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ABSTRACT 

The Blue Mountain province of western Idaho and eastern Oregon is composed of a mélange of 
geologic terranes that represent Permian and Triassic island arcs that collided with North 
America in the Mesozoic, resulting in westward growth of the continent. Separating these 
accreted rocks from North America are the mid- crustal metamorphic rocks of the Salmon River 
suture zone. Containing units and features associated with the accreted island arc terranes and 
suture zone is the Heavens Gate 7.5-minute quadrangle, located in Idaho county, Idaho. Within 
the quadrangle the Salmon River suture zone is divided into structural blocks by a series of N-S 
trending, east dipping thrust faults, the Morrison Ridge, Rapid River, and Pollock Mountain 
thrust faults (west to east). Formal units mapped within the quadrangle include the Hunsaker 
Creek and Wild Sheep Creek Formations (Seven Devils Group), the Morrison Ridge Formation, 
Lucille Slate, the Lightning Creek, Fiddle Creek, and Squaw Creek Schists (Riggins Group), and 
the Imnaha Basalt. Informal units mapped include tonalitic and quartz diorite plutons, quaternary 
deposits, and the Pollock Mountain Amphibolite and Cold Springs Orthogneiss and migmatite. 
Rocks of the Seven Devils Group, part of the Wallowa oceanic island arc, are folded into a north 
plunging anticline within the central portion of the map, with folding bracketed by zircon 
geochronology at 140-130 Ma. The anticline is cut by the Morrison Ridge thrust fault, emplacing 
the Martin Bridge Formation and Lucille Slate above the Seven Devils Group. Structurally above 
these units lies the Riggins Group, exposed east of the Rapid River and above the Rapid River 
thrust fault. The highest structural sheet contains the Pollock Mountain Amphibolite and Cold 
Springs orthogneiss. Zircon geochronology of volcanic, deformed and undeformed plutonic, and 
metamorphic rocks were used to determine that thrust fault development in the Salmon River 
suture zone occurred out of sequence with nearly synchronous activation along the Morrison 
Ridge thrust to the west (pre-123 Ma) and the Pollock Mountain thrust to the east (117 Ma). The 
approximately 109 Ma. Rapid River thrust was the final thrust fault to develop in the region. 
 
 
KEYWORDS:  Blue Mountains province, Salmon River suture zone, Heavens Gate quadrangle, 
zircon geochronology, western Idaho shear zone, arc-continent collision  
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OVERVIEW 

 

Continents are assembled over geologic time through the collision of crustal blocks with 

larger continents. The Blue Mountain province of Oregon, Idaho, and Washington contains 

portions of two Permian-Triassic island arc systems, the Olds Ferry and Wallowa island arcs 

(Vallier, 1977; Brooks and Vallier, 1978; Silberling et al., 1992). The island arcs were accreted 

to North America between Triassic and Late Cretaceous time; however, the exact timing and 

sequence of these collisional events is uncertain. The pre-collisional Laurentian margin between 

arc-affinity rocks and the Precambrian North America are separated by a zone of mid-crustal 

metamorphic rocks within the Salmon River suture zone (Hamilton, 1963; Lund and Snee, 1988; 

Manduca et al., 1993; Giorgis et al, 2005; Gray and Oldow, 2005). Recorded in the Salmon 

River suture zone metamorphic rocks and structures is the progressive deformation coeval with 

collision and accretion (Silberling et al., 1984; Lund and Snee, 1988; Avé Lallemant, 1995; 

Wyld and Wright, 2001; Blake et al., 2009; Gray et al., 2012). This study explores the timing of 

collision and deformation through a combination of geologic mapping and U-Pb zircon 

geochronology. 

This study includes (1) descriptions of lithologies across the arc-continent boundary, (2) 

high resolution 1:24,000 scale geologic mapping, (3) structural relationships of the lithotectonic 

assemblages, (4) U-Pb zircon geochronology of volcanic, deformed and undeformed plutonic, 

and metamorphic rocks to bracket mountain building deformation, and, using these data, (5) 

estimates for shortening across the Salmon River suture zone. 

The order and timing of three west dipping thrust faults is explored, from west to east, the 

Morrison Ridge, Rapid River, and Pollock Mountain thrusts. A model for non-sequential 
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thrusting is proposed, and exhumation rates for movement along the thrust faults in the Pollock 

Mountain and Rapid River plates are calculated to compare with loading rates for the Rapid 

River plate.  
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INTRODUCTION 

 

Continental assembly occurs through the collision and accretion of geologic terranes 

along active plate margins (Coney et al., 1980; Scholl et al., 1986). These subduction related 

accretionary complexes are important lithotectonic units in orogenic belts and are an indication 

of Phanerozoic-type, plate-tectonic processes (Hamilton, 1963; McCall, 2003; Shervais,well 

2006). Accretionary complexes can reflect a long history spanning large periods of geologic time 

that may involve collisional deformation events as well as subduction-accretion processes 

(Byrne, 1984; Scholl and von Huene, 2007). Therefore, these complexes can include a wide 

variety of rock types that may not have formed in a specific tectonic setting (Shervais, 2006). 

Beyond having potentially multiple geologic settings as an origin, the collision of displaced 

terranes along continental margins is frequently accompanied by contractional deformation and 

crustal thickening, leading to regional metamorphism (Chamberlain and Karabinos, 1987). The 

variety of formational environments and presence of multiple deformational events have resulted 

in a poor understanding of many aspects of the history of long-lived accretionary complexes 

(Schwartz et al., 2010) and the rate at which continents are “grown” by these collisions is 

unknown. 

As much as 70 percent of the North American Cordillera is made up of terranes (Coney et 

al., 1980) which have been accreted to the Laurentian margin since Early Mesozoic time (Grow 

and Atwater, 1970; Engebretson et al., 1985). As an active Andean style margin (Coney et al., 

1980; Jordan, 1981; Shervais 2006) thousands of kilometers of oceanic lithosphere have been 

subducted by the Pacific Ocean’s northern rim (Grow and Atwater, 1970; Engebretson et al., 

1985) during this time, the Mesozoic arc assemblages and associated fore- and back arc basins 
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have been sutured to the continental margin leaving little to no evidence of the vast Proterozoic 

Pacific Ocean in our current Pacific Ocean (Coney et al., 1980). Rather, all indication of the 

existence of Mesozoic Andean style arc complexes must be found on the margins of the North 

American continent.   

This study focuses on the timing of deformation and metamorphism in one specific 

region along the active margin of North America, the Blue Mountain province of Washington, 

Oregon, and Western Idaho, as well as two zones of mid-crustal deformation: the Salmon River 

suture zone and the western Idaho shear zone, which separate the island-arc affinity rocks from 

the Laurentian craton (Lund and Snee, 1988; Gray and Oldow, 2005). Four accretionary 

complexes comprise the Blue Mountain geologic province, the Wallowa, Baker, Olds Ferry, and 

Izee terranes (Brooks and Vallier, 1978; Silberling et al., 1992) (Fig. 1). The Wallowa and Olds 

Ferry represent island arcs, while the Baker terrane is a structurally complex oceanic mélange, 

and the Izee is a basin terrane (Schwartz et al., 2010). 
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Figure 1. Simplified geologic map of the Blue Mountain province (from LaMaskin et al., 
2015). Salmon River Belt is used interchangeably with Salmon River suture zone. 
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LOCATION 

 

The Heavens Gate 7.5-minute quadrangle (latitudes 45°22 ʹ30ʹʹ to 45°15ʹ00ʹʹ; longitudes 

116°30ʹ00ʹʹ to 116°22’30ʹʹ) is within Idaho County, Idaho (Fig. 2). Land use within the 

quadrangle is a mixture of national forest and privately-owned land. Two national forests extend 

into the quadrangle with Nez Perce National Forest in the northern portion of the quadrangle and 

the Payette National Forest to the south. The Hells Canyon Wilderness lies just west of the 

quadrangle. The northeastern portion of the quadrangle can be accessed by Rapid River Road 

that terminates just west of the Rapid River Fish Hatchery at the trailhead for West Fork Rapid 

River trail (no.113) which follows the Rapid River, providing access to the central portion of the 

quadrangle. Eastern areas along White Bird Ridge are accessed by Forest Road 624 that leads to 

multiple trails at Wildhorse Saddle. Northwestern areas of the quadrangle can be accessed by 

Forest Roads 2109 and 517 leading up to Heavens Gate. The highest point on the quadrangle is 

Vista Point lookout at 8,429 feet, and the lowest point on the quadrangle is 2120 feet near the 

Rapid River in the northeastern corner. Peaks in the quadrangle include Vista Point lookout 

(8429 feet), Mount Sampson (6462 feet), Cannon Ball Mountain (7178 feet), and Bryan 

Mountain (8358 feet). These peaks are recreationally frequented by the general public along 

trails maintained by the forest service. No lakes are present on the quadrangle, and drainage on 

the quadrangle is in the form of many small tributaries leading to the Rapid River which trends 

roughly north-south across the quadrangle. The West Fork of the Rapid River flows 

approximately west-east across the center of the quadrangle where it feeds into the main channel 

of the Rapid River. The flow direction is to the northeast for the main channel of the Rapid 

River, and to the east for the West Fork. The primary use of the area currently is cattle grazing  
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and backcountry hiking and backpacking. Historically there have been copper and gold mining 

operations in the region (White, 1968; Bookstorm et al., 1998; Simmons et al., 2007). 

