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Insights into eisosome assembly and organization
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*Corresponding author (Email, kkim@missouristate.edu)

Eisosomes, large protein complexes that are predominantly composed of BAR-domain-containing proteins Pil1 and
its homologs, are situated under the plasma membrane of ascomycetes. A successful targeting of Pil1 onto the future
site of eisosome accompanies maturation of eisosome. During or after recruitment, Pil1 undergoes self-assembly into
filaments that can serve as scaffolds to induce membrane furrows or invaginations. Although a consequence of the
invagination is likely to redistribute particular proteins and lipids to a different location, the precise physiological role
of membrane invagination and eisosome assembly awaits further investigation. The present review summarizes recent
research findings within the field regarding the detailed structural and functional significance of Pil1 on eisosome
organization.

[Murphy ER and Kim KT 2012 Insights into eisosome assembly and organization. J. Biosci. 37 295–300] DOI 10.1007/s12038-012-9206-6

1. Introduction: Central organizers of eisosome

The plasma membrane is a diverse structure that manages the
traffic of materials in and out of the cell. It consists of
dynamic compartments where different functions take place.
These compartments exist over a wide range of spatial and
temporal scales (Lingwood and Simons 2010). The budding
yeast plasma membrane has been subdivided into three dis-
tinct membrane compartments: the membrane compartment
of Can1 (MCC), the membrane compartment of TORC2
(MCT) and the membrane compartment of Pmal (MCP)
(Young et al. 2002; Malinska et al. 2003; Grossmann et al.
2007; Berchtold and Walther 2009; Brach et al. 2011). MCC
and MCT are found as distinct domains, whereas the MCP is
found throughout the membrane except where a MCC or a
MCT exists (Grossmann et al. 2007; Berchtold and Walther
2009). The cytoplasmic side of MCC appears to be closely
associated with the protein cluster containing thousands of
copies of Pil1 and its homolog Lsp1 (Grossmann et al. 2007;
Frohlich et al. 2009). The cytosolic cluster was so named
‘eisosome’ (meaning portal for body in Greek) by Walther
and coworkers because of its implication in endocytosis
(Walther et al. 2006). It has been reported that in total 22
proteins (9 transmembrane and 13 cytoplasmic proteins) are
members of MCC-associated proteins (Grossmann et al.

2008; Deng et al. 2009). Since the fluorescence microscope
does not provide sufficient spatial resolution to differentiate
between MCC and eisosome, Stradalova et al. (2009), using
electron microscopy approaches, showed the ultrastructure
of MCC that structurally resembles a furrow-like endocytic
invagination. They showed that the transmembrane MCC
marker Sur7 was found to localize to the superficial parts
of the invaginated plasma membrane, while the cytosolic
eisosome marker Pil1 was detected in the deeper parts of
the furrow-like invagination mainly around the curved bot-
tom of the structure (Stradalova et al. 2009). Upon deletion
of budding yeast PIL1, GFP-fused eisosome (Lsp1, Slm1,
Pkh1 and Pkh2) and MCC (Sur7, Nce102 and Can1)
markers are localized to a few bright peripheral clusters
called eisosome remnants, instead of localizing to the cell
cortex evenly in a punctuated pattern (Walther et al. 2006,
2007; Frohlich et al. 2009; Grossmann et al. 2008; Kamble
et al. 2011), indicating Pil1 is essential for the structural
integrity of eisosome and MCC. Although Pil1 exhibits high
levels of sequence homology among fungi, it seems that the
function of Pil1 has not been completely conserved between
budding yeast and other fungal species (Vangelatos et al.
2010; Kabeche et al. 2011; Reijnst et al. 2011; Seger et al.
2011). For instance, unlike budding yeast Pil1 (ScPil1) impli-
cated in endocytosis (Walther et al. 2006; Murphy et al.
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2011), Ashbya gossypii Pil1 (AgPil1) and Candida albicans
Pil1 (CaPil1) are required for polar growth and essential for
cell growth, respectively (Reijnst et al. 2011; Seger et al.
2011). The fact that the fission yeast orthologs of Slm1 and
Sur7 do not colocalize with the MCC/eisosome marker Pil1
or depend on Pil1 for their localization in S. pombe also
suggests the functional divergence of Pil1 in organizing
MCC/eisosome between budding yeast and fission yeast
(Kabeche et al. 2011).

