On $K_{s,t}$ -minors in graphs with given average degree

Alexandr Kostochka *

University of Illinois, Urbana, IL 61801 and Institute of Mathematics, Novosibirsk 630090, Russia E-mail: kostochk@math.uiuc.edu Noah Prince

University of Illinois, Urbana, IL 61801 E-mail: nprince@math.uiuc.edu

September 15, 2006

Abstract

Let D(H) be the minimum d such that every graph G with average degree d has an H-minor. Myers and Thomason found good bounds on D(H) for almost all graphs H and proved that for 'balanced' H random graphs provide extremal examples and determine the extremal function. Examples of 'unbalanced graphs' are complete bipartite graphs $K_{s,t}$ for a fixed s and large t. Myers proved upper bounds on $D(K_{s,t})$ and made a conjecture on the order of magnitude of $D(K_{s,t})$ for a fixed s and $t \to \infty$. He also found exact values for $D(K_{2,t})$ for an infinite series of t. In this paper, we confirm the conjecture of Myers and find asymptotically (in s) exact bounds on $D(K_{s,t})$ for a fixed s and large t.

Keywords: Graph minors, average degree, complete bipartite graphs.

1 Introduction

Recall that a graph H is a *minor* of a graph G if one can obtain H from G by a sequence of edge contractions and vertex and edge deletions. In other words, H is a minor of Gif there is $V_0 \subset V(G)$ and a mapping $f : (V(G) - V_0) \to V(H)$ such that for every $v \in V(H)$, the set $f^{-1}(v)$ induces a nonempty connected subgraph in G and for every $uv \in E(H)$, there is an edge in G connecting $f^{-1}(u)$ with $f^{-1}(v)$.

Mader [4] proved that for each positive integer t, there exists a D(t) such that every graph with average degree at least D(t) has a K_t -minor. Kostochka [1, 2] and Thomason [11] determined the order of magnitude of D(t), and recently Thomason [12] found

^{*}This material is based upon work partially supported by the National Science Foundation under Grants DMS-0099608 and DMS-0400498 and by the grants 02-01-00039 and 00-01-00916 of the Russian Foundation for Basic Research.

the asymptotics of D(t). Furthermore, myers and Fhomason [9, 0], for a general graph H, studied the minimum number D(H) such that every graph G with average degree at least D(H) has an H-minor, i.e., a minor isomorphic to H. They showed that for almost all graphs H, random graphs are bricks for constructions of extremal graphs. On the other hand, they observed that for fixed s and very large t, the union of many K_{s+t-1} with s-1 common vertices does not have any $K_{s,t}$ -minor and has a higher average degree than a construction obtained as a union of random subgraphs.

In view of this, Myers [8, 7] considered $D(K_{s,t})$ for fixed s and large t. The above example of the union of many K_{s+t-1} with s-1 common vertices shows that $D(K_{s,t}) \ge t+2s-3$. Myers proved

Theorem 1 ([8]) Let $t > 10^{29}$ be a positive integer. Then every graph G = (V, E) with more than $\frac{t+1}{2}(|V|-1)$ edges has a $K_{2,t}$ -minor.

This bound is tight for $|V| \equiv 1 \pmod{t}$. Myers noted that probably the average degree that provides the existence of a $K_{s,t}$ -minor, provides also the existence of a $K_{s,t}^*$ -minor, where $K_{s,t}^* = K_s + \overline{K_t}$ is the graph obtained from $K_{s,t}$ by adding all edges between vertices in the smaller partite set. In other words, $K_{s,t}^*$ is the graph obtained from K_{s+t} by deleting all edges of a subgraph on t vertices. Myers also conjectured that for every positive integer s, there exists C = C(s) such that for each positive integer t, every graph with average degree at least C t has a $K_{s,t}$ -minor.

Preparing this paper, we have learned that Kühn and Osthus [3] proved the following refinement of Myers' conjecture.

Theorem 2 ([3]) For every $\epsilon > 0$ and every positive integer s there exists a number $t_0 = t_0(s, \epsilon)$ such that for all integers $t \ge t_0$ every graph of average degree at least $(1 + \epsilon)t$ contains $K_{s,t}^*$ as a minor.

In this paper, we prove a stronger statement but under stronger assumptions: We find asymptotically (in s) exact bounds on $D(K_{s,t})$ for t much larger than s. Our main result is

Theorem 3 Let s and t be positive integers with $t > (180s \log_2 s)^{1+6s \log_2 s}$. Then every graph G = (V, E) with $|E| \ge \frac{t+3s}{2}(|V| - s + 1)$ has a $K_{s,t}^*$ -minor. In particular, $D(K_{s,t}^*) \le t+3s$. On the other hand, for arbitrarily large n, there exist graphs with at least n vertices and average degree at least $t + 3s - 5\sqrt{s}$ that do not have a $K_{s,t}$ -minor.

This confirms the insight of Myers that $D(K_{s,t}^*)$ and $D(K_{s,t})$ are essentially the same for fixed s and large t. It follows from our theorem that the above described construction giving $D(K_{s,t}) \ge t + 2s - 3$ is not optimal for s > 100.

In the next section we describe a construction giving the lower bound for $D(K_{s,t})$. In Section 3 we handle graphs with few vertices. Then in Section 4 we derive a couple of technical statements on contractions and in Section 5 we finish the proof of Theorem 3.

Throughout the paper, $N(x) = \{v \in V : xv \in E\}$ is the open neighborhood of the vertex x, and $N[x] = N(x) \cup \{x\}$ is the closed neighborhood of x. If $X \subseteq V$, then $N(X) = \bigcup_{x \in X} N(x) - X$ and $N[X] = \bigcup_{x \in X} N[x]$. We denote the minimum degree of G by $\delta(G)$.

LOWEI DOULLA

We will need the following old result of Sauer [10]:

Lemma 1 [10] Let $g \ge 5$ and $m \ge 4$. Then for every even $n \ge 2(m-1)^{g-2}$, there exists an n-vertex m-regular graph of girth at least g.