Abandoned pits are present within the units of the Seven Devils group, primarily near limestone 

units which have been intruded by plutons. The closest cities to the quadrangle are Riggins (7.1 

miles) to the northeast and New Meadows (33 miles) to the south. The locations of the Heavens 

Gate, Pollock Mountain, and Purgatory Saddle 7.5-minute quadrangles can be seen in Figure 2. 

showing the location and basic geology of these three quadrangles. 
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GEOLOGIC SETTING 

 

The Heavens Gate 7.5-minute quadrangle is located to the east of the Blue Mountain 

province, and west of the North American craton. With a variety of tectonic regimes occurring 

throughout geologic time, the geology of the area is complicated by many sequences of 

collisional accretions to the craton. From west to east, the region has three primary geologic 

areas: (1) accreted terranes of the Blue Mountain province, (2) the mid-crustal, arc affinity rocks 

of the Salmon River suture zone, and (3) cratonic rocks of the North American continent. 

 

Regional Tectonic History 

Throughout much of the late Precambrian through the early Paleozoic the western margin 

of North America was a passive continental margin (Fig. 3) across which a sedimentary wedge 

was forming as the proto-Pacific Ocean opened (Dickinson 1976; Coney et al., 1980; Bond et al., 

1984).  Other than brief periods of convergence and subsequent collision in the Mid-Paleozoic 

(Antler Orogeny), the outbuilding of this wedge continued for nearly 700 million years without 

interruption (Coney et al., 1980). Eventually this regime ended in the late Triassic to middle 

Jurassic period, with the Pacific margin being convergent or transform ever since (Dickinson, 

1976; Coney et al., 1980). Prior to collision in the Cretaceous to Eocene time, this region was an 

Andean style tectonic margin characterized by east-dipping subduction of oceanic crust, a 

magmatic arc and forearc basin, and an east verging thrust belt and foreland basin (Dickinson, 

1976; Coney et al., 1980; Jordan, 1981). Following the transition to a convergence and 

subduction dominated margin, Paleozoic terranes along the edge of the original passive 

continental margin must then have been accreted to or subducted by that margin during  



10 

  

Fi
gu

re
 3

. S
im

pl
ifi

ed
 T

ec
to

ni
c 

hi
st

or
y 

of
 w

es
te

rn
 N

or
th

 A
m

er
ic

an
 m

ar
gi

n.
 F

ig
ur

e 
sh

ow
s a

 si
m

pl
ifi

ed
 re

pr
es

en
ta

tio
n 

of
 a

 p
as

si
ve

 a
nd

 
ac

tiv
e 

m
ar

gi
n,

 a
nd

 te
ct

on
ic

 h
is

to
ry

 o
f t

he
 w

es
te

rn
 m

ar
gi

n 
of

 N
or

th
 A

m
er

ic
a.

 T
ra

ns
iti

on
 fr

om
 p

as
si

ve
 to

 a
ct

iv
e 

co
nt

in
en

ta
l m

ar
gi

n.
 

Sc
al

e 
is

 in
 m

ill
io

ns
 o

f y
ea

rs
. A

nd
ea

n 
st

yl
e 

te
ct

on
ic

 m
ar

gi
ns

 a
re

 c
ha

ra
ct

er
iz

ed
 b

y 
ea

st
 d

ip
pi

ng
 su

bd
uc

tio
n 

of
 o

ce
an

ic
 c

ru
st

, a
 

m
ag

m
at

ic
 a

rc
 a

nd
 fo

re
ar

c 
ba

si
n,

 a
nd

 fo
re

la
nd

 b
as

in
 (m

od
ifi

ed
 a

fte
r D

ic
ki

ns
on

, 1
97

6;
 C

on
ey

 e
t a

l.,
 1

98
0;

 Jo
rd

an
, 1

98
1)

. C
or

di
lle

ra
n 

st
yl

e 
te

ct
on

ic
 m

ar
gi

ns
 a

re
 c

ha
ra

ct
er

iz
ed

 b
y 

ac
cr

et
io

n 
of

 is
la

nd
 a

rc
s t

o 
co

nt
in

en
ta

l c
ra

to
n.

 



11 

Mesozoic-Cenozoic time (Coney et al., 1980). Driving this accretion was the subduction 

of plates which were once present in the Proto-Pacific Ocean (Coney et al., 1980; Engebretson et 

al., 1985). Little to no evidence of the vast Proterozoic Pacific Ocean remains today in our 

current Pacific Ocean, rather all evidence of it now must be found on the margins of the North 

American continent (Coney et al., 1980). With initiation of island arc accretion to Laurentia, 

tectonism transitioned to a Cordilleran style convergent margin (Dewey and Bird, 1970); which 

persisted until the modern day, and ultimately led to the construction of the North American 

Pacific Northwest. A timeline of margin type for the Laurentian western margin is shown in 

Figure 3.  

The major Cenozoic-Mesozoic deformation of the western Cordillera is thought to be 

related to the plate interactions that occurred along the North American margin (Atwater, 1970). 

The subduction of the Farallon plate (McKenzie and Morgan, 1969), occurring during most of the 

Mesozoic and Cenozoic (Schmid et al., 2002), was the result of this convergent boundary. 

Magnetic anomaly patterns in the Pacific Ocean (Atwater, 1970), combined with plate tectonic 

theory described by McKenzie and Morgan (1969), indicate that a trench must have existed in the 

Pacific Ocean in the Mesozoic and Cenozoic times (Atwater, 1970).  Due to the symmetric 

geometry of spreading ridges, the half-ridge patterns provide evidence for the subduction occurring 

at this time (Atwater, 1970). 

 

Blue Mountain Province 

The Blue Mountains province, located in Oregon, Washington, and Idaho is composed of 

a series of rock assemblages that were accreted to the western margin of North America during 

subduction prior to uplift of the Rocky Mountains (Coney et al., 1980; Engebretson et al., 1985).  
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Terranes are geologic units at a regional scale which are characterized by a stratigraphic, 

igneous, or metamorphic sequence that is coherent and exhibits depositional continuity (Coney et 

al., 1980). These sequences must be different from adjacent terranes, or a nearby craton (Coney, 

1989). The Blue Mountains province is composed of four terranes, the Olds Ferry, Baker, Izee, 

and Wallowa, as shown in Figure 1. The Wallowa and Olds Ferry are island arcs, formed by 

subduction driven magmatism (Hamilton, 1969; Vallier, 1977) in an Andean style margin 

(Dickinson, 1976; Jordan, 1981). The Izee terrane represents an oceanic basin (Schwartz et al., 

2010), while the Baker terrane is an amalgamation of oceanic suite rocks (Schwartz et al., 2010). 

These terranes exhibit the magmatism, metamorphism, and sedimentation which was occurring 

here from the late Paleozoic to the Mesozoic (Dickinson, 1979; Walker, 1986; Schwartz et al., 

2010). These terranes are intruded by late Jurassic-Early Cretaceous plutonic complexes which 

are exposed below the accreted (primarily) Cenozoic rocks (Schwartz et al., 2010).  

