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Abstract

A Roman dominating function of a graph G is a labeling f : V (G) → {0, 1, 2} such

that every vertex with label 0 has a neighbor with label 2. The Roman domination

number γR(G) of G is the minimum of
∑

v∈V (G) f(v) over such functions. Let G be

a connected n-vertex graph. We prove that γR(G) ≤ 4n/5, and we characterize the

graphs achieving equality. We obtain sharp upper and lower bounds for γR(G)+γR(G)

and γR(G)γR(G), improving known results for domination number. We prove that

γR(G) ≤ 8n/11 when δ(G) ≥ 2 and n ≥ 9, and this is sharp.

1 Introduction

According to [6], Constantine the Great (Emperor of Rome) issued a decree in the 4th century

A.D. for the defense of his cities. He decreed that any city without a legion stationed to

secure it must neighbor another city having two stationed legions. If the first were attacked,

then the second could deploy a legion to protect it without becoming vulnerable itself.

The objective, of course, is to minimize the total number of legions needed. The problem

generalizes to arbitrary graphs. A Roman dominating function (RDF) on a graph G is a

vertex labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with

label 2. For an RDF f , let Vi(f) = {v ∈ V (G) : f(v) = i}. In the context of a fixed RDF,

we suppress the argument and simply write V0, V1, and V2. Since this partition determines

f , we can equivalently write f = (V0, V1, V2). The weight w(f) of an RDF f is
∑

v∈V (G) f(v),

which equals |V1| + 2|V2|. The Roman domination number γR(G) is the minimum weight of

an RDF of G. Thus, γR(G) is the minimum number of legions needed to protect cities whose

adjacency graph is G.
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Roman domination also models other facility location problems. Instead of interpreting

f(v) as the number of units placed at v, we can view it as a cost function. Units with cost 2

may be able to serve neighboring locations, while units with cost 1 can serve only their own

location. For example, in a communication network, wireless hubs are more expensive but

can serve neighboring locations, while wired hubs are low-range but are cheaper.

Cockayne, Dreyer, Hedetniemi, and Hedetniemi [6] began the study of Roman domina-

tion, suggested in a Scientific American article by Stewart [17] and even earlier by ReV-

elle [21]. Since V1 ∪ V2 is a dominating set when f is an RDF, and since placing weight 2 at

the vertices of a dominating set yields an RDF, [6] observed that

γ(G) ≤ γR(G) ≤ 2γ(G), (1)

where γ(G) is the domination number of G. In a sense, 2γ(G)−γR(G) measures “inefficiency”

of domination, since when γR(G) = (2 − β)γ(G), at least the fraction β of the vertices in a

minimum dominating set serve only to dominate themselves.

Cockayne, Dreyer, Hedetniemi, and Hedetniemi [6] studied basic properties of Roman

dominating functions and calculated γR for specific graphs. They characterized the graphs

G such that γR(G) ≤ γ(G) + k when k ≤ 2; this was extended to larger k in [22]. They also

characterized graphs G such that γR(G) = 2γ(G) in terms of 2-packings, calling such graphs

Roman. Henning [11] characterized Roman trees, while Song and Wang [16] characterized

the trees T with γR(T ) = γ(T ) + 3. The computational complexity of γR(G) was studied

in [7]. Linear-time algorithms for computing γR(G) are known on interval graphs [14, 4],

cographs [14], and strongly chordal graphs [4]. A polynomial-time algorithm is known on

AT-free graphs [14]. Other related domination models were studied in [5, 8, 9, 12, 13].

In this paper, we study extremal problems for γR(G) on various classes of n-vertex graphs.

In Section 2, we prove that γR(G) ≤ 4n/5 when G is connected and n ≥ 3, and we determine

when equality holds. In Section 3, we obtain sharp upper and lower bounds for γR(G)+γR(G)

and γR(G)γR(G), where G denotes the complement of G. We use these ideas to determine

the n-vertex graphs G with largest value of γ(G)γ(G), shown to equal n in [18].

Let δ(G) denote the minimum vertex degree in G. When δ(G) ≥ k, inequality (1) and the

well-known upper bound on γ(G) from [1, 20] yield γR(G) ≤ 21+ln(k+1)
k+1 n. This was improved

slightly in [6]; we use their improvement in Section 3. For small k, the optimal coefficient is

of interest. In Section 4, we prove that if G is a connected n-vertex graph with δ(G) ≥ 2 and

n ≥ 9, then γR(G) ≤ 8n/11. The bound is sharp, and we determine when equality holds.

