent if (1) u = u′ and vv′ ∈ E(H)
or (2) v = v′ and uu ∈ E(G). In the strong product, (u, v) and (u′, v′) are adjacent if
u′ ∈ NG[u] and v′ ∈ NH [v]. For each product, the notation is a picture of the product
of K2 with itself.

Proposition 7.1. If G and H are graphs, then at(G � H) ≤ at(G�H) ≤
at(G)at(H).

Proof. First, at(G�H) ≤ at(G�H) is implied by G�H ⊆ G�H .
To show at(G�H) ≤ at(G)at(H), first run the same optimal protocol in each

copy of G. Now all the weight in G�H lies in at(G) copies of H , and the weight on
each vertex of a copy of H is the same. In the at(G) copies of H with positive weight,
run an optimal acquisition protocol for H . This leaves positive weight on exactly
at(G)at(H) vertices.

The bounds in Proposition 7.1 can be arbitrarily loose, even for connected graphs.
Proposition 7.2. Let Gm be the graph with 3m vertices obtained from a path

with vertices v1, . . . , v2m in order by giving each odd indexed vertex a leaf neighbor.
For k ∈ N,

at(G4k�K2) ≤ 3k =
3

4
at(G4k)at(K2)

and

at(G2k �K2) ≤ k =
1

2
at(G2k)at(K2).

Proof. First note that Gm has m “added” leaves, any two of which are separated
by a vertex of degree 2 adjacent to no leaf. By Lemma 2.1, at(Gm) ≥ m. Since the
neighbors of these leaves form a dominating set, by Observation 1.1 equality holds.
Since at(K2) = 1, we have at(Gm)at(K2) = m.

To see that at(G4k�K2) ≤ 3k, delete k − 1 edges from each copy of G4k to get
k copies of G4�K2. Figure 7.1 shows one copy of G4�K2 cut into three groups of
vertices, each inducing a graph with acquisition number 1 (the copies of K2 are not
shown). Therefore at(G4k�K2) ≤ kat(G4�K2) ≤ 3k.

• • • •
• • • • • • • •
• • • •
• • • • • • • •

Fig. 7.1. at(G4�K2) ≤ 3.
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Finally, note that at(G2k � K2) contains k disjoint copies of G2 � K2, each of
which has acquisition number 1, so at(G2k �K2) ≤ k.

We know of only finitely many G and H such that at(G�H) < 1
2at(G)at(H). For

example, at(C5 � C5) = 1, while at(C5)at(C5) = 4. For both the Cartesian product
and the strong product, it remains open how small at can be as a function of at(G)
and at(H).

REFERENCES
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