The Wallowa terrane is an island-arc system composed of a Permian-Triassic island-arc 

sequence that has been overlain by extensive Permian- to Jurassic-aged volcanic and 

volcaniclastic rocks (Vallier, 1977; Gray and Oldow, 2005; Kays et al., 2006). Volcanic and 

sedimentary rocks of the Wallowa terrane are approximately eight kilometers thick (Gray and 

Oldow, 2005; Kays et al., 2006). These rocks have been metamorphosed at zeolite or lower 

greenschist conditions in the east (Gray and Oldow, 2005). Some have argued that the Wallowa 

and Olds Ferry arc terranes represent a single complex arc system (Vallier, 1995) while others 

classify the Wallowa-Olds Ferry superterrane as an exotic, intraoceanic arc (Ferns and Brooks, 

1995; LaMaskin et al., 2008). The plutonic basement rocks here range in age from 264 to 225 

Ma (Walker, 1986; 1995). The Permian to Triassic Seven Devils Group was 
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from 264 to 225 Ma (Walker, 1986). The Permian to Triassic Seven Devils Group was deposited 

directly on crystalline basement and is composed of metavolcanic rocks (Gray and Oldow, 2005; 

Kays et al., 2006) including metavolcaniclastics greenstone facies, primarily basalt and andesite, 

with some metaconglomerate and brechiated greenstone (Vallier, 1977, 1995).  The Seven 

Devils Group is unconformably overlain by the shallow-water carbonate platform and 

slope/basin rocks referred to as the Martin Bridge Formation, an Upper Triassic, massive and 

thin-bedded limestone (Brooks and Vallier, 1978; Gray and Oldow, 2005; LaMaskin and Dorsey, 

2016). In turn the Martin Bridge Formation is overlain by siliciclastic and carbonate rocks of 

Upper Triassic to Lower Jurassic aged Hurwal Formation (Brooks and Vallier, 1978; Gray and 

Oldow, 2005; LaMaskin and Dorsey, 2016). In certain parts of the terrane, such as the Hells 

Canyon of the Snake River, the Coon Hollow Formation unconformably overlies units of the 

Seven Devils Group (Brooks and Vallier, 1978; Gray and Oldow, 2005; LaMaskin and Dorsey, 

2016). 

The Baker terrane is a long-lived accretionary complex, which has an associated forearc 

(Schwartz et al., 2010). This ancient terrane (late Paleozoic-Early Mesozoic) lies between the 

Wallowa arc to the north and the Olds Ferry island arc to the south east and is the oldest as well 

as the most complex arc structurally (Schwartz et al., 2010). This terrane contains fragments of 

ocean floor rock (minor component), island arc volcanic, plutonic, and sedimentary rocks all 

fragmental and extensively disrupted (Schwartz et al., 2010). Preserved within the terrane is 

evidence of deposition, magmatism, metamorphism, and structural processes related to the 

Wallowa and Olds Ferry arcs (Fern and Brooks, 1995). 
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The Olds Ferry terrane is an arc assemblage made up primarily of middle to late Triassic 

weakly metamorphosed volcanic and volcanoclastic rocks along with some isolated packages of 

sedimentary rocks (Schwartz et al., 2010). The volcanogenic rocks are primarily andesitic, with 

minor basalts and rhyolites as well (Schwartz et al., 2010). The underlying basement rocks are 

not exposed at the surface in this terrane. Volcanism in this arc possibly lasted into the Early 

Jurassic (Tumpane et al., 2010). Correlative Middle to Late Triassic volcanic rocks with the 

Quesnel terrane in British Columbia and the fringing arc system in Nevada and eastern 

California suggest that the Olds Ferry terrane rocks represent a fringing, continental margin 

island arc (Miller, 1987; Oldow et al., 1989; Wyld and Wright, 2001; Gray and Oldow, 2005; 

Dorsey and LaMaskin, 2007). 

The Izee basin is primarily composed of a thick succession of marine sedimentary rocks 

that record deposition in a long lived forearc basin located between an east dipping subduction 

zone lying to the west and a magmatic arc in the east (Brooks and Vallier, 1978). Sedimentary 

rocks in the Izee basin have both volcaniclastic and chert constituents that may have been 

sourced from the Triassic Huntington Formation of the Olds Ferry terrane and the oceanic crust 

rocks from the Baker terrane (Lund, 2004; LaMaskin and Dorsey, 2016). Outcrops of andesite 

and rhyolite tuffs occur with Jurassic aged strata of the Weatherby Formation, which indicate 

that volcanism was occurring during the formation of the Izee terrane (Lund, 2004; LaMaskin 

and Dorsey, 2016). The Weatherby Formation is coeval with and potentially related to Middle 

Jurassic rocks at the top of the Wallowa terrane (White et al., 1992). 

 

Salmon River Suture Zone 

The collision between terranes of the Blue Mountain province and North America in the 
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Paleozoic resulted in deformation along the continental margin, driving tectonic burial and 

metamorphism (Walker, 1986; Vallier, 1995). The Salmon River suture zone is a north-south 

trending feature that marks the boundary between the volcanic rocks in the Blue Mountains 

province, and the rocks of North American affinity Precambrian in central Idaho (Lund and 

Snee, 1988; Gray and Oldow, 2005) (Fig. 4). The highest-grade metamorphism in the Blue 

Mountain province are exposed within the Salmon River suture zone, a roughly north-south 

trending metamorphic zone made up of metasedimentary and metavolcanic rocks of island arc 

affinity (Silberling et al., 1984; Lund and Snee, 1988; Avé Lallemant, 1995; Wyld and Wright, 

2001; Blake et al., 2009; Gray et al., 2012) with inferred Mesozoic and Paleozoic protoliths that 

lie between the volcanic arc assemblages in the western margin of North America in Oregon and 

Idaho (Hamilton, 1963; Brooks and Vallier, 1978; Gray and Oldow, 2005). This metamorphism 

in the Salmon River suture zone is compatible with estimates for timing of collision between the 

Blue Mountain province island arc terranes, and the western North American Margin between 

144-128 Ma (Selverstone et al., 1992; Getty et al., 1993; McKay, 2011; McKay et al., 2017) with 

estimates for collision beginning around 159 Ma (Schwartz et al., 2010; 2011). 

Rocks of the Salmon River suture zone record progressive deformation that occurred 

during collisional accretion (Silberling et al., 1984; Lund and Snee, 1988; Avé Lallemant, 1995; 

Wyld and Wright, 2001; Blake et al., 2009; Gray et al., 2012), and the zone is characterized by 

east dipping, west directed thrust faults (Aliberti, 1988). These four thrust faults, active between 

141 and 109 Ma (based on zircon geochronology), split the Salmon River suture zone into 

structural blocks. From west to east these are the Heavens Gate, Morrison Ridge, Rapid River, 

and Pollock Mountain thrusts (Plate 1; Fig. 4). The Heavens Gate thrust fault does not fall within 

the borders of the Heavens Gate 7.5-minute quadrangle; it is exposed near Windy Saddle, west 
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of the Heavens Gate 7.5-minute quadrangle, and marks the limit of synmetamorphic deformation 

and volcanogenic rocks (Gray and Oldow, 2005; Gray et al., 2012). The western boundary of the 

Salmon River suture zone is generally defined by the shallowly east dipping Heavens Gate fault 

(Fig. 4), which carries upper greenschist to amphibolite grade rocks of the Salmon River suture 

zone over lower greenschist rocks of the Wallowa terrane (Gray and Oldow, 2005). The western 

Salmon River suture zone is made up of greenschist facies volcaniclastic and carbonate rocks 

which correspond to the Martin Bridge Formation, in the Morrison Ridge thrust (Vallier, 1977). 

The eastern Salmon River suture zone is composed of two east dipping, west directed thrust 

plates; the Rapid River plate and Pollock Mountain plate (Aliberti, 1988). Metamorphic grade 

ranges from gneissic amphibolite and orthogneiss (Aliberti, 1988; McKay et al., 2017) in the 

Pollock Mountain plate, to greenschist and upper amphibolite facies in the Rapid River plate 

(McKay et al., 2017).The Salmon River suture zone overlies late Paleozoic and Mesozoic 

volcanic arc rocks of the Wallowa terrane on a shallowly east dipping fault in the west, and to 

the east the North American rocks are separated from it by the western Idaho shear zone 

(Aliberti, 1988; Lund and Snee, 1988; Gray and Oldow, 2005).  The eastern boundary of the 

Salmon River suture zone is contained within the western Idaho shear zone and corresponds to 

the 87Sr/86Sr = 0.706 isopleth (Armstrong, 1975; Kistler and Peterman, 1973; Armstrong et al, 

1977; Manduca et al., 1993), which represents the boundary between North American affinity 

rocks of the Proterozoic Laurentian craton to the east and accreted rocks to the west. 