In an earlier version of this paper, we conjectured that γR(G) ≤ (2n/3) for 2-connected

graphs, and we proved this for graphs having spanning subgraphs consisting of some number

of cycles linked in a ring by paths joining nonadjacent vertices on the cycles (these subgraphs

are minimal 2-connected graphs). Subsequently, Chang and Liu [2] disproved the conjecture

by constructing 2-connected n-vertex graphs such that γR(G) = 23n/34 for infinitely many

n; note that 23
34 = 2

3 + 1
102 . The key graph in their construction is obtained from K4 by

replacing each edge uv with a 5-cycle C plus edges from nonadjacent vertices of C to u and
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v; this graph G has 34 vertices, and γR(G) = 23. They also settled the problem by proving

that γR(G) ≤ max{(2n/3) , 23n/34} when G is 2-connected. For minimum degree 3, they

proved in [3] that γR(G) ≤ 2n/3 and that this is sharp for infinitely many 3-connected

graphs; see also [4] and other forthcoming papers.

Our graphs have no loops or multiple edges; we use V (G) and E(G) for the vertex set

and edge set of a graph G. The degree of a vertex v in G is dG(v) or simply d(v). The

minimum and maximum vertex degrees are δ(G) and ∆(G). For a set S ⊆ V (G), the (open)

neighborhood of S is {v ∈ V (G) − S : v has a neighbor in S}, denoted N(S). The closed

neighborhood of S is N(S) ∪ S, denoted N [S]. When S = {v}, we simply write N(v) and

N [v]. The diameter of G is the maximum distance between vertices of G, denoted diam G.

In a tree, a penultimate vertex is any neighbor of a leaf. We write Pn, Cn, and Kn for the

path, cycle, and complete graph with n vertices, respectively. We write mG for the graph

consisting of m disjoint copies of G.

2 Connected Graphs

For n-vertex graphs, always γR(G) ≤ n, with equality when G = Kn. In this section we

prove that γR(G) ≤ 4n/5 when G is a connected n-vertex graph and characterize when

equality holds. Since γ(G) may be as high as n/2, (1) only gives γR(G) ≤ n, so proving the

bound of 4n/5 needs additional work. Since deleting an edge cannot decrease γR, it suffices

to prove the bound for trees.

Theorem 2.1 If T is an n-vertex tree, with n ≥ 3, then γR(T ) ≤ 4n/5.

Proof. We use induction on n. The base step handles trees with few vertices or small

diameter. If diam T = 2, then T has a dominating vertex, and γR(T ) ≤ 2 < 4n/5. If

diam T = 3, then T has a dominating set of size 2, which yields γR(T ) ≤ 4. This is

sufficiently small for trees with at least six vertices. For n ∈ {4, 5} and diamT = 3, a

penultimate vertex has degree 2; putting weight 2 on the other penultimate vertex and

weight 1 on the undominated leaf yields γR(T ) ≤ 3, which is small enough.

Hence we may assume that diam T ≥ 4. For a subtree T ′ with n′ vertices, where n′ ≥ 3,

the induction hypothesis yields an RDF f ′ of T ′ with weight at most 4
5n

′. We find a subtree

T ′ such that adding a bit more weight to f ′ will yield a small enough RDF f for T .

Let P be a longest path in T chosen to maximize the degree of its next-to-last vertex v,

and let u be the non-leaf neighbor of v.

Case 1: dT (v) > 2. Obtain T ′ by deleting v and its leaf neighbors. Since diamT ≥ 4,

we have n′ ≥ 3. Define f on V (T ) by letting f(x) = f ′(x) except for f(v) = 2 and f(x) = 0

for each leaf x adjacent to v. Note that f is an RDF for T and that w(f) = w(f ′) + 2 ≤
4
5(n − 3) + 2 < 4

5n.
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Case 2: dT (v) = dT (u) = 2. Obtain T ′ by deleting u and v and the leaf neighbor z of v.

If n′ = 2, then T is P5 and has an RDF of weight 4. Otherwise, the induction hypothesis

applies. Define f on V (T ) by letting f(x) = f ′(x) except for f(v) = 2 and f(u) = f(z) = 0.

Again f is an RDF, and the computation w(f) < 4
5n is the same as in Case 1.

Case 3: dT (u) > 2 and every penultimate neighbor of u has degree 2. If every neighbor

of u is penultimate or a leaf, then diamT = 4 and T is obtained from a star with center u

by subdividing k edges, where k ≥ 2. Put weight 2 on u and weight 1 on the non-neighbors

of u. Now w(f) = k + 2 and n ≥ 2k + 1 ≥ 5, so w(f) ≤ (n + 3)/2 ≤ 4
5n.

Otherwise, some neighbor t of u is neither penultimate nor a leaf. Obtain T ′ from T by

deleting the vertices of the component of T − tu containing u. Now n′ ≥ 3 and the induction

hypothesis applies. Define f on V (T ) by f(x) = f ′(x) except for f(u) = 2, f(x) = 1 for

each non-neighbor x of u outside T ′, and f(x) = 0 for x ∈ N(u) − {t}. Again f is an RDF.

We have w(f) = w(f ′) + k + 2, where k is the number of leaves of T at distance 2 from u.