2. Up-to-date model for Pil1 assembly onto eisosome

Recent studies discovered that both Pil1 and Lsp1 contain a
BAR domain, structurally most similar to N-BAR domain
which is also found in amphiphysins (Olivera-Couto et al.
2011; Ziolkowska et al. 2011). BAR domains consist of a
coiled-coil of three long alpha-helices that dimerize to form a
banana-shaped domain with a positively charged concave
surface. Cationic residues on the positive surface interact
with anionic membrane lipids via electrostatic interactions
(Frost et al. 2009). Owing to the rigid concave shape of the
surface, the BAR domain can induce membrane curvature,
required for a wide range of cellular processes such as
endocytic invagination and cell motility (Gallop and
McMahon 2005; Suetsugu et al. 2010). The BAR-domain-
containing eisosome proteins Pil1 and Lsp1 are capable of
self-assembly, binding lipid membranes, preferably those
containing PI(4,5)P2 (or PIP2), and deforming them into long
tubules (Kabeche et al. 2011; Karotki et al. 2011; Olivera-
Couto et al. 2011). As expected, the positive surface patch of
theoretical Pil1 homology modelling on the structural tem-
plate of Lsp1 turned out to be important for its membrane
binding and normal eisosome organization (Karotki et al.
2011; Olivera-Couto et al. 2011; Ziolkowska et al. 2011).
Karotki et al. (2011) further proposed that, in addition to the
positive residues on the concave surface, an N-terminal
segment of Pil1 or Lsp1 might facilitate their efficient mem-
brane binding and/or bending.

3. Other protein factors implicated in organizing
eisosome

Beside the essential eisosomal organizing factor Pil1,
according to a genome-wide screen for deletion mutants that
show an alteration of Pil1 localization, a wide range of genes
(a total of 88 genes), functioning ranging from endocytosis
and vesicle trafficking to metabolism, appear to be involved
in the organization of the eisosome (Frohlich et al. 2009).
Additionally, a similar genome-wide screen for deletion
mutants that shows an altered Can1 (MCC marker) pattern
identified 27 genes (Grossmann et al. 2008). Given eisosome
and MCC are tightly associated with each other, it is striking

to note that there was such a low level of consistency
between those screens that in both screens NCE102, SUR4
andMNN10 genes were the only overlapping ones that affect
both MCC and eisosome organizations (Grossmann et al.
2008; Frohlich et al. 2009). One straightforward explanation
for this would be that the recruitment of MCC and eisosome
markers is differently regulated by non-overlapping factors
in general, perhaps pointing out a subtle functional differ-
ence between MCC and eisosome. Except for Mnn10, the
two other gene products, Sur4 and Nce102, are likely to
influence eisosome organization through sphingolipid sig-
nalling by altering the level of sphingolipids and serving as a
sphingolipid sensor in the plasma membrane, respectively
(Han et al. 2002; Paul et al. 2006; Frohlich et al. 2009).
Interestingly, it was found that the recruitment of Nce102, a
bona fide MCC transmembrane protein, depends on the
availability of sphingolipids at MCC where Nce102 acts as
a negative regulator of Pkh kinases in Pil1 phosphorylation
(Frohlich et al. 2009). Although more than 100 genes/pro-
teins, to date, have been presented by the genetic screens to
be important for MCC/eisosome organization, many more
await further identification. This is because all essential
genes (~18% of the yeast genome) and a considerable num-
ber of proteins that show functional redundancy with other
proteins in the yeast genome were excluded from the lists.
For the latter case, Slm1 and its homolog Slm2 share the
same function in organizing the eisosome as shown by
Kamble et al. (2011), but Slm2 is not included on either list
of genome-wide screens. Slm1/2 were originally character-
ized as PIP2 binding proteins through their C-terminal PH
domain (Audhya et al. 2004; Fadri et al. 2005) and later
found to be eisosome components (Grossmann et al. 2008;
Kamble et al. 2011). A first clue to the targeting of Slm
proteins to eisosome was provided by a recent microscopic
study that clearly showed the central Slm (showing some
sequence similarity to F-BAR) and PH domains are essentially
required for eisosome targeting, but not by PH or F-BAR alone
(Olivera-Couto et al. 2011), and thus underlining the signif-
icance of BAR domain on eisosome targeting.