If $2 \le s \le 18$, then $3s - 5\sqrt{s} < 2s - 3$ and the construction above described by Myers and Thomason gives the lower bound. Let $s \ge 19$.

First, we describe the complement $\overline{G(s,t)}$ of a brick G(s,t) for the construction. Let q be the number in $\{\lceil \sqrt{3s} \rceil, 1 + \lceil \sqrt{3s} \rceil\}$ such that t - q is even. Observe that for $s \ge 18$,

$$2.5\sqrt{s} \ge 2 + \lceil \sqrt{3s} \rceil \ge q+1,\tag{1}$$

and $q \ge \lceil \sqrt{3s} \rceil \ge 8$.

By Lemma 1, if $2s + t - q > (q - 3)^{2s-1}$, then there exists a (q - 2)-regular graph F(s,t) of girth at least 2s + 1 with 2s + t - q vertices. Since $t > (180s \log_2 s)^{1+6s \log_2 s}$ and 2s > q, the condition $2s + t - q > (q - 3)^{2s-1}$ holds. Let $G(s,t) = \overline{F(s,t)}$.

 $\textbf{Claim 2.1} \ |E(G(s,t))| \geq 0.5(t+3s-2q)(|V(G(s,t))|-s+1)+(s-1)^2/4.$

PROOF. Since |V(G(s,t))| = 2s + t - q and F(s,t) is (q-2)-regular, the statement of the claim is equivalent to the inequality

$$(2s+t-q)(2s+t-2q+1) \ge (t+3s-2q)(s+t-q+1) + (s-1)^2/2.$$

Open the parentheses: all factors of t cancel out and we get the inequality $s^2 - s \ge q(s-1) + (s-1)^2/2$ which reduces to $s+1 \ge 2q$. The last inequality holds for $s \ge 18$.

Claim 2.2 G(s,t) has no $K_{s,t}$ -minor.

PROOF. Suppose to the contrary that there exist $V_0 \subset V(G(s,t))$ and a mapping f: $(V(G(s,t)) - V_0) \rightarrow V(K_{s,t})$ as in the definition of a minor. Let X be the set of vertices $x \in V(K_{s,t})$ with $|f^{-1}(x)| \geq 2$ and let $V' = V_0 \cup f^{-1}(X)$. Since |V(G(s,t))| = 2s + t - q, we have $|V'| \leq 2(s-q)$.

Let S denote the partite set of s vertices in $K_{s,t}$ and $V'' = f^{-1}(S - X) = f^{-1}(S) - V'$. Then $|V''| \ge q$. Since every $v \in V''$ is adjacent in G(s,t) to every vertex outside of $V'' \cup V'$, the subgraph F' of F(s,t) on $V'' \cup V'$ contains all edges incident with V''. Since the girth of F(s,t) is at least 2s + 1, F' has at most |V''| - 1 edges inside V''. Therefore, F' has at least (q-2)|V''| - (|V''| - 1) edges of F(s,t) incident with V''. If the subgraph F_0 of F' induced by these edges has a cycle, at least half of the vertices of this cycle should be in V'' and therefore, the length of this cycle should be at most $2|V''| \le 2s$, a contradiction to the definition of F(s,t). If F_0 has no cycles, then, by the above, $|V'' \cup V'| \ge 2 + (q-3)|V''|$. Recall that $|V'' \cup V'| \le |V''| + 2(s-q)$, and therefore we have $2(s-q) \ge 2 + (q-4)|V''| \ge 2 + (q-4)q$, i.e. $2s \ge 2 + q(q-2)$. But this does not hold if $s \ge 18$ and $q \ge \sqrt{3s}$. **Claim 2.3** F(s,t) has an independent set of size s - 1.

PROOF. We can construct such a set greedily, since F(s,t) is (q-2)-regular and the number of vertices of F(s,t) is greater than (s-1)(q-1).

Let I be a clique of size s - 1 in G(s, t) that exists by Claim 2.3. Define G(s, t, 1) = G(s, t) and for r = 2, ..., let G(s, t, r) be the union of G(s, t, r - 1) and G(s, t) with the common vertex subset I. In other words, we glue every vertex of I in G(s, t, r - 1) with its copy in G(s, t).

Claim 2.4 For every $r \ge 1$, (a) |V(G(s,t,r))| = s - 1 + r(s+t-q+1);(b) $|E(G(s,t,r))| \ge 0.5(t+3s-2q)(|V(G(s,t,r))|-s+1) + {s-1 \choose 2} - r\frac{s^2}{4};$ (c) G(s,t,r) has no $K_{s,t}$ -minor.

PROOF. Statement (a) is immediate and we will prove (b) and (c) by induction on r. For r = 1, (b) is clear from Claim 2.1 and (c) is equivalent to Claim 2.2. Suppose that the claim holds for $r \leq r_0 - 1$.

Suppose first that $G(s,t,r_0)$ contains a $K_{s,t}$ -minor G'. Since the common part of $G(s,t,r_0-1)$ and G(s,t) is a clique of size s-1 and neither of these graphs has a $K_{s,t}$ -minor, each of $G(s,t,r_0-1)-I$ and G(s,t)-I must contain a branching vertex of $K_{s,t}$. But then there are no s internally disjoint paths between these vertices, a contradiction.

By construction, $|V(G(s,t,r_0))| - |V(G(s,t,r_0-1))| = s + t - q + 1$ and by Claim 2.1,

$$|E(G(s,t,r_0))| - |E(G(s,t,r_0-1))| = |E(G(s,t))| - \binom{s-1}{2} \ge 0.5(t+3s-2q)(s+t-q+1) - \frac{s^2}{4}.$$

This together with the induction assumption proves (b).