If k = 1, then dT (u) > 2 forces u to have a leaf neighbor, and w(f) ≤ 4
5(n− 4) + 3 < 4

5n.

Otherwise k ≥ 2, and w(f) ≤ 4
5(n − 2k − 1) + (k + 2) = 1

5(4n − 3k + 6) ≤ 4
5n. !

As shown in [6], γR(Pn) ≤ (2n + 2)/3. The path is not the worst-case n-vertex tree;

equality in Theorem 2.1 is achievable. Let Lk consist of the disjoint union of k copies of P5

plus a path through the central vertices of these copies, as illustrated in Figure 1.
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Figure 1: The tree L5.

If u is a vertex of degree 2 having a leaf neighbor v, then an RDF must put total weight

at least 2 on {u, v} unless the other neighbor of u has weight 2. Thus when two such

vertices u and u′ have a common neighbor w, an RDF must give total weight at least 4 to

{v, u, w, u′, v′}. In Lk, there are k disjoint 5-vertex sets of this form, so γR(Lk) ≥ 4k = 4n/5.

Such copies of P5 can be assembled in many ways, and this allows us to characterize the

trees achieving equality in Theorem 2.1.

Theorem 2.2 If T is an n-vertex tree, then γR(T ) = 4n/5 if and only if V (T ) can be

partitioned into sets inducing P5 such that the subgraph induced by the central vertices of

these paths is connected.

Proof. We have observed that if an induced subgraph H of G is isomorphic to P5, and its

noncentral vertices have no neighbors outside H in G, then every RDF of G puts weight at

least 4 on V (H). Thus in any tree with such a vertex partition, weight at least 4 is needed

on every set in the partition.
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To show that equality requires this structure, we examine the proof of Theorem 2.1 more

closely. The proof is by induction on n. In the base cases and Cases 1 and 2, we produce an

RDF with weight less than 4n/5. In Case 3 with diameter 4, equality requires n = 2k + 1

and k = 2, and the only such tree is P5 itself.

Define u, T ′, n′, t, k as in the inductive part of Case 3. The bound holds with equality

only if k = 2 and n′ = n − (2k + 1). Thus u has no leaf neighbors, and T − V (T ′) is a

5-vertex path Q with center u. Equality also requires γR(T ′) = 4n′/5, so by the induction

hypothesis T ′ has the specified form. In particular, t lies in a copy P ′ of P5 in a covering of

V (T ′) by 5-sets inducing paths. Let t′ be the center of P ′.

If t += t′, then we build a cheaper RDF for T . Put weight 2 on u and weight 1 on the

leaves of Q. Put weight 1 on the neighbor of t in T ′−t′ , and put weight 2 on the penultimate

vertex of P ′ farthest from t. We have now guarded P ′ ∪ Q using total weight 7, and hence

γR(T ) < 4
5n. Hence equality requires t = t′ and the specified structure for T . !

It is easy to extend this characterization to all connected graphs.

Theorem 2.3 If G is a connected n-vertex graph, then γR(G) ≤ 4n/5, with equality if and

only if G is C5 or is obtained from n
5P5 by adding a connected subgraph on the set of centers

of the components of n
5P5.

Proof. If G has the specified form, then as remarked earlier every RDF puts weight at

least 4 on the vertex set of each copy of P5.

Now suppose that γR(G) = 4
5n. Since adding edges cannot increase γR, every spanning

tree of G has the form specified in Theorem 2.2. Given a spanning tree T , let S1, . . . , Sk be

the 5-sets in the special partition of V (T ). The assignment of weight 4 that guards Si can

be chosen independently of any other Sj. If any edge of G joins vertices of Si and Sj that

are not the centers of the paths they induce, then an RDF with weight less than 4
5n can be

built as in the proof of Theorem 2.2. !

3 Nordhaus-Gaddum Inequalities

For a graph parameter ρ, bounds on ρ(G) + ρ(G) and ρ(G)ρ(G) in terms of the number

of vertices are called results of “Nordhaus–Gaddum” type, honoring the paper of Nordhaus

and Gaddum [15] obtaining such bounds when ρ is the chromatic number.

For an n-vertex graph G with n ≥ 2, it is known (see [10, p. 237]) that

3 ≤ γ(G) + γ(G) ≤ n + 1 (2)

2 ≤ γ(G)γ(G) ≤ n. (3)

In this section we obtain the analogous sharp results for γR.
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Proposition 3.1 If G is an n-vertex graph, then γR(G) ≤ n − ∆(G) + 1.

Proof. When v is a vertex of maximum degree, the RDF (N(v), V (G) − N [v], {v}) has

weight n − ∆(G) + 1. !

Theorem 3.2 If G is an n-vertex graph, with n ≥ 3, then

5 ≤ γR(G) + γR(G) ≤ n + 3.