The western Idaho shear zone is a north-south striking shear zone directly east of, and 

partly contained within, the Salmon River suture zone (Giorgis et al., 2008). The western Idaho  
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shear zone was active in the late Cretaceous (Giorgis et al., 2005). The western Idaho shear zone 

is a steeply dipping dextrally transpressive system which may have been responsible for much of 

the shortening which occurred within the Salmon River suture zone (McClelland et al., 2000; 

Tikoff et al., 2001; Giorgis et al., 2008). Gravity surveys suggest that the Salmon River suture 

zone is underlain by crust of similar density and thickness as the Izee and Baker terranes (Nandi, 

2018). 

 

North America 

To the east of the Salmon River suture zone lies the Precambrian Laurentian Continent. 

The Mesozoic western Laurentian margin is represented by Precambrian age (Dickinson and 

Gehrels, 2009) crystalline basement rocks. This continental margin experienced orogenies 

occurring from the Proterozoic (Wopmay Orogen) through the Paleozoic (Dickenson and 

Gehrels, 2009). The continental margin was modified by the Idaho batholith which was 

emplaced between Late Cretaceous to Eocene times (Fig. 5) as tonalitic sheet-like plutons were 

emplaced adjacent to the suture zone (Manduca et al., 1993; Lee, 2004; McClelland and Oldow, 

2007; Giorgis et al., 2008; Gaschnig et al., 2010). Magmatism began with emplacement of the 

Croesus stock in the southeastern Atlanta lobe of the Idaho Batholith at 98 Ma (Lund et al., 

2008; Gaschnig et al., 2010) with the largest component of the Idaho Batholith forming between 

83 and 67 Ma (Unruh et al., 2008; Gaschnig et al., 2010). Plutonism continued on the western 

Laurentian margin until as late as 53 Ma (Gaschnig et al., 2010) in the Bitterroot complex. 

 

Accretion Models 

The first model for the timing of accretion is that of an Early Cretaceous to Late Jurassic   
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Figure 5. Schematic time line showing major episodes of magmatism in the greater Idaho 
batholith system from Gaschnig et al., 2010. APS Atlanta peraluminous suite, BMP Blue 
Mountains Province, BPS Bitterroot peraluminous suite, BZS border zone suite, CPG Challis 
pink granite suite, CQM Challis quartz monzodiorite suite, EMS early metaluminous suite, 
GPAP/MAP Great Plains alkalic province/Montana alkalic province, LMS late metaluminous 
suite, MCC metamorphic core complex, SZS suture zone suite. 
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docking with North America (Fig. 6) (Getty et al., 1993; Schwartz et al., 2010; 2011; Žák et al., 

2015; McKay et al., 2017). Structural relationships within the Baker terrane and U-Pb zircon 

ages of post kinematic, fault stitching plutons bracket deformation at 159 to 157 Ma at the 

Baker-Wallowa boundary (Schwartz et al., 2010; 2011). The (now) N-S directed shortening 

features of the Baker terrane record a short-lived episode of deformation related to the collision 

of the Wallowa island arc with the continental margin Olds Ferry island arc at 159-154 Ma 

(Schwartz et al., 2011) following which, the brittle to semi brittle deformation zones record the 

Baker terrane being thrust over these collided arcs (154 Ma.) (Schwartz et al., 2011). Early NE-

SW terrane oblique shortening is interpreted as recording an early stage of attachment of the 

welded Blue Mountain superterrane (Wallowa and Olds Ferry arcs) to the North American 

continental margin around 140 Ma (Žák et al., 2015). Deformation then switched to pure shear 

(NNE-SSW) shortening associated with crustal thickening and refolding of synclines into 

smaller scale folds, an event related to continued impingement of the terrane onto the North 

American continental margin around 135-128 Ma (Žák et al., 2015). Upon collision, the northern 

section of the superterrane became locked and difficult to further deform, leading to reorientation 

of the principle shortening to roughly NNW-SSE, and the deformable southern section rotated 

clockwise around 126 Ma (Žák et al., 2015). Metamorphism in the Salmon River suture zone is 

compatible in age with collision and attachment of the Blue Mountains province to North 

America between 144-128 Ma (Selverstone et al., 1992; Getty et al., 1993; McKay, 2011; 

McKay et al., 2017), which may correlate to similar accretionary orogenesis to the south 

associated with the coeval Nevadan orogeny (Graymer and Jones, 1994; LaMaskin et al., 2015).  
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An alternative model for the age of accretion sites temporal and spatial variations in the 

geochemistry of Wallowa terrane mudrocks to indicate that during Late Triassic to Early Jurassic 

time (Fig. 6), the terrane was still an intra-oceanic island arc (LaMaskin et al., 2008). Evidence 

for this model also includes the existence of a regional angular unconformity below the Coon 

Hollow formation, which must have occurred between 197 and 160 Ma (LaMaskin et al., 2015). 
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PREVIOUS INVESTIGATIONS 

 

Mining reports by multiple mine inspectors for the state of Idaho (White, 1968; 

Bookstorm et al., 1998; Simmons et al., 2007) provide the earliest documentation of the rocks in 

the area around the Heavens Gate 7.5-minute quadrangle. In the southern Seven Devils region 

Livingston and Laney (1920) documented some of the early mining activities. 

The earliest geologic mapping and documentation of the rocks in the Heavens Gate 

quadrangle was produced by Hamilton (1963) at a 1:125,000 scale. Hamilton (1963) was the first 

to formulate any tectonic interpretations of the region and hypothesized that metamorphism was 

occurring related to an intrusion of the 100-54 Ma Idaho batholith (Gaschnig et al., 2010). The 

Seven Devils volcanics mapped by Hamilton (1963) were stratigraphically differentiated as the 

Seven Devils Group later by Vallier (1967, 1977). The Salmon River suture zone was mapped by 

Hamilton (1963), Aliberti (1988), Manduca (1988), and White (1968), then compiled by Lund 

(2004) at a 1:125,000 scale. The Lucille 7.5-minute quadrangle (Lewis et al., 2011) covers the 

distribution of metamorphic rocks of the Salmon River suture zone. Other 7.5-minute 

quadrangles mapped in the area include Riggins Hot Springs (Blake et al., 2016), Pollock 

Mountain (Nandi pers. comm., 2018), and Purgatory Saddle (Nandi pers. comm., 2018). A 

geologic transect map covers the arc-continent boundary (Gray, 2013), which extends across the 

northernmost portion of the Heavens Gate 7.5-minute quadrangle. U-Pb zircon ages for the units 

of fault stitching plutons (Schwartz et al., 2010; 2011), and garnet Sm-Nd ages of metamorphism 

(Getty et al., 1993; McKay et al., 2017), provide estimates for ages of island arc accretion. 
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GEOLOGIC UNITS 

 

The formal stratigraphic units present in the Heavens Gate quadrangle include the 

Hunsaker Creek Formation and Wild Sheep Creek Formation of the Seven Devils Group (Fig. 7), 

named and described by Vallier (1977), the Morrison Ridge Formation and Lucille Slate, the 

Lightning Creek Schist, Fiddle Creek Schist, and Squaw Creek Schist of the Riggins Group. In 

addition, the Imnaha Basalt of the Columbia River Basalt Group is present. The Pollock 

Mountain Amphibolite and intercalated orthogneiss, and migmatite, as well as Cretaceous 

tonalite and quartz diorite plutons are mapped as informal units in the region. Morrison Ridge 

thrust sheet units include Triassic limestone and marble, as well as the Lucile Slate. All geologic 

units described are represented in Appendix B, geologic map of the Heavens Gate 7.5-minute 

quadrangle. 