Now, by part (b) of Claim 2.4, if $|V(G(s,t,r))| \ge st + 4s^2$ (to be crude), then |E(G(s,t,r))| > 0.5(t+s-2q-2)|V(G(s,t,r))|. Since this happens whenever $r \ge s+1$, we conclude from (1) that for large r, G(s,t,r) has average degree greater than

$$t + 3s - 2q - 2 \ge t + 3s - 5\sqrt{s}.$$

This proves the lower bound.

J GIAPHS WITH ICM ACTIFICS

In this section, we prove the upper bound of Theorem 3 for graphs with at most 10t/9 vertices.

Lemma 2 Let m, s, and n be positive integers such that

$$n > 10s(30m)^m$$
. (2)

Let G = (V, E) be a graph with |V| = n and $|E| \leq 0.5mn$ such that

$$\deg(v) \le 0.6n \qquad \forall v \in V. \tag{3}$$

Then there exist an $L \subset V$ with $|L| \leq m-1$ and s disjoint pairs (x_i, y_i) of vertices in G - L such that $\operatorname{dist}_{G-L}(x_i, y_i) > 2$ for all $i = 1, \ldots, s$.

PROOF. For every two distinct vertices x, y in G, let A(x, y) denote the set of common neighbors of x and y and a(x, y) = |A(x, y)|. For $a(G) = \sum_{x,y \in V} a(x, y)$, we have

$$a(G) \le \sum_{v \in V} {\binom{\deg(v)}{2}} \le {\binom{0.6n}{2}} \frac{mn}{0.6n} < 0.3n(n-1)m.$$
(4)

Let $V_0 = \{v \in V : \deg_G(v) \ge 0.1n/m\}$ and $V_1 = V - V_0$. For every two distinct vertices x, y in G and i = 0, 1, let $A_i(x, y) = A(x, y) \cap V_i$ and $a_i(x, y) = |A_i(x, y)|$. Also, for i = 0, 1, let $a_i(G) = \sum_{x,y \in V} a_i(x, y)$. Similarly to (4),

$$a_1(G) \le \sum_{v \in V_1} {\operatorname{deg}(v) \choose 2} \le {\binom{0.1n/m}{2}} \frac{mn}{0.1n/m} < 0.05n(n-1).$$
 (5)

Let $W = \{(x,y) \in \binom{V}{2} : xy \notin E, a_1(x,y) = 0, \text{ and } a_0(x,y) \leq m-1\}$. Then $|W| \geq \binom{n}{2} - |E| - a_1(G) - a(G)/m$. Hence, by (5) and (4),

$$|W| \ge \binom{n}{2} - \frac{mn}{2} - \frac{n(n-1)}{20} - 0.3n(n-1) = \frac{n}{2}(0.3(n-1) - m) > \frac{n(n-1)}{9}.$$
 (6)

Consider the auxiliary graph H with the vertex set V and edge set W. By (6), H has a matching M with $|M| \ge n/9$. Since the number of distinct subsets of V_0 of size at most m-1 is $\sum_{k=0}^{m-1} \binom{10m^2}{k} < \binom{10m^2}{m} < (10em)^m$, there exists an $L \subset V_0$ with $|L| \le m-1$ such that for the set $M_L = \{xy \in M : A_0(x, y) = L\}$ we have (remembering (2))

$$|M_L| \ge \frac{n/9}{(10em)^m} > s.$$

But then L and the pairs in M_L are what we need.

- A graph G is (s, t)-irreducible if
- (i) $v(G) \ge s$;

(ii) $e(G) \ge 0.5(t+3s)(v(G)-s+1);$

(iii) G has no minor G' possessing (i) and (ii).

For an edge e of a graph G, $t_G(e)$ denotes the number of triangles in G containing e.

Lemma 5 If G is an (s, ι) -irreducible graph and $\iota > s$, then (a) $v(G) \ge t + 2s + 1;$ (b) $t_G(e) \ge 0.5(t + 3s - 1)$ for every $e \in E(G);$ (c) if $W \subset V(G)$ and $v(G) - |W| \ge s$, then W is incident with at least 0.5(t + 3s)|W|edges; in particular, $\delta(G) \ge 0.5(t + 3s);$ (d) G is s-connected; (e) e(G) < 0.5(t + 3s)v(G).

PROOF. The number n of vertices of G should satisfy the inequality $n(n-1)/2 \ge 0.5(t+3s)(n-s+1)$. The roots of the polynomial $f(n) = n^2 - n - (t+3s)(n-s+1)$ are

$$n_{1,2} = \frac{1}{2} \left(t + 3s + 1 \pm \sqrt{(t + 3s + 1)^2 - 4(t + 3s)(s - 1)} \right).$$

Observe that $(t+3s+1)^2 - 4(t+3s)(s-1) > (t+s+1)^2$ for $t \ge s^2$. Therefore, either n < s or n > t+2s+1. This together with (i) proves (a).

Let G_e be obtained from G by contracting e. Then $e(G_e) = e(G) - t_G(e) - 1$. By (iii), $e(G_e) \le 0.5(t+3s)(v(G_e) - s + 1) - 0.5 = 0.5(t+3s)(v(G) - s) - 0.5$. This together with (ii) yields

$$t_G(e) = e(G) - e(G_e) - 1 \ge 0.5(t+3s) + 0.5 - 1 = 0.5(t+3s-1),$$

i.e., (b) holds.

Observe that (c) follows from the fact that G - W does not satisfy (ii).

Assume that there is a partition (V_1, V_0, V_2) of V(G) such that $|V_0| \leq s - 1$ and G has no edges connecting V_1 with V_2 . By (c), $|V_1|, |V_2| \geq 0.5(t+3s) - (s-1)$. Let G_i be the subgraph of G induced by $V_0 \cup V_i$, $n_i = v(G_i)$, and $e_i = e(G_i)$, i = 1, 2. Since G_1 and G_2 are minors of G, (iii) yields $e_i < 0.5(t+3s)(n_i - s + 1)$ for i = 1, 2. But then

$$e(G) \le e_1 + e_2 < \frac{1}{2}(t+3s)\Big((n_1-s+1) + (n_2-s+1)\Big).$$

Since $n_1 + n_2 - s + 1 = v(G) + |V_0| - s + 1 \le v(G)$, this contradicts (ii).