Furthermore, equality holds in the upper bound only when G or G is C5 or n
2K2.

Proof. When G has at least three vertices, γR(G) ≥ 2, with equality only when G has a

dominating vertex. Since a graph and its complement cannot both have dominating vertices,

γR(G) + γR(G) ≥ 5. Equality holds if and only if G or G has a vertex of degree n − 1 and

its complement has a vertex of degree n − 2.

For the upper bound, Proposition 3.1 yields

γR(G) + γR(G) ≤ (n − ∆(G) + 1) + (n − ∆(G) + 1)

= n − ∆(G) + δ(G) + 3 ≤ n + 3.

If γR(G) + γR(G) = n + 3, then equality holds throughout the calculation, and δ(G) =

∆(G). Hence G is k-regular for some k. We may assume that k ≤ (n − 1)/2, since the

argument is symmetric in G and G. Since equality holds, γR(G) = n−k+1 and γR(G) = k+2.

Let v ∈ V (G). If some vertex u outside N [v] has at least two neighbors outside N [v], then

the RDF (N(u)∪N(v), V (G)−N [u]−N [v], {u, v}) has weight at most n−k, a contradiction.

Hence every vertex not in N [v] has at least k − 1 neighbors in N(v). Similarly, each vertex

in N(v) has at most two neighbors outside N [v].

Counting the edges joining N(v) and V (G)−N [v] from both sides yields (k−1)(n−k−1) ≤

2k, simplifying to n ≤ k + 3 + 2
k−1 for k > 1. Since n ≥ 2k + 1, we have k ≤ 2 + 2

k−1 , which

requires k ≤ 3. If k = 3, then n = 7, but there is no 3-regular 7-vertex graph.

For k = 2, we have n ≤ k + 3 + 2
k−1 = 7 and n ≥ 2k + 1 = 5. For each 2-regular graph G

with n ∈ {6, 7}, we have γR(G) = n − 2, so γR(G) = n − k + 1 leaves only G = C5.

For k = 1, the only example is n
2K2, where equality holds. For k = 0, the only example

is G = Kn, where γR(G) + γR(G) = n + 2, and equality does not hold. !

For the product bound, (1) and (3) yield γR(G)γR(G) ≤ 4n. The optimal bound is

smaller for sufficiently large n. We will prove in Theorem 3.4 that γR(G)γR(G) ≤ 16n/5

when n ≥ 160. Sharpness is shown by G = kC5, since γR(kC5) = 4k and γR(kC5) = 4 and

|V (kC5)| = 5k. In fact, equality holds only when G or G is kC5 (when n is large).
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The most difficult case in the proof of Theorem 3.4 is when diamG = diam G = 2.

We handle this case separately in the next lemma, using a result from Cockayne, Dreyer,

Hedetniemi, and Hedetniemi [6]. For an n-vertex graph G, they proved that

γR(G) ≤
2 + 2 ln((1 + δ(G))/2)

1 + δ(G)
n. (4)

Since γR(G) ≤ 2γ(G), this bound slightly refines the well-known bound γ(G) ≤ 1+ln(1+δ(G))
1+δ(G) n

due to Arnautov [1] and Payan [20].

Lemma 3.3 If G is an n-vertex graph with n ≥ 160, and diam G = diam G = 2, then

γR(G)γR(G) < 16n/5.

Proof. Let G be such a graph, and let v be a vertex of minimum degree in G. If d(v) ≤ 2,

then the diameter constraint implies that (V (G)−N(v), ∅, N(v)) is an RDF of G and that

(V (G) − N [v], N(v), v) is an RDF of G, so γR(G)γR(G) ≤ 16. Hence we may assume that

dG(v) ≥ 3, and similarly δ(G) ≥ 3.

Let R = V (G)−NG[v]. We choose a family of disjoint subsets of NG(v) dominating R as

follows. Initialize B1 = NG(v); note that B1 dominates R, since diam G = 2. If Bi dominates

R, then let Ai be a minimal subset of Bi dominating R, and let Bi+1 = Bi −Ai. If Bi+1 does

not dominate R, then stop, setting q = i and A∗ = Bq. Otherwise, increment i. Note that

A1, . . . , Aq partition NG(v) − A∗, with each Ai being a minimal set that dominates R.

Since Ai is a minimal set that dominates R, there is a vertex ri ∈ R having only one

neighbor in Ai; let ai be this neighbor. Since A∗ does not dominate R, there exists w ∈

R such that A∗ ⊆ NG(w). Let S = {r1, . . . , rq} ∪ {v, w} and T = {a1, . . . , aq}. Now

(V (G) − (S ∪ T ), T, S) is an RDF for G, since v dominates R, w dominates A∗, and ri

dominates Ai − {ai}. Thus γR(G) ≤ 3q + 4, which reduces to 3q + 2 if A∗ = ∅.