 

Seven Devils Group (Permian-Triassic) 

Hunsaker Creek Formation (Permian). The Permian Hunsaker Creek Formation is the 

oldest stratigraphic unit exposed in the quadrangle. The Hunsaker Creek Formation was first 

named and described by Vallier (1977) for the thick sequence of metamorphosed strata exposed 

along the Snake River canyon and within the canyons of tributaries of the Snake River, 

particularly Hunsaker Creek (Vallier, 1977). This formation consists of siliceous greenstone 

facies (pyroclastic breccia and conglomerate) including both metavolcaniclastics with quartz 

clasts, and metabasalt flows with quartz porphyries. Clasts in the volcaniclastics are polymictic 

and include basalts, sedimentary rocks, and some plutonic rock. Brachiopod species in the 

Hunsaker Creek Formation are Early Permian faunal assemblages and constrain the unit’s age  
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Figure 7. Generalized stratigraphic column of the Seven Devils Mountains 
(west side of Heavens Gate quadrangle). (Vallier, 1977).  



26 

(Vallier, 1977). The unit thickness nearest Hunsaker Creek canyon is estimated to be 

between ~2500 meters to ~780 meters (Vallier, 1977). On the Heavens Gate quadrangle, the 

Hunsaker Creek Formation occurs in a northeast-southwest trend that makes up the center of a 

large anticline. Fabric varies on the quadrangle from weak to strongly foliated, with stronger 

foliations more apparent in the volcaniclastic brecciated greenstone. 

Wild Sheep Creek Formation (Triassic). Conformably overlying the Hunsaker Creek 

Formation is the Wild Sheep Creek Formation, named and described by Vallier (1977). The Wild 

Sheep Creek Formation is exposed throughout much of the quadrangle to the west of the Rapid 

River. The Wild Sheep Creek Formation is inferred to be ~680 meters thick to the southwest 

(Nandi, 2018), but the section is truncated by faults and may be thicker here in the quadrangle 

due to the plunging antiform that dominates the structure of the area. The Wild Sheep Creek 

Formation is primarily composed of porphyritic plagioclase-rich greenstone facies. 

Volcaniclastic facies include basaltic andesite and polymictic volcaniclastic breccia. Breccia 

clasts are composed of basaltic greenstone, limestone, argillite, and siltstone.  Throughout the 

Wild Sheep Creek Formation, lenses of marble and limestone are present in this quadrangle. 

Marble and Limestone lenses are present in repeating pinched sections in the middle of the Wild 

Sheep Creek Formation and follow the antiform pattern that dominates the western half of the 

quadrangle. The marble and limestone are interbedded, ranges from light tan to dark blue grey in 

color. Volcaniclastic rocks within the formation are dark gray-green on fresh surfaces while 

weathered sections are brown to greenish black. 

Marble within Volcaniclastic Greenstone (Triassic). Marble and limestone are exposed 

as discontinuous pods throughout the metavolcaniclastics of the Wild Sheep Creek Formation. 
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Outcrop scale folds are present just north of the quadrangle as shown in Figure 8. Limestone 

ranges from crystalline to micritic. In places, the carbonate is recrystallized and  

intensely deformed, exhibiting banding. Where mappable, marble/limestone intervals are shown 

as Triassic undifferentiated marble. Marble and limestone are interbedded with dark quartzite 

and ranges from light tan to dark blue grey in color.  

Undifferentiated Wallowa Terrane Rocks (Cretaceous). Mapped in the quadrangle as 

undifferentiated this unit may contain these facies that may correlate to the Coon Hollow 

Formation. Rock types in the Coon Hollow Formation are primarily black and dark brown 

mudstones with minor siltstones and sandstones (Vallier, 1977). There are rare beds of 

conglomerate and breccia in the sequence (Vallier, 1977). In the Heavens Gate quadrangle, this 

unit also contains a siliceous tuff-like unit within the volcaniclastics pictured in Figure 9. 

 

Morrison Ridge Thrust Sheet (Triassic) 

Undifferentiated Marble (Triassic). Marble units are present throughout the 

stratigraphy. Undifferentiated marble consists of gray to blue marbles, limestones, and contains 

minor interbedded greenstone. In places these marbles correlate to the Martin Bridge limestone 

and Martin Bridge Formation (Hamilton, 1963; Lund, 2004). Exposed along the Rapid River, 

and striking north to south throughout the cross section, are marbles of the Martin Bridge 

Formation. The limestone ranges from crystalline to micritic. Calcite veins present are in both 

limestone and marble (Fig. 8). Thin talc schists and a dark blue to black quartzite are also 

intercalated throughout the marble units. Limestones are thinly bedded; however, the thickness 

of the limestone and marble along the river is around 700 feet based on constructed cross 

sections. 
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Figure 8. Outcrop scale fold in Wild Sheep Creek Formation 
carbonates, and slickenlines on a small-scale fault within the Wild 
Sheep Creek volcaniclastics. Folded rocks are carbonate limestone and 
marbles of the Wild Sheep Creek Formation. Slickenlines in 
greenschist volcaniclastic rocks near Heavens Gate lookout (bottom). 
Outcrop scale fold. 
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Lucile Slate (Triassic). Except where cut out by thrust faulting, the Lucile Slate overlies 

the Martin Bridge Limestone. The Lucile Slate is a light- to dark-gray, graphitic phyllite and 

slate with interbedded fine-grained quartzites. The Lucile Slate is present near the Rapid River in 

the quadrangle, and trends north-south. The phyllitic rocks in this unit outcrop poorly, with small 

phyllite/slate float common near small, rubbly outcrops. Crenulation cleavage is present in some 

outcropped exposures. The thickness of the Lucile Slate in the Heavens Gate quadrangle is 

around 800 feet based on cross section construction. 

 

Pollock Mountain Thrust Sheet 

Pollock Mountain Amphibolite (Triassic-Cretaceous).  Present in the eastern sections 

of the map, the amphibolite is exposed on hillsides to the east of the Rapid River. There appear 

to be two main variations, one with approximately equal amounts of hornblende and plagioclase, 

and one which occurs discontinuously and is dominated by hornblende (70-90%) with lesser 

quantities of plagioclase. Euhedral to subhedral almandine garnet occur on average at nearly 0.5 

– 1 cm sizes; however, they can be found in much larger sizes, up to 10 cm, within the Pollock 

Mountain Amphibolite. When present, garnets are often ringed with plagioclase feldspar. The 

Pollock Mountain Amphibolite exhibits fissile weathering. In places, the amphibolite is 

intercalated with post-kinematic, light colored quartz veins. Peak metamorphic conditions in the 

Pollock Mountain plate are estimated to be 8–11 kbar and 650-700 °C (Selverstone et al., 1992; 

McKay 2011). Garnet growth occurred in the rock between 141-124 Ma (McKay et al., 2017). 

Cold Springs Orthogneiss, Migmatite, and Tonalite Undifferentiated (Triassic-

Cretaceous). The course- to fine-grained felsic orthogneiss is intercalated with isolated zones of 

migmatite and fine-grained, undeformed tonalite and quartz diorite. The Cold Springs 
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orthogneiss (Fig. 9) exhibits a strong fabric, and includes biotite, quartz, hornblende, and 

plagioclase feldspar as primary constituents. Migmatites occur locally within the orthogneiss but 

are absent from the adjacent Pollock Mountain Amphibolite, which is intercalated with the Cold 

Springs orthogneiss. The protolith of the orthogneiss is interpreted to be Triassic (~206 Ma) 

based on U-Pb zircon and which was overprinted by Cretaceous metamorphism at 141 Ma 

(10ID42; McKay et al., 2017). Pegmatite veins and leucosomes are discontinuously present 

within the Cold Springs orthogneiss. An undeformed tonalite intrudes the Pollock Mountain 

Amphibolite and Cold Springs orthogneiss and is likely genetically similar to other Cretaceous 

intrusions in the vicinity, including the Deep Creek and Echols Mountain pluton (Jeffcoat et al., 

2013). Given the intercalated and discontinuous nature of the migmatite and undeformed 

tonalite, and frequent observation in association with the orthogneiss, this unit is presented as an 

undifferentiated Triassic-Cretaceous orthogneiss, migmatite, and tonalite. 