If (e) does not hold for G, then for any $e \in E(G)$, G - e satisfies (ii), a contradiction to (iii).

Lemma 4 Suppose that $t > (180s \log_2 s)^{1+6s \log_2 s}$. If H satisfies (i) and (ii) and $v(H) \le t + 6s \log_2 s + 2s$, then H has a $K_{s,t}^*$ -minor.

PROOF. Let H_0 be an (s, t)-irreducible minor of H. H_0 also has at most $t+6s \log_2 s+2s$ vertices. Suppose that $v(H_0) = n = t + 2s + m$. By Lemma 3(a) and conditions of our lemma, $1 \le m \le 6s \log_2 s$. Let G be the complement of H_0 . By (ii), we have

$$e(G) \le \binom{n}{2} - \frac{1}{2}(t+3s)(n-s+1) = \frac{1}{2}(n^2 - n - (n+s-m)(n-s+1)) = \frac{1}{2}(n^2 - n - (n+s-m$$

$$= \frac{1}{2}((m-2)n + (s-1)(s-m)) < \frac{1}{2}.$$

By (c) of Lemma 3, the degree of every vertex in G is at most n - 1 - 0.5(t + 3s) = 0.5(t + s) + m - 1 < 0.6n. Applying Lemma 2 to G we find an $L \subset V(G)$ with $|L| \le m - 1$ and s disjoint pairs of vertices (x_i, y_i) , $i = 1, \ldots, s$ such that $\operatorname{dist}_{G-L}(x_i, y_i) > 2$ for all $i = 1, \ldots, s$. Then contracting the edges $x_i y_i$ in the graph $H'_0 = H_0 - L$ we get a $K^*_{s,n-|L|-s}$ -minor.

Lemma 5 Let m, s, k, and n be positive integers such that $k \ge 10, s \ge 3, m \le 0.1n$

$$n > 10sk^2$$
, and $(5/9)^{k-2}m < 1.$ (7)

Let G = (V, E) be a graph with |V| = n and $|E| \le 0.5mn$ such that

$$\deg(v) \le \frac{5}{9}n \qquad \forall v \in V.$$
(8)

Then there exist s pairwise disjoint k-tuples $X_i = \{x_{i,1}, \ldots, x_{i,k}\}$ of vertices in G such that for every $i = 1, \ldots, s$,

(q1) no vertex is a common neighbor of all the vertices in X_i ;

(q2) $G(X_i)$ does not contain any complete bipartite graph $K_{j,k-j}$, $1 \le j \le k/2$.

PROOF. First, we count all k-tuples not satisfying (q1), i.e. all $X = \{x_1, \ldots, x_k\}$ having a common neighbor. This number q_1 is at most

$$\sum_{v \in V} \binom{\deg(v)}{k} \le \binom{\frac{5}{9}n}{k} \frac{mn}{5n/9} \le (5/9)^{k-1} \binom{n}{k} m.$$

Thus by (7), $q_1 < \frac{5}{9} \binom{n}{k}$.

Let $V_0 = \{v \in V : \deg_G(v) \ge n/3\}$ and $V_1 = V - V_0$. The number q'_2 of k-tuples X that contain a complete bipartite graph $K_{j,k-j}$, $1 \le j \le k/2$ such that the partite set of size j contains a vertex in V_1 does not exceed

$$\sum_{v \in V_1} \binom{\deg(v)}{\lceil \frac{k}{2} \rceil} \binom{n}{\lfloor \frac{k}{2} \rfloor - 1} \leq \binom{n}{\lfloor \frac{k}{2} \rfloor - 1} \binom{n/3}{\lceil \frac{k}{2} \rceil} \frac{mn}{n/3}$$

Since $k \ge 10$, $m \le 0.1n$, and $n > 10sk^2 \ge 300k$, the last expression is at most

$$\binom{n}{k-1} 3^{-k/2} 3m \le \binom{n}{k} 3^{-0.5k+1} \frac{k}{n-k+1} m \le \frac{1}{80} \binom{n}{k}.$$

Similarly, the number q_2'' of k-tuples X that contain a complete bipartite graph $K_{j,k-j}$, $1 \le j \le k/2$ such that the partite set of size j contains only vertices in V_0 does not exceed

$$\sum_{j=1}^{\lfloor \frac{k}{2} \rfloor} \binom{|V_0|}{j} \binom{\frac{5}{9}n}{k-j} \le \binom{|V_0| + \frac{5}{9}n}{k} \le \left(\frac{3m+5n/9}{n}\right)^k \binom{n}{k} \le$$

$$\leq \left(\frac{n}{90}\right) \binom{n}{k} < 0.211\binom{n}{k}.$$

Hence the total number q of k-tuples X not satisfying (q1) or (q2) is at most

$$q_1 + q'_2 + q''_2 < \binom{n}{k} \left(\frac{5}{9} + \frac{1}{80} + 0.211\right) < 0.78 \binom{n}{k}.$$

Therefore, there are at least $0.22 \binom{n}{k}$ good k-tuples, i.e., k-tuples satisfying (q1) and (q2). Now, we choose disjoint good k-tuples X_1, \ldots, X_s one by one in a greedy manner. Let X_1 be any good k-tuple. Suppose that we have chosen $1 \leq i \leq s - 1$ good k-tuples X_1, \ldots, X_i . The set $X = \bigcup_{j=1}^i X_j$ meets at most $\binom{n}{k} - \binom{n-k(s-1)}{k}$ good k-tuples. But by (7),

$$\binom{n}{k} - \binom{n-k(s-1)}{k} < \binom{n}{k} \left(1 - \left(\frac{n-sk}{n-k}\right)^k\right) < \binom{n}{k} \left(1 - \left(1 - \frac{sk^2}{n-k}\right)\right) < \frac{1}{10}\binom{n}{k}.$$

Thus, we can choose a good k-tuple X_{i+1} disjoint from X.