Let U = Aj∪{v}, where |Aj| = mini |Ai|. Note that U is a dominating set of G. If |U | = 2,

then γR(G) ≤ 4. Since G is connected and δ(G) ≥ 3, Theorem 2.3 yields γR(G) < 4n/5.

Hence we may assume that |U | > 2, which requires q ≤ δ(G)/2.

If q = 1, then γR(G) ≤ 7 and γR(G) ≤ 2|U | ≤ 2(δ(G)+1), so γR(G)γR(G) ≤ 14(δ(G)+1).

Hence we may assume in this case that δ(G) ≥ 8n/35 − 1, but now (4) yields γR(G) ≤
1+ln(4n/35)

4/35 . Since 7 · 1+ln(4n/35)
4/35 < 16n

5 when n ≥ 54, we have γR(G)γR(G) < 16n/5.

Hence we may assume that 2 ≤ q ≤ δ(G)/2. Using the RDF (V (D) − U, ∅, U) and

maximizing over 2 ≤ q ≤ δ(G)/2 (which requires δ(G) ≥ 4) yields

γR(G)γR(G) ≤

(

2δ(G)

q
+ 2

)

(3q + 4) = (6δ(G) + 8) +

(

6q +
8δ(G)

q

)

≤ 10δ(G) + 20. (5)

Since 10δ(G) + 20 < 16n/5 when δ(G) + 2 < 8n/25, we may assume that δ(G) ≥ 8n/25− 2,

and similarly for δ(G). By (4), max{γR(G), γR(G)} ≤ 2+2 ln(4n/25−1/2)
8n/25−1 n. With n ≥ 160, this

bound is less than 16n/95.
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If q ≤ 5, then γR(G) ≤ 19. If q ≥ δ(G)/8, then γR(G) ≤ 18. In these cases we obtain

γR(G)γR(G) < 16n
95 · 19 = 16n/5.

Hence we may assume that 6 ≤ q ≤ δ(G)/8. Now (2δ(G)/q+2)(3q+4) ≤ 22δ(G)/3+44,

since δ(G) ≥ 48. This bound is less than 16n/5 when δ(G) < 24n/55− 6, so we may assume

that δ(G) and δ(G) are at least 24n/55 − 6. Now (4) yields

γR(G)γR(G) ≤

(

(2 + 2 ln(12n/55))n

24n/55 − 5

)2

.

The upper bound is less than 16n/5 when n ≥ 160. !

The proof actually yields γR(G)γR(G) = O((n ln n)2/3) when diam G = diam G = 2. The

first part of the proof yields a bound that is linear in d, where d = min{δ(G), δ(G)}, while

the Arnautov–Payan bound yields a bound of the form O([(n ln d)/d]2). The minimum of

the two bounds is largest when d grows like (n ln n)2/3, so the bound is always O((n ln n)2/3).

Theorem 3.4 If G is an n-vertex graph and n ≥ 160, then

γR(G)γR(G) ≤
16n

5
,

with equality only when G or G is n
5C5.

Proof. If G has an isolated vertex or edge, then γR(G) ≤ 3, which yields γR(G)γR(G) ≤

3n < 16n/5. Thus we may assume that each component of G has at least three vertices.

Applying Theorem 2.1 to each component now yields γR(G) ≤ 4n/5.

If diam G ≥ 3, then G has vertices u and v with no common neighbor. Hence {u, v} is a

dominating set in G, and γR(G) ≤ 4. Thus γR(G)γR(G) ≤ (4n/5)4 when diam G ≥ 3, and

similarly when diam G ≥ 3. Lemma 3.3 produces the desired bound in the remaining case.

Since Lemma 3.3 establishes strict inequality, the only way to achieve equality in this

bound is if γR(G) = 4n/5 and γR(G) = 4 (or vice versa). If γR(G) = 4, then δ(G) ≥ 2, so

Theorem 2.3 implies that every component of G is a 5-cycle. !

A similar analysis gives the analogous result for domination number.

Theorem 3.5 If G is an n-vertex graph, with n ≥ 184, then equality holds in the bound

γ(G)γ(G) ≤ n of (3) if and only if γ(G) or γ(G) equals n or n/2.

Proof. If G or G is Kn, then equality holds.

If δ(G) = 1, then γ(G) = 2, and equality holds if and only if γ(G) = n/2. It is known

(see [10]) that an n-vertex graph G without isolated vertices has domination number n/2 if

and only if G = C4 or G is obtained from some graph with n/2 vertices by adding a pendant

edge to each vertex. Thus if n > 4 and γ(G) = n/2, then γ(G)γ(G) = n.
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For δ(G) ≥ 2, McQuaig and Shepherd [19] proved that γ(G) ≤ 2n/5. If also diam G ≥ 3,

then γ(G)γ(G) ≤ 4n/5 < n. Hence we may assume that both G and G have diameter 2.