 

Riggins Group (Jurassic-Permian) 

Fiddle Creek Schist (Permian-Jurassic). The Fiddle Creek Schist is a fine- to medium-

grained, garnet-muscovite- schist with minor metaconglomerate, quartzite, and a garnet-biotite- 

schist. Along the Rapid River in the center of the quadrangle, the Fiddle Creek Schist strikes 

roughly southwest-northeast and is poorly exposed at the surface. Based on cross section 

construction, the Fiddle Creek Schist is approximately 500 feet thick within the quadrangle. The 

primary schist unit includes minor amounts of plagioclase, and retrograde chlorite (Vallier, 1977)  
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Figure 9. Cold Springs orthogneiss, siliceous tuffaceous unit, calcite banding within 
marble/limestone of the Wild Sheep Creek formation. Cold Springs orthogneiss (upper left). 
Siliceous tuff (upper right) possibly correlative to the Coon Hollow Formation. Taken along 
the west fork Rapid River trail (113). Calcite veins and deformation bands in marble unit 
within the Wild Sheep Creek Formation (lower middle). 
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and is light gray to green in color. Metaconglomerates are monomictic, with meta-tonalite clasts. 

Clasts range in size from 4 to 12 cm. Garnet sizes increase with a shift to the biotite-garnet schist 

and are around 1 cm in diameter on average. The Fiddle Creek Schist is distinguished from the 

Lightening Creek Schist by a higher percent of white mica and quartz, a lower percentage of 

biotite and chlorite, and the presence of metaconglomerates in the Fiddle Creek Schist. 

Lightning Creek Schist (Permian-Jurassic). The Lightning Creek Schist is a fine- to 

medium-grained biotite-chlorite schist and is light to dark gray and green in color. Within the 

unit moderate amounts of quartz are present.  Lightning Creek Schist exposures are limited to the 

north eastern extent of Heavens Gate quadrangle (Gray 2013). In the Heavens Gate quadrangle, 

the Lightning Creek Schist is around 500 feet thick based on cross section construction. Garnet, 

biotite, and chlorite are present in the schistose units (Lund, 2004). A few beds of foliated calcite 

marble, a few feet thick at most, are intercalated with greenschist facies in the upper part of the 

formation near the type section by the town of Riggins (Vallier, 1977). 

Squaw Creek Schist (Jurassic). Fine- to medium-grained, pelitic biotite-garnet schists 

are present running north-south on the eastern side of the quadrangle. The Squaw Creek Schist is 

distinctly quartz rich compared to other nearby lithologies. The unit is exposed at the surface in 

wide swathes, likely due to fault splays which thicken it at the surface. Garnet is present in 

discontinuous zones. Amphibole grains are present and are randomly oriented. Some sections 

exhibit serpentinization, particularly to the northeast near Riggins. Squaw Creek Schist weathers 

to a reddish brown and exposures are heavily weathered and friable. The Squaw Creek Schist 

locally contains minor quartzite and marble as well as talc schists. Interbedding relationships 

with the marble and quartzite suggest that foliation (S1) may be parallel to original bedding (S0). 

In the eastern portion of the map area garnet growth in the Squaw Creek Schist occurred at ~124 
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Ma (McKay et al., 2017). In the Riggins quadrangle to the northeast, preliminary detrital zircon 

dating yields an age of approximately 200 Ma as shown in a following section. Based on cross-

section construction the Squaw Creek Schist is at a minimum of 1000 feet in thickness in the 

quadrangle, however, internal fault splays may have tectonically thickened the unit near Wild 

Horse Saddle on the quadrangle. 

 

Intrusive Rocks- Cretaceous tonalite and quartz diorite (Early Cretaceous?)  

Medium- to course-grained, biotite rich tonalite to quartz diorite units intrude the Pollock 

Mountain Amphibolite and Cold Springs orthogneiss in the eastern-central region of the map 

(Plate 1). Units are white to gray in color and are made up of primarily plagioclase feldspar, 

hornblende, biotite, and quartz. Some sections exhibit a weak fabric of aligned hornblende and 

biotite. The units with weak fabrics may correlate to the compositionally similar Echols 

Mountain and Deep Creek plutons, suggesting a Cretaceous age. U-Pb zircon from a quartz 

diorite and tonalite in the Deep Creek pluton records a 123 Ma age (Jeffcoat et al., 2013). Some 

sections of the tonalite and quartz diorite are more heavily altered than others and exhibit a more 

friable texture, particularly those cut by the fault on Forest Road 624. Exposures are heavily 

jointed throughout the quadrangle. Based on U-Pb, partial melting occurred around 125 Ma with 

tonalite intrusions emplaced at 114 Ma (K. Johnson, pers. comm). 

 

Columbia River Flood Basalt- Imnaha Basalt (Miocene)  

The Imnaha Basalt of the Columbia River Basalt Group is present mostly in the southeast 

corner of the Heavens Gate quadrangle and continues into the Pollock Mountain 7.5-minute 

quadrangle to the south. In the Heavens Gate 7.5-minute quadrangle, the Imnaha Basalt is a 
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medium to coarsely grained porphyritic basalt flow with olivine and plagioclase phenocrysts 

dominating. These phenocrysts range on average from 1-9 mm in diameter (Lund, 2004). The 

unit weathers into a reddish brown or gray hue. Vesicular textures can be found in float on the 

quadrangle. The Imnaha Basalt is Miocene in age, at 15.4 Ma (McKee et al., 1981; Hooper et al., 

2002) and can be observed at all elevations at which basalt is present within the quadrangle, 

despite the Imnaha Basalt typically covering lower elevation areas (Vallier, 1977). Elsewhere, 

the Grande Ronde Basalt of later flows covered the majority of the Seven Devils Region (Vallier, 

1977). The basalt in this region originated from vents and dikes along the Oregon-Idaho border 

(Hooper and Swanson, 1990), and much thicker sections of it can be observed to the west of the 

Heavens Gate quadrangle across the Oregon border. In the Heavens Gate quadrangle, the Imnaha 

Basalt ranges from 500 to 1000 feet thick, based on topography. 

 

Quaternary Deposits 

Alluvium and low terrace deposits (Quaternary) composed of unconsolidated Holocene 

and Pleistocene deposits of gravel, sand, clay, and silt are present in the quadrangle. Thick 

terrace deposits occur along the Rapid River especially in the north east corner of the map, near 

the fish hatchery. Terrace deposits contain pebble to boulder size clasts, clasts are aligned in 

some areas. Clast composition includes greenstone, tonalite, and basalt. Quaternary deposits are 

not displayed in cross section due to thicknesses less than 50 feet. 
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GEOLOGIC STRUCTURES 

 

The Heavens Gate 7.5-minute quadrangle contains strata terrane that have been folded 

into a northeast plunging anticline, as well as three major thrust faults which juxtapose 

increasingly higher-grade metamorphic rocks atop lower grade rocks in the foot wall. Structures 

in the quadrangle, from west to east, include a large northeast plunging anticline that exposed the 

Hunsaker Creek Formation in the core of the anticline and Wild Sheep Creek Formation and 

overlying Wallowa strata rocks in the eastern limb and hinge line to the north. Several smaller 

scale folds and faults (outcrop scale) are present on the quadrangle in the volcaniclastics and 

carbonates of the Wild Sheep Creek Formations (Fig. 8). The metasedimentary and metavolcanic 

rocks of the western region of the Heavens Gate 7.5-minute quadrangle, known as the Heavens 

Gate plate (McKay et al., 2017), are unconformably overlain by Early Cretaceous rocks possibly 

correlative with the Coon Hollow Formation. The overlying lower greenschist facies rocks of the 

Lucille Slate and Martin Bridge Formations are juxtaposed onto the Seven Devils Group along 

the northeast-southwest trending, southeast dipping thrust fault known as the Morrison Ridge 

fault. Structurally above the Lucille and Martin Bridge units lies the Riggins Group. These 

midcrustal schist to amphibolite grade facies are exposed east of the Rapid River and above the 

north-south trending Rapid River thrust fault. The Riggins Group is bound to the east by the 

Pollock Mountain thrust fault which contains rocks of the Pollock Mountain Amphibolite and 

Cold Springs orthogneiss in the hanging wall, thrust over the Riggins Group rocks in the footwall 

in the southeastern corner of the Heavens Gate 7.5-minute quadrangle. 
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STRUCTURAL ANALYSIS 

 

Methods 

To investigate map scale structures, foliations were plotted for each thrust sheet in the 

region, and poles to foliation were calculated and displayed (Fig. 10-13) using Stereonet 10 

(Allmendinger, 2018).  Poles to foliation and bedding planes are shown, with contours to show 

density of orientations. Each stereonet has a significance level of 3 sigma. Each of the thrust 

sheets’ plots show western movement along east dipping planes. 