Lemma 6 Suppose that $s \ge 3$, $t > (180s \log_2 s)^{1+6s \log_2 s}$. If H satisfies (i) and (ii) and $v(H) \le 10t/9$, then H has a $K_{s,t}^*$ -minor.

PROOF. Let H_0 be an (s, t)-irreducible minor of H. H_0 also has at most 10t/9 vertices. Let $v(H_0) = n = t+m$. By Lemma 4 and conditions of our lemma, $6s \log_2 s + 2s \leq m \leq t/9$. Let G be the complement of H_0 . We want to prove that G satisfies the conditions of Lemma 5 for $k = \max\{10, 2 + \lceil \log_{9/5} m \rceil\}$. Inequalities $k \geq 10, s \geq 3$, and $m \leq 0.1n$ follow from the definitions under the conditions of our lemma. So does the second part of (7). The inequality $|E(G)| \leq 0.5mn$ follows from (ii) as in the proof of Lemma 4. By (c) of Lemma 3, the degree of every vertex in G is at most

$$n - 1 - 0.5(t + 3s) = 0.5(t - 3s) + m - 1 < 0.5n + (m - 3s)/2 < 5n/9.$$

Thus, we need only to verify the first part of (7), namely, $n > 10sk^2$. If k = 10, then this is implied by $n > t \ge (180s \log_2 s)^{1+6s \log_2 s} > 1000s$.

Suppose now that $k = 2 + \lceil \log_{9/5} m \rceil$. Since $m \le t/9$,

$$k = 2 + \lceil \log_{9/5} m \rceil < 3 + \log_{9/5}(t/9) < \log_{9/5} t < 1.2 \log_2 t,$$

in order to verify $n > 10sk^2$, it is sufficient to check that

$$t > 10s(1.2\log_2 t)^2. \tag{9}$$

Observe that the derivative of the random (9) with respect to t is equal to $20s(1.2 \log_2 t) \frac{1}{t \ln 2}$ which is less than 1 for $t > (180s \log_2 s)^{1+6s \log_2 s}$. Therefore, it is enough to check (9) for $t = (180s \log_2 s)^{1+6s \log_2 s}$. Since $180s \log_2 s > 10s \cdot 1.2^2$, this would follow from

$$(180s\log_2 s)^{3s\log_2 s} > \log_2(180s\log_2 s)^{1+6s\log_2 s},$$

which is easy to verify. Thus we can apply Lemma 5 to G.

Let X_1, \ldots, X_s be the k-tuples provided by Lemma 5. The conditions (q1) and (q2) mean that every X_i is a connected dominating set in H_0 . Thus, H_0 has a $K_{s,n-sk}^*$ -minor.

We need now only to check that $n - sk \ge t$, i.e., $sk \le m$. Observe first that $m \ge 6s \log_2 s + 2s \ge s(6 \log_2 3 + 2) > 11s$. This verifies $sk \le m$ for $k \le 10$. Let $k = 2 + \lceil \log_{9/5} m \rceil$. As above, $k < 1.2 \log_2 m$ and it is enough to verify the inequality $1.2s < m/\log_2 m$ for $m = 6s \log_2 s$. In this case, the last inequality reduces to $1 < \frac{5 \log_s}{\log_2(6s \log_2 s)}$ which in turn reduces to $s^5 > 6s \log_2 s$. This is true for $s \ge 3$.

4 Auxiliary statements

Lemma 7 Let G be a connected graph. If $\delta(G) \ge k$, |V(G)| = n, then there exists a partition $V(G) = W_1 \cup W_2 \cup \ldots$ of V(G) such that for every i, (a) the subgraph of G induced by $\bigcup_{j=1}^i W_j$ is connected; (b) $|W_i| \le 3$; (c) $W(G) = \int_{i=1}^{i} W_i W_i = (n-k-1)^i$ (10)

$$V(G) - \bigcup_{j=1}^{i} N[W_j] \le n \left(\frac{n-k-1}{n}\right)^i.$$

$$(10)$$

Furthermore, one can have $|W_1| = 1$.

PROOF. For i = 1, $n \left(\frac{n-k-1}{n}\right)^i = n-k-1$, so we can take $W_1 = \{w_1\}$, where w_1 can be any vertex. Suppose that the lemma holds for i = m-1 and let $X_m = V(G) - \bigcup_{j=1}^{m-1} N[W_j]$. Then

$$\sum_{v \in X_m} |N[v]| \ge (k+1)|X_m|$$

and hence there exists some w_m that belongs to at least $(k+1)|X_m|/n$ sets N[v] for $v \in X_m$. We can choose w_m as close to $\bigcup_{j=1}^{i-1} W_j$ as possible. Since every vertex on distance 3 from $\bigcup_{j=1}^{i-1} W_j$ dominates at least k+1 vertices in $V(G) - \bigcup_{j=1}^{i-1} W_j$, the distance from $\bigcup_{j=1}^{i-1} W_j$ to w_m is at most 3. Therefore, we can form W_m from w_m and the vertices of a shortest path P_m from $\bigcup_{j=1}^{i-1} W_j$ to w_m .