When diam G = diamG = 2, essentially the same argument (with obvious changes) as

in the proof of Lemma 3.3 shows that γ(G)γ(G) < n for n ≥ 184. We omit the details. !

4 Minimum Degree 2

In this section, we consider how large γR can be for connected n-vertex graphs with minimum

degree at least 2. In the n-vertex graph G illustrated in Figure 2, an RDF must give weight 4

to an induced 5-cycle unless one of its vertices has an outside neighbor with weight 2. When

there is one such vertex, deleting it from the 5-cycle leaves a 4-vertex path that still needs

weight 3 on it to be guarded. Hence each subgraph formed from two 5-cycles and a common

neighbor must receive weight at least 8, and we obtain γR(G) = 8n/11.
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Figure 2: n-vertex graph G with γR(G) = 8n/11.

Lemma 4.1 Let G be a graph with δ(G) ≥ 2. If G contains any configuration listed below,

then there exists G′ such that δ(G′) ≥ 2, |V (G′)| ≤ |V (G)| − 3, and γR(G) ≤ γR(G′) + 2.

a) An induced 5-vertex path P whose internal vertices have degree 2 in G.

b) Two nonadjacent vertices x and y that have at least two common neighbors with degree 2

in G and each have an additional neighbor.

c) An induced 6-cycle C with exactly two vertices having degree at least 3 in G.

Proof. In each case, we define a graph G′ with at most |V (G)| − 3 vertices such that

δ(G′) ≥ 2, let f ′ be an RDF of G′, and produce an RDF f of G with w(f) ≤ w(f ′) + 2.

(a) Let the vertices of P be x, u, v, w, y in order. Since C is an induced path, x and y are

neither equal nor adjacent. Form G′ from G by deleting {u, v, w} and adding the edge xy;

every vertex of G′ has the same degree in G′ as in G. Let f(v) = 2 and f(u) = f(w) = 0,

with f(z) = f ′(z) for z ∈ V (G′). This suffices unless {f ′(x), f ′(y)} = {2, 0} and the edge

xy is needed for f ′ to be an RDF. By symmetry, we may assume f ′(y) = 0; in this case, let

f(w) = 2 instead of f(v) = 2.

(b) Let S be the set of common neighbors of x and y with degree 2. Form G′ by

contracting all edges incident to S; this merges x and y into a single vertex v. Since x and
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y each have a neighbor outside S, we have dG′(v) ≥ 2 and δ(G′) ≥ 2. For z ∈ V (G′) − {v},

let f(z) = f ′(z). If f ′(v) ∈ {1, 2}, then let f(x) = f ′(v), f(y) = 2, and f(z) = 0 for

z ∈ S. If f ′(v) = 0, then f ′ puts weight 2 on a neighbor of x or y, say x; let f(y) = 2 and

f(x) = f(z) = 0 for z ∈ S.

(c) If x and y are not opposite on C, then case (a) applies. Otherwise, form G′ by

contracting C into a single vertex v and adding a 3-cycle C ′ through v and two new vertices.

An RDF f ′ of G′ must put total weight at least 2 on V (C ′). Let f(x) = f(y) = 2, put weight

0 on V (C) − {x, y}, and let f(z) = f ′(z) for z ∈ V (G) − V (C).

In each case, w(f) ≤ w(f ′) + 2. !

A spider is a tree consisting of at least three paths having a common endpoint. The

common endpoint is the only vertex of degree at least 3 in the spider and is its branchpoint.

A spider is completely specified by listing the distances of the leaves from the branchpoint.

Lemma 4.2 If G is an n-vertex spider with branchpoint v, then γR(G) ≤ 8n/11 unless

d(v) = 3 and the leaves have distances (1, 3, 3) or (2, 2, 3) from v. Among the remaining

spiders, γR(G) < 8n/11 unless d(v) = 4 and the leaves have distances (1, 3, 3, 3) or (2, 2, 3, 3)

from v, or d(v) = 3 and the leaf distances from v are obtained from (1, 3, 3) or (2, 2, 3) by

adding 3 to one coordinate.

Proof. Let li be the number of leaves at distance i from v. Suppose first that the longest

path from v has length at most 3, so n = 1 + l1 + 2l2 + 3l3. For any path of length 3 from

v, f puts weight 2 on the penultimate vertex and weight 0 on the others.

If l1 = l2 = 0, then l3 ≥ 3. Complete the RDF f by f(v) = 1. Now w(f) = 1 + 2l3, and

1 + 2l3 < 8
11(1 + 3l3) when l3 ≥ 2.

If l1 = 0 and l2 = 1, then put weight 2 on the neighbor of v along the short path, and let

f(v) = 0. Now w(f) = 2 + 2l3, and 2 + 2l3 < 8
11(3 + 3l3) when l3 ≥ 0.