 

Results 

Pollock Mountain thrust sheet. The average foliation for this thrust sheet is 050°/22° 

SE. The highest density of poles to foliation plots in the northwest quadrant, however there 

appears to be a general clustering of data across both northern quadrants (Fig. 10). 

Rapid River thrust sheet. The highest density of data for poles to foliation for this thrust 

sheet fall within the northwestern quadrant, with nearly all the data falling in the western 

quadrants (Fig. 11). The average foliation for this thrust sheet was 014°/27° SE.  

Morrison Ridge thrust sheet. The highest density of poles to foliation here fall in the 

western quadrants. The mean orientation of foliation within this thrust sheet is 359°/22° NE (Fig. 

12).  

Seven Devils/Wallowa rocks beneath the Morrison Ridge thrust fault. The poles to 

foliation here show two distinct groupings, representing the large-scale fold in the Seven Devils 

units (Fig. 13). One grouping of poles is in the southeastern quadrant with a trend of 124° and a 

plunge of approximately 12 degrees. The other high-density regions are in the northwest  
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Figure 10. Poles to foliation with density contours for 
the Pollock Mountain thrust sheet. Red indicates high 
density, blue indicates low density. Poles are 
represented by black points. 

Figure 11. Poles to foliation with density contours for 
the Rapid River thrust sheet. Red indicates high 
density, blue indicates low density. Poles are 
represented by black points. 
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Figure 12. Poles to foliation with density contours for 
the Morrison Ridge thrust sheet. Red indicates high 
density, blue indicates low density. Poles are 
represented by black points. 

Figure 13. Poles to foliation with density contours for 
the Seven Devils thrust sheet. Red indicates high 
density, blue indicates low density. Poles are 
represented by black points. 
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quadrant and southwest quadrants and have plunge and trends of 48°/237° and 302°/22°. 

Average foliations for the limbs of the folds are 016°/44° SE and 194°/72° NW. 
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GEOCHRONOLOGY 

 

The methods used in this study combine field relations and structural measurements 

observed during geologic mapping of the Heavens Gate quadrangle with geochronology to 

determine the timing of burial, exhumation, and faulting in the Heavens Gate 7.5-minute 

quadrangle. 

 

Methods 

Geochronology refers to the techniques concerned with dating rock formations and 

geologic events. One branch of geochronology involves the use of radioactive isotopes and their 

half-lives to date these rocks and events (Dalrymple, 1991). Common types of radioactive 

isotope dating include uranium to lead (U-Pb), rubidium to strontium (Rb-Sr), potassium to 

argon (K-Ar), Samarium to Neodymium (Sm-Nd), and thorium to lead (Th-Pb) (Dalrymple, 

1991). The methods used in this study are U-Th-Pb dating of the mineral zircon. The basis of 

radiometric dating involves a radioactive parent isotope which decays to a stable daughter 

isotope at rates that can be measured experimentally (Dalrymple, 1991). With this known rate of 

decay, the time that has elapsed since the rock (or mineral) has formed can be calculated. Zircon 

also readily incorporates trace elements making it useful for geochemical tracers and is relatively 

insoluble in melts and fluids allowing it to preserve multiple generations of information in a 

single grain (Cherniak and Watson, 2003). 

Deposition Ages vs Ages of Metamorphism. When dating the mineral zircon, it is 

important to distinguish whether ages represent original growth of the zircon in an igneous 

system, or if the zircon experienced multiple phases of growth, including metamorphic 
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crystallization of zircon on older zircon cores.  Single zircon crystals can retain isotopic evidence 

for multiple magmatic and or metamorphic events (Cherniak and Watson, 2003). For this reason, 

the interpretations of U-Pb dates from zircons with a polyphase growth history necessitate 

careful consideration of domains from single crystals (Gatewood and Stowell, 2012). Care must 

also be taken in cases where the zircon grain grew during an igneous or metamorphic event 

taking several million years, as P-T conditions may not be accurately reflected (Gatewood and 

Stowell, 2012). To determine whether the zircon grains are recording magmatism or periods of 

partial melting and metamorphism, we look to the ratio of Uranium and Thorium (U/Th or 

Th/U). Zircon data from Gatewood and Stowell (2012) show that young and discordant zircon 

have high U/Th ratios (>10) (extremely low Th/U ratios), suggesting crystallization with 

metamorphic fluids, or mixing between low and high U/Th Proterozoic and Cretaceous rims 

respectively, making them metamorphic zircon. This combination of U/Th ratios with U-Pb age 

dating could have useful applications in providing insight into the tectonic history of a region 

(McKay et al., 2018). Zircon data from western Idaho should therefore tentatively be able to tell 

us if the grain has recorded a metamorphic event, based on U/Th ratios and the grains correlation 

with garnet Sm-Nd ages. 

Analysis. Geochronology samples were prepared at Missouri State University and 

analyzed at the University of Arkansas with a single collector iCAP Quadropole ICP-MS. 

Samples selected for analysis were first thoroughly cleaned to avoid any contamination with 

detrital zircon that may have come in contact with the rock since its collection. Following 

cleaning, samples were broken down in a rock crusher, and then pulverized to sand sized 

particles in a disk mill. A Franz magnetic separator was used to remove high magnetic 

susceptibility minerals. Separation of the mineral zircon from less dense minerals such as quartz 
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and feldspar was achieved through the use of heavy liquids. Lithium sodium tungstate (LST) was 

used with a density of 2.85 g/cm3 which allows minerals such as zircon (density of 4.65 g/cm3) 

to sink. Zircons were then hand-picked from the remaining grains and mounted on double sided 

tape mounts. Laser ablation of sample grains was conducted using a beam diameter of ~25 μm. 

The ablated material was then removed from the ablation chamber by means of a carrier gas 

which was then passed through the plasma of the inductively coupled plasma-mass spectrometer 

(Gehrels et al., 2008).  This superheated material carried by the gas was then accelerated and 

passed through a magnet which separates out the isotopes it is carrying, and these were picked up 

by the collector and analyzed (Gehrels et al., 2008). Data was acquired beginning with a single 

period of time with no laser firing to measure background intensity, followed by periods of laser 

firing, and once more without laser firing, to allow all the sample material to travel through the 

system and prepare for the next analysis, much like the process detailed in Gehrels et al. (2008).  

Upon completion of analysis the data was reduced at Missouri State University and the 

signatures were displayed using software called Density Plotter (Vermeesh, 2012). Weighted 

mean ages were calculated in Isoplot (Ludwig, 2003). 

 

Results 

Zircon from three tonalites (Figs. 14-15) (17IDMB443, 17IDMB506, and 18IDSD162a), 

one orthogneiss (Fig. 16) (17IDMB427), a schist member of the Riggins Group (Fig. 17) 

(17IDSN528), and a siliceous unit in undifferentiated clastic strata above the Seven Devils 

Group (Fig. 18) (18IDSD51) were analyzed to bracket localized deformation. Weighted mean 

ages are calculated for all samples using Isoplot (Ludwig, 2003; Vermeesh, 2012). The mean 

squared weighted deviation (MSWD), also known as the reduced chi-squared statistic, is  
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reported to assess the degree of coherence within a given dataset. As MSWD values approach 

1.0, the scatter in the data represent scatter predictably within a single age population, given the 

known analytical uncertainties. Values less than 1.0 suggest analytical uncertainties are less than 

predicted for a single population, while values greater than 1.0 suggest mixing of two or more 

age populations. Complete data for each sample can be found in Appendix A. 

17IDMB443 and 17IDMB506. These samples are tonalite that intruded the Pollock 

Mountain thrust sheet and Seven Devils Group, respectively (Brown, pers. comm., 2018). Four 

zircon grains were recovered from each sample. Given the similar compositions and proximity to 

one another (approximately 2 km), these have been grouped as belonging to the same intrusive 

event and are therefore considered together for age determination. Out of eight analyzed zircon, 

U-Pb ages for four grains are >160 Ma and are interpreted as xenocrysts (168.5, 180.5, 225, 254) 

inherited from an older population as the tonalite intruded the surrounding rock. The four 

youngest zircon grains form a population with a weighted mean age of 122.53 ± 2.84 Ma 

[MSWD=1.99]. 