Lemma 8 Let $\alpha \geq 2$. If G is a connected graph, $\delta(G) \geq k$, and $n \leq \alpha(k+1)$, then there exists a dominating set $A \subseteq V(G)$ such that G[A] is connected and

$$|A| \le 3\log_{\alpha/(\alpha-1)} n. \tag{11}$$

FROOF. Let $v(G) = w_1 \cup w_2 \cup \ldots$ be a partition guaranteed by Lemma 7. Let $m = \lfloor \log_{\alpha/(\alpha-1)} n \rfloor$. Then $A' = \bigcup_{j=1}^m W_j$ does not dominate at most

$$n\left(1-\frac{1}{\alpha}\right)^m = \left(\frac{\alpha}{\alpha-1}\right)^x$$

vertices, where x is the fractional part of $\log_{\alpha/(\alpha-1)} n$. Since $\alpha \ge 2$, we have $\left(\frac{\alpha}{\alpha-1}\right)^x < 2$. Thus, A' dominates all but at most one vertices in G. Suppose that the non-dominated vertex (if exists) is w_0 . Since G is connected, there is a common neighbor y_0 of w_0 and A'. Then $A = A' + y_0$ is a connected dominating set in G and $|A| = |A'| + 1 \le 1 + 3(m-1) + 1 < 3 \log_{\alpha/(\alpha-1)} n$.

Lemma 9 Let s, k, and n be positive integers and $\alpha \geq 2$. Suppose that $n \leq \alpha(k+1)$. Let G be a $(3s \log_{\alpha/(\alpha-1)} n)$ -connected graph with n vertices and $\delta(G) \geq k+3(s-1) \log_{\alpha/(\alpha-1)} n$. Then V(G) contains s disjoint subsets A_1, \ldots, A_s such that for every $i = 1, \ldots, s$, (i) $G[A_i]$ is connected; (ii) $|A_i| \leq 3 \log_{\alpha/(\alpha-1)} n$; (iii) A_i dominates $G - A_1 - \ldots - A_{i-1}$.

PROOF. Apply Lemma 8 s times.

A subset X of vertices of a graph H is k-separable if $X \cup N(X) \neq V(H)$ and $|N(X) - X| \leq k$.

Lemma 10 Let H be a graph and k be a positive integer. If C is an inclusionwise minimal k-separable set in H and S = N(C) - C, then the subgraph of H induced by $C \cup S$ is $(1 + \lfloor \frac{k}{2} \rfloor)$ -connected.

PROOF. Assume that there is $D \subseteq S \cup C$ with $|D| \leq \lceil \frac{k}{2} \rceil$ that separates $H[S \cup C]$ into H_1 and H_2 . Let H_1 be those of the two parts with fewer (or equal) vertices in S. Then the set $S_1 = D \cup (S \cap V(H_1))$ has at most k vertices and is a separating set in H. Moreover, a component of $H - S_1$ is a proper part of C, a contradiction.

Lemma 11 Let G be a $100s \log_2 t$ -connected graph. Suppose that G contains a vertex subset U with $t + 100s \log_2 t \le |U| \le 3t$ such that $\delta(G[U]) \ge 0.4t + 100s \log_2 t$. Then G has a $K_{s,t}^*$ -minor.

PROOF. Run the following procedure. Let S_1 be a smallest separating set in G[U]. If $|S_1| \ge 20s \log_2 t$, then stop. Otherwise, let U'_1, U'_2, \ldots be the components of $G[U] - S_1$. If some of these components has a separating set S_2 with $|S_2| < 20s \log_2 t$, then let U'_1, U'_2, \ldots be the components of $G[U] - S_1 - S_2$ and so on. Consider the situation after four such steps (if we did not stop earlier).

Claim 4.1 If we are not stop after step 5, then at most two components of $G[0] - S_1 - S_2 - S_3 - S_4$ are not $20s \log_2 t$ -connected.

Proof. Let $H = G[U] - S_1 - S_2 - S_3 - S_4$. By construction, H has at least 5 components and

$$\delta(H) \ge \delta(G[U]) - 4 \cdot 20s \log_2 t \ge 0.4t + 20s \log_2 t.$$
(12)

It follows that each component of H has more than $0.4t + 20s \log_2 t$ vertices. Moreover, if a component H' of H has fewer than 0.8t vertices, then each two vertices in H' have at least $40s \log_2 t$ common neighbors, and thus H' is $40s \log_2 t$ -connected. Therefore, if some three components of H are not $20s \log_2 t$ -connected, then $|U| \ge |V(H)| \ge 3 \cdot 0.8t + 2 \cdot 0.4t = 3.2t$, a contradiction.

Claim 4.2 For some $1 \le m \le 3$, there are m vertex disjoint subgraphs H_1, \ldots, H_m of G[U] such that 1) H_i is $20s \log_2 t$ -connected for $i = 1, \ldots, m$;

2) $\delta(H_i) \ge 0.4t + 20s \log_2 t$ for $i = 1, \dots, m$;

3) $|V(H_1)| + \ldots + |V(H_m)| \ge t + m20s \log_2 t.$

Proof. Note that we stopped immediately after Step 4 or earlier. This implies 2). If we stopped before Step 4, then each component of $G[U] - S_1 - \ldots$ is $20s \log_2 t$ -connected. By Claim 4.1, if we stopped after Step 4, then at least three of the components are $20s \log_2 t$ -connected. If we have at least three such components, then together they contain more than $3(0.4t + 20s \log_2 t) > t + 60s \log_2 t$ vertices. If we have at most two components, then we stopped before Step 2 and the total number of vertices in them is at least $|U| - 20s \log_2 t \ge t + 80s \log_2 t$. This proves the claim.

To finish the proof of the lemma, we consider 3 cases according to the smallest value of m for which Claim 4.2 holds.

CASE 1. m = 1. Since $|V(H_1)| \le |U| \le 3t$, we have $|V(H_1)|/0.4t \le 7.5$ and

$$3\log_{\frac{7.5}{6.5}} 3t = \frac{3}{\log_2 \frac{75}{65}} \log_2 3t < 15\log_2 3t \le 20\log_2 t$$

whenever $t \ge 27$. It follows that we can apply Lemma 9 to H_1 . By this lemma, there are s disjoint subsets A_1, \ldots, A_s of $V(H_1)$ such that for every $i = 1, \ldots, s$,

(i) $G[A_i]$ is connected;

(ii) $|A_i| \le 3\log_{\frac{75}{65}} 3t \le 20\log_2 t;$

(iii) A_i dominates $H_1 - A_1 - ... - A_{i-1}$.