Otherwise, let f(v) = 2 and put weight 1 on leaves at distance 2 from v to complete

the RDF f . Now w(f) = 2 + l2 + 2l3. We seek 2 + l2 + 2l3 < 8
11(1 + l1 + 2l2 + 3l3), which

is equivalent to 14 < 8l1 + 5l2 + 2l3. Since we have l1 + l2 + l3 ≥ 3 and l1 + l2 ≥ 1 with

equality in the latter only when l1 = 1, the right side is at least 15 except in four cases. For

(l1, l2, l3) ∈ {(1, 0, 2), (0, 2, 1)} the right side is 12, and we have n = 8 and γR(G) = 6. For

(l1, l2, l3) ∈ {(1, 0, 3), (0, 2, 2)} the right side is 14, and we have n = 11 and γR(G) = 8.

With the spiders above as a basis, we now apply induction on n. We may assume that

G has some path of length more than 3 from v. Let G′ be the graph obtained from G by

deleting three vertices from the end of a longest such path. Using weight 2 on the middle of

those three vertices yields w(G) ≤ w(G′) + 2. Since 2/3 < 8/11, the induction hypothesis

yields γR(G) < 8n/11 unless G′ is one of the two 8-vertex spiders that fail the bound. In

this case, n = 11 and γR(G) ≤ 8, so the desired ratio holds with equality. !

A thread in a graph G is a trail whose internal vertices have degree 2 in G and whose

endpoints do not have degree 2. If the endpoints of a thread are equal, then the thread is
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a cycle having one vertex of degree greater than 2. In a connected graph with maximum

degree at least 3, the threads partition the edge set.

Theorem 4.3 If G is a connected n-vertex graph with δ(G) ≥ 2 other than those shown

below, then γR(G) ≤ 8n/11.
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Proof. Note that γR(C4) = 3 > 32
11 , γR(C5) = 4 > 40

11 , and γR(C8) = 6 > 64
11 . Also, one or

two chords added to C8 as shown above do not reduce γR. For each graph G shown above,
8|V (G)|

11 < γR(G) ≤ 8|V (G)|
11 + 4

11 .

To prove the upper bound for all other graphs, we use induction on n. If G is a cycle,

then the claim holds (γR(C7) = 5 < 56
11 and γR(C11) = 8), so we may assume that ∆(G) ≥ 3.

Our aim is to find a spanning subgraph of G in which one component G1 is a spider to

which we can apply Lemma 4.2, and the remainder G2 is a graph to which we can apply the

induction hypothesis. First we use the induction hypothesis to restrict the structure of G.

Since 2/3 < 8/11, Lemma 4.1(a) allows us to assume that G has no induced path with

at least three internal vertices of degree 2.

Since deleting an edge cannot reduce γR, we may assume that every edge joining two

vertices with degree at least 3 is a cut-edge. In particular, no cycle in G has a chord. If G

has a cut-edge uv with endpoints of degree at least 3, then let Hu and Hv be the components

of G − uv containing u and v, respectively. Both Hu and Hv are edge-minimal connected

graphs with minimum degree at least 2.

Let C = {C4, C5, C8}. If neither Hu nor Hv lies in C, then the RDFs guaranteed for them

by the induction hypothesis combine to form the desired RDF of G. If Hu, Hv ∈ C, then in

each case weight 2 on u permits saving one unit on Hv, so

γR(G) ≤ γR(Hu) + γR(Hv) − 1 ≤
8|V (Hu)| + 4

11
+

8|V (Hv)| + 4

11
− 1 <

8n

11
.

Thus when G has a cut-edge uv with dG(u), dG(v) ≥ 3, we may assume that exactly one of

{Hu, Hv} lies in C.

Similarly, if G consists of two graphs Hu, Hv ∈ C joined by a thread P having endpoints

u and v plus one or two internal vertices, then Hu and Hv have optimal RDFs assigning

weight 2 to u and v; together they form an RDF of G. Hence

γR(G) ≤ γR(Hu) + γR(Hv) ≤
8|V (Hu)| + 4

11
+

8|V (Hv)| + 4

11
≤

8n

11
.

Now let v be a vertex of degree at least 3 that does not lie in a member of C joined to the

rest of G by one cut-edge. The arguments above imply that at least one end of every thread
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is such a vertex. We seek a subgraph G1 consisting of d(v) paths from v whose lengths do

not equal 3, such that δ(G − V (G1)) ≥ 2 and no component of G − V (G1) lies in C. By

Lemma 4.2 and the induction hypothesis, such a subgraph completes the proof.

Consider the threads emanating from v. If v lies on a cycle C whose other vertices have

degree 2, then regardless of the length of C, it is possible to delete one edge e of C so that

C − e consists of two threads from v with neither having length 3.