4. Reversible phosphorylation and its consequences
on eisosome organization

Another set of redundant genes that are not included in the
genome list but important for eisosome organization are
PKH1 and PKH2 (Walther et al. 2007), encoding the two
mammalian PDK1 homologs Pkh1 and Pkh2 (Casamayor
et al. 1999). The serine/threonine kinases Pkh1/2 are phys-
ically associated with the eisosome, and Pil1 and Lsp1 have
been shown to be Pkh substrates in vitro (Zhang et al. 2004;
Walther et al. 2007). Pil1 phosphorylation in vivo has been
proposed to be an important regulator that affects eisosome
assembly, since change in the phosphorylation level of Pil1
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leads to defects in eisosome organization (Walther et al.
2007; Luo et al. 2008). However, controversy lies in the
precise role of Pkh1/2-mediated phosphorylation of Pil1 on
eisosome assembly. Walther et al. (2007) originally showed
that hyperphosphorylation of Pil1 by elevated Pkh1 and
Pkh2 protein levels leads to a severe defect in Pil1 assembly
on eisosome (Walther et al. 2007). In support, they observed
that the phospho-mimicking pil1(4D) mutant in which ser-
ines 45, 59 and 230, and threonine 233 were changed to
Aspartic acid (D) was dispersed mainly into the cytoplasm,
thereby concluding that Pil1 is dephosphorylated when
eisosome-bound and released upon phosphorylation to the
cytoplasm (Walther et al. 2007) (figure 1A). The purified
recombinant pil14(D) protein indeed was less competent in
self-assembly compared to wild-type Pil1, pointing to the
role of Pil1 phosphorylation that leads to impairment of Pil1
assembly on eisosome (Karotki et al. 2011). In agreement,
Deng et al. (2009) reported that the decreased Pil1-GFP
fluorescence level in the cytoplasm correlates with the de-
phosphorylation of Pil1, especially at the sites of Ser-230

and Thr-233. However, two lines of evidence argue against
the notion that the dephophorylated Pil1 associates with
eisosome. First, according to Luo et al. (2008), a non-
phosphorylable Pil1 mutant in which multiple phosphoryla-
tion sites (up to six) were mutated to Alanine was mislocal-
ized to the cytoplasm, suggesting that eisosome formation
requires phosphorylation of Pil1 (figure 1B). Consistent with
this observation, the addition of KP-372-1, which inhibits
Pkh1/2 kinases, caused the increase of the pool of dephos-
phorylated Pil1, primarily situated in the cytoplasm, support-
ing the view that Pil1 phosphorylation is required for
eisosome assembly (Baxter et al. 2011). At the moment it
is not clear how different groups of researchers obtained two
opposing results using similar Pil1 mutants. Nonetheless, the
notion of reversible Pil1 phosphorylation and dephosphory-
lation controlling structural integrity of eisosome is highly
acceptable. The existence of a phosphatase system involved
in Pil1 dephosphorylation was suggested by Deng et al.
(2009) as they observed an abrupt decrease in Pil1 and
Lsp1 phosphorylation level during cell cycle. One potential
candidate phosphatase for dephosphorylation of Pil1 would
be calcineurin, which is known to be directly dephosphory-
late another eisosome members Slm1/2 (Bultynck et al.
2006). If so, the consequence of Pil1 and Lsp1 dephosphor-
ylation by calcineurin or other phosphatases yet to be iden-
tified on eisosome assembly should be further investigated to
establish the biochemical recruitment mechanisms of Pil1.