Since $|V(H_1) - A_1 - \ldots - A_s| \ge t + 20s \log_2 t - s \cdot 20 \log_2 t = t$, H_1 has a $K_{s,t}^*$ -minor. CASE 2. m = 2. Since Case 1 does not hold, we know that Statement 3) of Claim 4.2 fails for both H_i , so $|V(H_i)| \le t + 20s \log_2 t \le 1.2t$ for i = 1, 2. We can apply Lemma 9 to each of H_1 and H_2 with $\alpha = \frac{1.2t}{0.4t} = 3$. Hence, there exist disjoint subsets A_1^1, \ldots, A_s^1 of $V(H_1)$ and disjoint subsets A_1^2, \ldots, A_s^2 of $V(H_2)$ such that for every $i = 1, \ldots, s$ and every j = 1, 2, (1) $G[A_i]$ is connected;

(ii) $|A_i^j| \le 3 \log_{3/2} 1.2t \le 7 \log_2 t;$

(iii) A_i^j dominates $H_j - A_1^j - \ldots - A_{i-1}^j$.

For j = 1, 2, let $A_j = \bigcup_{i=1}^s A_i^j$ and $V_j = V(H_j) - A_j$. Since the connectivity of $G - A_1 - A_2$ is at least $100s \log_2 t - 14s \log_2 t$, there are s vertex disjoint V_1, V_2 -paths P_1, \ldots, P_s in $G - A_1 - A_2$. We may assume that every P_i has exactly one vertex in V_1 and one vertex in V_2 . For $i = 1, \ldots, s$, define $A_i^0 = A_i^1 \cup A_i^2 \cup V(P_i)$. Then by (i), $G[A_i^0]$ is connected for every *i*. By (iii), each A_i^0 dominates $U_0 = (V_1 \cup V_2) - \bigcup_{j=1}^s V(P_j)$ and A_k^0 for k > i. Note that

$$\begin{split} |U_0| \geq |V_1 \cup V_2| - 2s \geq |V(H_1)| + |V(H_2)| - |A_1| - |A_2| - 2s \geq \\ \geq t + 40s \log_2 t - 14 \log_2 t - 2s > t. \end{split}$$

Hence $G[V(H_1) \cup V(H_2) \cup \bigcup_{j=1}^s V(P_j)]$ has a $K_{s,t}^*$ -minor.

CASE 3. m = 3. Since Cases 1 and 2 do not hold, we can assume that $|V(H_i)| \le 0.8t$ for i = 1, 2, 3. To see this, suppose without loss of generality that $|V(H_1)| \ge 0.8t$. Then $|V(H_2)| \ge \delta(H_2) > 0.4t$, so

$$|V(H_1)| + |V(H_2)| \ge 1.2t > t + 40s \log_2 t,$$

and Case 2 would apply, a contradiction.

Now we can apply Lemma 9 to each of H_1 , H_2 , and H_3 with $\alpha = 2$. Hence, there exist disjoint subsets A_1^j, \ldots, A_s^j of $V(H_j)$, j = 1, 2, 3 such that for every $i = 1, \ldots, s$ and every j = 1, 2, 3,

(i) $G[A_i^j]$ is connected;

(ii) $|A_i^j| \le 3 \log_2 0.8t < 3 \log_2 t;$

(iii) A_i^j dominates $H_j - A_1^j - \dots - A_{i-1}^j$. For j = 1, 2, 3, let $U_j = V(H_j) - \bigcup_{i=1}^s A_s^j$. Then $|U_i + |U_i| > 2(0.4t + 20s \log t) - 2s(3\log t) - 1.2t + 51sk$

$$|U_1 \cup U_2 \cup U_3| \ge 3(0.4t + 20s \log_2 t) - 3s(3 \log_2 t) = 1.2t + 51s \log_2 t$$

For j = 1, 2, 3, choose $X_j \subset U_j$ with $|X_1| = 2s$ and $|X_2| = |X_3| = s$. The connectivity of the graph $H_0 = G - \bigcup_{j=1}^3 \bigcup_{i=1}^s A_s^j$ is at least $100s \log_2 t - 9s \log_2 t = 91s \log_2 t$. Hence there are 2s vertex disjoint $(X_1, X_2 \cup X_3)$ -paths P_1, \ldots, P_{2s} in H_0 . Let us renumber the P_i -s so that every P_i for an odd i is an (X_1, X_2) -path (and every P_i for an even i is an (X_1, X_3) -path). Then we can find 2s subpaths Q_1, \ldots, Q_{2s} of P_1, \ldots, P_{2s} such that for every $k = 1, \ldots, s$,

(a) $Q_{2k-1} \cup Q_{2k} \subseteq P_{2k-1} \cup P_{2k};$

- (b) $|V(Q_{2k-1} \cup Q_{2k}) \cap (U_1 \cup U_2 \cup U_3)| \le 4;$
- (c) $V(Q_{2k-1} \cup Q_{2k}) \cap U_j \neq \emptyset$ for every j = 1, 2, 3.

For i = 1, ..., s let $F_i = Q_{2i-1} \cup Q_{2i} \cup A_i^1 \cup A_i^2 \cup A_i^3$. Then

- (i) $G[F_i]$ is connected for every i;
- (ii) F_i -s are pairwise disjoint;
- (iii) F_i dominates $U_1 \cup U_2 \cup U_3 \bigcup_{k=1}^{2s} Q_k$ and F_j for j > i. Since $|U_1 \cup U_2 \cup U_3 - \bigcup_{k=1}^{2s} Q_k| \ge 1.2t + 91s \log_2 t - 4s$, G has a $K_{s,t}^*$ -minor.

o rimai argument

Below, G = (V, E) is a minimum counterexample to Theorem 3. In particular, G is (s, t)-irreducible.