All other threads from v lead to vertices of degree at least 3 other than v and have length

at most 3 (by Lemma 4.1(a)). Let u be such a vertex, reached by a thread P with last edge

e. In G − e, let H be the component containing u. If H is a cycle, then cutting an edge

e′ of H incident to u leaves P ∪ H − e′ as a thread leaving v; we put it in G1. The thread

has length at least four unless P has length 1 and H is a 3-cycle, but then uv is a cut-edge

whose deletion from G leaves two components not in C.

If H is not a cycle, then deleting e yields a thread of length at most 2 leaving v (since P

has length at most 3). However, cutting two threads that reach u from v could leave u with

insufficient degree. If at least two threads reach u, then by Lemma 4.1(b,c) we may assume

that exactly one thread P of length 2 and one thread P ′ of length 3 reach u from v.

If d(u) ≥ 4, then we can cut each final edge. If d(u) = 3, then a third thread Q leaves

u, ending at w. If w is not the end of another thread from v, or if d(w) ≥ 4, then since P

and P ′ have different lengths, we can cut the last edge of one of them so that the resulting

thread from v formed by cutting the end of Q incident to w does not have length 3.

If w is the end of exactly one other thread from v in G and d(w) = 3, then we cut the last

edge of P . Since P ′ has length 3, it now extends to reach w with length at least 4. When

we cut the last edge of the other thread from v to w, the thread along P ′ and Q becomes

even longer. The process can continue when v has large degree, yielding one long thread and

many short threads.

If the process reaches some w′ that is the end of two threads from v, and d(w′) = 3, then

cutting the edge reaching w′ leaves a 5-cycle through v whose other vertices have degree 2

(the union of those two threads), and we can cut one edge of it to obtain two short threads.

In the remaining spanning subgraph, the component G1 containing v is a union of d(v)

threads, none having length 3, and every other component has minimum degree at least 2

and is not one of the excluded subgraphs. As remarked above, Lemma 4.2 and the induction

hypothesis now provide the desired RDF. !

To characterize equality in Theorem 4.3, we study its proof closely.

Theorem 4.4 Let F be the graph of Figure 3. Let G be a connected graph of order n with

minimum degree at least 2. If n ≥ 9, then γR(G) = 8n/11 if and only if

(1) n = 11 and G is isomorphic to F plus a subset of one of {y1y3, y1y4, y2y3, y2y4}, {wz1, y1y3, y1y4},

or {wz1, wz3, y1y3} added as edges, or

(2) n > 11 and G consists of disjoint copies of the graphs F , F + wz1, and F + wz1 + wz3

with additional edges connecting copies of w.
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Figure 3: The graph F .

Proof. If G has the indicated form, then, regardless of the edges between copies of w, any

RDF must put weight at least 8 on every copy of F , so γR(G) ≥ 8n/11.

For the converse, let G be a graph achieving equality in Theorem 4.3. Since 2/3 < 8/11, G

cannot contain a configuration as described in Lemma 4.1. Also the deletion of any cut-edge

joining vertices of degree at least 3 without leaving a component in C must leave components

where equality holds.

Let G′ be the subgraph resulting from such deletions (called G in Theorem 4.3). Let v

be a vertex of G′ as chosen in that proof. Since equality holds for G′, it must also hold for

the subgraphs G1 and G′ − V (G1) obtained in the inductive proof.

A closer look at Lemma 4.2 characterizes the vectors of path lengths where γR(G1) =

8|V (G1)|/11 can hold. Since the proof of Theorem 4.3 extracts a graph G1 in which no

thread from v has length 3, equality requires the threads from v to have lengths 2, 2, and 6.

To obtain a thread of length 6 without obtaining a thread of length 1, we must have had

d(v) = 3, and one thread from v reaches a cycle in C. If n = 11, then the possibilities are as

shown below, but the graph on the left has an RDF of weight 7. Inspection shows that the

only graphs with Roman domination number 8 spanned by F are those claimed.
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When n > 11, we claim that the endpoints of the threads of length 2 from v are still

adjacent and have degree 2. If not, then they would have degree at least 3, and using one of

them in place of v would yield a spider as G1 that has a thread of length 1 (by cutting the

edge of the thread to v). We would then have γR(G′) < 8n/11.

We conclude that successively deleting edges of G with endpoints of degree at least 3,

without introducing components in C, yields a graph whose components are copies of F .

Since there exist minimum weight RDFs of F putting weight 2 on any given vertex, and

deletion of any vertex of F other than w leaves a subgraph where weight 7 suffices, every

edge of G not contained among the vertices of a single copy of F joins copies of w.

If any edge of G connects the two 5-cycles in one copy F ′ of F , then since G is connected,

the central vertex w′ of F ′ has a neighbor in another copy of F that can be given weight 2.
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With w′ protected, we can protect the rest of F ′ with weight 7 using the edge joining the

two 5-cycles. This yields γR(G) ≤ 7 + 8(n − 11)/11 < 8n/11. Hence no edges can be added

between or within the copies of F other than those described in the statement. !
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