5. Suggested roles of membrane lipids on eisosome

The plasma membrane is made up of several types of lipids,
and these lipids play an important role in the recruitment of
proteins. Sphingolipids consist of long saturated acyl chains
that allow them to pack together tightly in the membrane
(Brown and London, 2000). The micro-domain of the plas-
ma membrane enriched in sphingolipids and cholesterol
(Lemaire-Ewing et al. 2011) is often called a lipid raft,
which is essential in cell signalling and protein trafficking
(Staubach and Hanisch 2011). An early detergent lipid raft
extraction assay showed that Can1, an integral MCC protein,
localizes in lipid rafts and that a reduction in sphingolipids
leads to the disruption of Can1 targeting (Malinska et al.
2003). The recruitment of another integral MCC protein
Nce102 was also found to be dependent on a higher level
of sphingolipids (Frohlich et al. 2009). Likewise, decreased
content of sphingolipids in lcb1-100 mutant (Zanolari et al.
2000) or treatment of myriocin that inhibits sphingolipid
synthesis resulted in a loss of the MCC-associating cytoplas-
mic eisosome carrying Pil1 (Walther et al. 2007; Luo et al.
2008; Frohlich et al. 2009). These results apparently support
the notion that membrane lipids are required for correct intra-
cellular targeting of raft-associated proteins (Hearn et al.
2003). PI(4,5)P2 (PIP2) is a minor yet dynamic phospholipid

Figure 1. The controversy of the roles of reversible phosphoryla-
tion of Pil1 in eisosome organization. (A) The model suggests that
Pil1 dephosphorylation promotes its recruitment to the eisosome.
(B) The other model proposes that dephosphorylation of Pil1 is
required for its disassembly from the eisosome.
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component of the plasma membrane which assists in the
recruitment of a wide range of proteins to the plasma mem-
brane (Strahl and Thorner 2007). Indeed, this was the case
for Can1 targeting to the periphery of the plasma membrane;
in mss4ts temperature sensitive mutant that has ~10% of
normal amount of PIP2 (Desrivieres et al. 1998), the target-
ing of MCC protein Can1 was found to be impaired
(Daquinag et al. 2007). However, the phenotypic defect in
Can1 targeting in the mutant appears to be a secondary
effect, perhaps caused by an actin cytoskeleton defect.
More recently, Karotki et al. (2011) established a direct role
of PIP2 in organizing eisosome in vivo. In lower levels of
PIP2 (in mss4ts), Pil1 progressively dissociated from the
plasma membrane, mainly due to the fact that the probability
of its direct interaction with PIP2 significantly decreases
while in an opposing condition (in sjl1Δsjl2Δ) with higher
chance, thus forming enlarged Pil1 puncta (Karotki et al.
2011) (E Murphy, unpublished). The fungal-specific sterol,
ergosterol, enriched in lipid rafts, is another major lipid that
plays a role in aiding the targeting of lipid–raft associating
protein factors such as Gas1 and Pma1 (Bagnat et al. 2000).
At least notable, but not complete, mistargeting of the MCC
marker Can1 was observed in the condition where ergosterol
levels were reduced (erg6Δ and erg24Δ) (Malinska et al.
2003). In contrast, unpublished data from Walther laboratory
(Frohlich et al. 2009), including ours, strongly argue for a
negligible role of ergosterol in targeting of the eisosome
protein Pil1, since GFP fused Pil1 in those sterol mutant
strains was still properly targeted to the plasma membrane.