CASE 1. G is $200s \log_2 t$ -connected. If G has a vertex v with $t + 100s \log_2 t \le \deg(v) \le 3t - 1$, then G satisfies Lemma 11 with U = N[v] and we are done. Thus, we can assume that every vertex in G has either 'small' $(< t + 100s \log_2 t)$ or 'large' $(\ge 3t)$ degree. Let V_0 be the set of vertices of 'small' degree. If $|V_0| > t + 100s \log_2 t$, then there is some $V'_0 \subseteq V_0$ such that

$$t + 100s \log_2 t \le |\bigcup_{v \in V'_0} N[v]| \le 3t - 1.$$

In this case, we can apply Lemma 11 with $U = \bigcup_{v \in V'_0} N[v]$.

Now, let $|V_0| \le t + 100s \log_2 t$. By Lemma 3(e), the average degree of G is less than t + 3s. Since every vertex outside of V_0 has degree at least 3t, we get

$$0.5t|V_0| + 3t(n - |V_0|) < (t + 3s)n$$

and hence $n < \frac{2.5|V_0|}{2-3s/t} < 3t$. If $n > t+100s \log_2 t$, then we apply Lemma 11 with U = V(G). If $n \le t+100s \log_2 t$, then we are done by Lemma 6.

CASE 2. G is not $200s \log_2 t$ -connected. Let S be a separating set with less than $k = \lceil 200s \log_2 t \rceil$ vertices and $V(G) - S = V_1 \cup V_2$ where vertices in V_1 are not adjacent to vertices in V_2 . Then each of V_1 and V_2 is a k-separable set. For j = 1, 2, let W_j be an inclusion minimal k-separable set contained in V_j and $S_j = N(W_j) - W_j$. By Lemma 10, the graph $G_j = G[W_j \cup S_j]$ is $100s \log_2 t$ -connected.

CASE 2.1. $|W_j \cup S_j| \ge t + 100s \log_2 t$ for some $j \in \{1, 2\}$. Then we essentially repeat the argument of Case 1 with the restriction that the vertices v are taken only in W_j . Since by the minimality of G, the number of edges incident to W_j is less than $0.5(t+3s)|W_j| + 200s \log_2 t|W_j|$, the argument goes through.

CASE 2.2. $|W_j \cup S_j| < t + 100s \log_2 t$ for both $j \in \{1, 2\}$. By Lemma 3(c), we need $|W_j| \ge t - 400s \log_2 t$. Let $H_j = G(W_j)$.

Claim 5.1 (a) $\delta(H_j) \ge 0.5t - 200s \log_2 t;$ (b) H_j is $400s \log_2 t$ -connected.

PROOF. The first statement follows from Lemma 3(c). If S_0 is a separating set in H_j with $|S_0| < 400s \log_2 t$, then the smaller part, say, H_0 , of $H_j - S_0$ has at most $0.5t + 50s \log_2 t$ vertices and $|S_0 \cup S_j| \le 600s \log_2 t$. This contradicts Lemma 3(c).

By the above claim and Lemma 9 (for k = 0.4t and $\alpha = 3$), $V(H_j)$ contains s disjoint subsets A_1^j, \ldots, A_s^j such that for every $i = 1, \ldots, s$, (i) $G[A_i^j]$ is connected;

(ii) $|A_i^j| \le 3 \log_{3/2} |W_j| < 6 \log_2 |W_j|;$

(iii) A_i^j dominates $W_j - A_1^j - \ldots - A_{i-1}^j$.

Since G is s-connected, $|S_j| \geq s$, j = 1, 2, and there are s pairwise vertex disjoint S_1, S_2 -paths P_1, \ldots, P_s . We may assume that the only common vertex of P_i with S_j is p_{ij} . By Lemma 3(b), each p_{ij} has at least $0.5t - 200s \log_2 t$ neighbors in W_j . Thus, we can choose 2s distinct vertices q_{ij} such that $q_{ij} \in W_j - \bigcup_{k=1}^s A_k^j$ and $p_{ij}q_{ij} \in E(G)$.

Define $F_i = A_i^1 \cup A_i^2 \cup V(P_i) + q_{ij}$, $i = 1, \ldots, s$. Then for every $i = 1, \ldots, s$,

- (i) $G[F_i]$ is connected;
- (ii) F_i -s are pairwise disjoint;
- (iii) F_i dominates $\bigcup_{j=1}^2 W_j F_1 \dots F_{i-1}$.

Since

$$\left|\bigcup_{j=1}^{2} W_{j} - F_{1} \dots - F_{i-1}\right| \ge 2(t - 400s \log_{2} t) - 12s \log_{2} 2t - 2s > t,$$

G has a $K_{s,t}^*$ -minor.

Acknowledgement. The authors are grateful to the referees for helpful comments.

References

- [1] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982) 37-58.
- [2] A. V. Kostochka, Lower bound for the Hadwiger number for graphs by their average degree, Combinatorica 4 (4) (1984) 307- 316.
- [3] D. Kühn and D. Osthus, Forcing unbalanced complete bipartite minors, European J. Combin. 26 (2005) 75-81.
- [4] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967) 265-268.
- [5] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972) 86-97.
- [6] J. S. Myers, Graphs without large complete minors are quasi-random, Combinatorics, Probability, and Computing 11 (6) (2002) 571-585.
- [7] J. S. Myers, Extremal theory of graph minors and directed graphs, PhD dissertation, University of Cambridge (2003).
- [8] J. S. Myers, The extremal function for unbalanced bipartite minors, Discrete Math. 271 no. 1-3 (2003) 209-222.
- [9] J. S. Myers, A. Thomason, The extremal function for noncomplete minors, submitted.

- [10] N. Sauer, Extremaleigenschaften regularer Graphen gegebener ramenweite, Ost. Akad. Wissen. Math.-Natur. Kl. S. B II 176 (1967) 9-25.
- [11] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (2) (1984) 261-265.
- [12] A. Thomason, The extremal function for complete minors, J. Combin. Theory B 81 (2) (2001) 318-338.