6. Physiological functions of eisosome

It is curious that the liquid phase endocytic marker FM4-64
shows partial colocalization with Pil1 (Walther et al. 2006)
(E Murphy, unpublished), and that the extent of spatial
overlap between the eisosome and FM4-64 appears to in-
crease as aberrant eisosome aggregates are formed by the
loss of Pil1. However, it is now generally accepted that the
eisosome does not mark receptor-mediated endocytic (RME)
sites, on the basis of several lines of evidence: (1) the plasma
membrane MCC protein Sur7, which colocalizes to the
eisosome (Malinska et al. 2004; Walther et al. 2006), does
not colocalize with RME sites carrying Rvs161 and Ede1
(Grossmann et al. 2008); (2) none of Abp1- and Sla1-GFP
endocytic sites colocalized with Pil1-mCherry (Brach et al.
2011) and (3) Slm1, an eisosome marker, displayed only rare
colocalization with Abp1-GFP, raising the possibility of
random colocalization between them (Kamble et al. 2011).
Nevertheless, what has emerged clearly is that a stable eiso-
some structure at the cell cortex is required for efficient
receptor-mediated endocytosis occurring in the vicinity of
the eisosome. This notion is supported by the observation
that the rate of Ste3-mediated (a factor receptor) endocytosis

to the vacuole in pil1Δ and lsp1Δ cells decreased signifi-
cantly when compared to that of WT cells (Walther et al.
2006). Notably, the efficacy of receptor-mediated endocyto-
sis dropped significantly in PIL1-lacking cells in which the
synaptojanins (Sjl1/2) were severely mislocalized to the
cytoplasm (Murphy et al. 2011). In particular, Sjl2 is a major
plasma membrane phosphoinositide phosphatase that
hydrolyses phosphates of PIP2 (Guo et al. 1999), and a
transient reduction of PIP2 or the change of PIP2 levels in a
temporal manner via Sjl2 at endocytic sites is known to be
critical for the efficiency of endocytosis (Sun et al. 2007;
Toret et al. 2008). Thus, the failure of Sjl2 targeting to
endocytic sites, most likely a side effect caused by loss of
Pil1 (Murphy et al. 2011), might lead to a cascading failures
in which an unsuccessful spatiotemporal regulation of PIP2
levels, triggers the failure of endocytosis. At the moment it is
plausible to propose that Pil1 is directly or indirectly in-
volved in fine-tuning to regulate membrane phospholipid
homeostasis. Furthermore, it appears that MCC/eisosome is
a protective area that provides stability for the proteins
localized there; the MCC component Can1 (transmembrane
arginine transporter) was dissipated throughout the cell
membrane and endocytosed at a much faster rate in pil1Δ
cells than it is in WT cells, most likely due to the lack of the
protective barrier in the mutant strain (Grossmann et al.
2008). It is yet important to note that the protective role of
eisosome for its protein component from endocytosis seems
not to be unanimously supported, based on the finding that
the endocytosis rates of Can1 in pil1Δ and WT cells were
essentially the same (Brach et al. 2011).

7. Concluding remarks

Work over the last 5–6 years has been focused on the con-
tributions of Pil1 and its homologs in ascomycetes to MCC/
eisosome organization. As discussed, a new, and we believe
potentially very important piece of information regarding the
structure and function of Pil1, has come with the recent
finding that Pil1, containing a BAR domain, is able to self-
assemble into filaments that serve as scaffold to reorganize
membrane into an invagination. While evidence is mounting
for a dynamic Pil1 assembly required for eisosome/MCC
organization, precisely how these Pil1 fibres are used to help
provide the force required for the invagination is not under-
stood fully. In light of finding that inactivation of the PKC
kinases Pkh1 and Pkh2 leads to the formation of extended
net-like eisosome carrying Pil1, one can postulate that there
must be a primary signal pathway with Pkh1/2 kinases that
serve as a negative regulator of Pil1 assembly, as well as
certain factors, including Nce102 that plays opposing regu-
latory roles. Therefore, in the future it is of great interest to
understand the new and detail functions of already-known
and yet-to-be-identified factors that influence Pil1 assembly
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in vitro, and to further elucidate the physiological relevance
of the factors in eisosome assembly in vivo. Along with at
least learning more details about Pil1-lipids interaction, it is
highly likely in the next few years to gain a better under-
standing of how the interaction of Pil1 with transmembrane
MCC and cytosolic eisosome proteins regulates MCC/eiso-
some organization. All together, these studies during the
coming years should provide even greater insights to the
understanding of biological membrane organization and
function.
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