18IDSD162a. This unmetamorphosed tonalite intrudes the Pollock Mountain thrust 

sheet. The particular sample locality is within the Heavens Gate quadrangle and included 

exposures of both Pollock Mountain Amphibolite and unmetamorphosed tonalite, providing 

spatial context between nearby units. Of 47 grains, 42 are between 142.1 and 104.2 Ma, and 

produce a weighted mean age of 116.08 ± 0.90 Ma with an MSWD of 1.7. Five, older zircon 

(219, 303, 382, 394, 605) were excluded from the age calculation as they were significantly 

older, possibly xenocrysts recycled from earlier magmatism. 
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17IDMB427. A sample of the Cold Springs orthogneiss was collected from the Pollock 

Mountain quadrangle (Brown, pers. comm., 2018). Ages for this sample came from 23 zircon, at 

216.43 ± 1.26. The MSWD was 1.48. 

17IDSN528RS. The Squaw Creek Schist, a member of the Riggins Group, was sampled 

from above the Salmon River in a well constrained section near Riggins, Idaho (Nandi, 2018). 

As a fine-grained, mafic micaceous schist, the zircon yield for this sample was low. Six zircon 

grains were analyzed producing an age of 194.48 ± 2.89 Ma with an MSWD of 2.36. 

18IDSD51. A fine-grained, gray, siliceous unit within the greenstone and clastic facies 

unconformably overlying the Seven Devils Group, possibly the Coon Hollow Formation, that, 

we interpret as a metamorphosed volcanic tuff was collected from just east of the Rapid River in 

the Heavens Gate 7.5-minute quadrangle. The sample yielded 8 grains, four of which are > 234 

Ma, outside of uncertainty of the youngest 4 grains, and excluded from age calculation and likely 

represent xenocrystic or detrital contamination. The weighted mean age of the youngest three 

grains is 139.04 ± 3.34 Ma [MSWD =3.04]. 
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DISCUSSION 

 

Sample 18IDSD51, a siliceous tuff, which potentially is correlative to the Coon Hollow 

Formation and overlies the Seven Devils Group helps constrain the start of deformation in the 

Seven Devils Group. The mean weighted age given by the four of the eight zircon grains in the 

sample is 139.04 ± 3.34 Ma. There are three possible interpretations for this sample: First, the 

139 Ma age obtained from this sample may be a result of metamorphism, possibly occurring 

concurrently with the Pollock Mountain thrust plate. However, this explanation is unlikely as the 

U/Th ratios for each of zircon used to calculate an age in the sample have very low U/Th ratios 

(<5) (Fig. 18). The second interpretation for this age is that the zircon used in the dating of this 

sample experienced lead loss at some point following deposition. Despite having high error, the 

four zircon grains used to assign an age to the unit are concordant (Fig. 19), which is atypical of 

grains that have experienced Pb loss. The four youngest ages are also of moderate U 

concentration (<1000 ppm) and do not young with age, another trait of Pb loss affected grains. 

Ages of each zircon grain versus the uranium content in parts per million are shown in Figure 

19B. Uranium content (ppm) for the four zircon grains used to give an age are all similar making 

it unlikely the zircon has been altered. This rules out lead loss as an explanation for the age 

obtained from the tuff. The final interpretation for the ages given is that the tuff was deposited at 

this time and post 139 Ma folding and faulting generated the structures present in the region. 

This interpretation is not consistent with the proposed timing of deformation in the thrust sheet 

by Lamaskin et al. (2015), who proposes that the timing of folding and faulting had to occur pre-

160 Ma. There is no evidence for multiple deformational events as proposed by Lamaskin et al. 

(2015) in the Heavens Gate quadrangle, as the tuff (interpreted as Coon Hollow Formation)  
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Figure 19 A, B. Concordia plot and age vs uranium concentration for sample 
18IDSD51. Concordia plot (top), Age vs Uranium concentration (ppm) (Bottom). 
Concentrations of uranium decrease as the age increases. Concordia plot shows high 
error. 

A. 

B. 
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shares similar structure with the Seven Devils rocks it abuts, and there is no discernable angular 

unconformity separating it from the Seven Devils Group rocks below. For these reasons, it seems 

reasonable that the 139 Ma age for the tuff represents deposition prior to a folding and faulting 

deformational event. 

 

Timing of Folding and Thrust Fault Development 

Along the western portion of the Heavens Gate 7.5-minute quadrangle, rocks of the 

Wallowa terrane (Seven Devils Group and overlying strata) are folded, with a large anticline 

dominating the area, placing the Hunsaker Creek Formation in the center of Wild Sheep Creek 

Formation rocks. Additionally, several smaller scale folds are contained within the Wild Sheep 

Creek Formation. Folds plunge to the north east and are truncated to the east by the Morrison 

Ridge fault, suggesting that folding in the Wallowa-affinity rocks predates development of the 

Morrison Ridge fault. The presence of a fine-grained tuff with a 139 Ma U-Pb zircon age 

brackets folding within the Seven Devils Group and overlying strata to post-139 Ma. Based on 

reconnaissance mapping, Gray (2016) suggests low-angle thrusting between the Seven Devils 

Group and carbonate Martin Bridge Formation along the Morrison Ridge fault postdates the 130 

Ma emplacement of the Fish Hatchery stock, which is compatible with post-139 Ma folding of 

the Seven Devils Group and associated strata.  

The movement of the Morrison Ridge thrust fault can be bracketed further. The 

relationship between the Fish Hatchery stock and the thrust fault separating volcaniclastics of the 

Heavens Gate plate from the carbonates of the Morrison Ridge thrust plate, constrains faulting to 

post-130 Ma (Gray, 2016), while to the south the Echols Mountain pluton intrudes the Morrison 

Ridge fault on the Pollock Mountain 7.5-minute quadrangle (Brown, pers. Comm., 2018; Nandi, 
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2018). The Echols Mountain is likely an extension of the Deep Creek pluton, which is 123 Ma 

(Jeffcoat et al., 2013).  Therefore, the Morrison Ridge thrust fault was likely active between 130-

123 Ma.  

West of the Morrison Ridge thrust sheet are two additional thrust faults; the Rapid River 

and Pollock Mountain thrust faults (from west to east). These split the region into thrust sheets 

which each contain rocks of differing characteristics. The easternmost thrust fault, the Pollock 

Mountain thrust fault, separates mid-crustal orthogneiss and amphibolites within the Pollock 

Mountain thrust plate in the east, and the rocks of the Rapid River thrust to the west. The 

differences in the makeup of these rocks and thrust sheets are due to the differences in formation 

conditions for each. The Rapid River thrust fault places the mid-crustal garnet—mica schists of 

the Riggins Group above the Lucile Slate in the footwall of the thrust. The Fiddle Creek Schist, 

Lightning Creek Schist, and Squaw Creek Schists are thrust fault slices within this east-dipping, 

west-directed thrust fault system. Overriding all these units is likely a splayed thrust sheet of 

Squaw Creek Schist, which tectonically thickens the unit at the surface.  

The units within the Pollock Mountain thrust sheet record peak metamorphic conditions 

of temperatures of 650°-700°C and at a minimum of 7.5 kbar of pressure (Zen and 

Hammarstrom, 1984; Selverstone et al., 1992; Bollen, 2015; McKay et al., 2017). This slightly 

contrasts with those rock units within the Rapid River thrust plate, which experienced peak 

metamorphism at ~650°C, and at 7-9 kbar (Bollen, 2015; McKay et al., 2017).  

In the Heavens Gate quadrangle, a tonalite that was emplaced at 116 Ma (Fig. 15) is 

truncated to the north and east by the Pollock Mountain thrust fault, implying the fault is either 

synchronous with or post-dates pluton crystallization. (McKay et al., 2017). Hornblende cooling 

ages record 118 Ma cooling and exhumation of the Pollock Mountain thrust plate (Lund and 
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Snee, 1988; Getty et al., 1993), therefore suggesting that exhumation of the Pollock Mountain 

plate and movement along the Pollock Mountain thrust fault are synchronous (McKay et al., 

2017). The Pollock Mountain plate needs to have been buried to approximately 32 km, its 

maximum depth, by 117 Ma, with burial and metamorphism beginning between 141-137 Ma 

based on initial garnet growth (McKay et al., 2017). This exhumation of the Pollock Mountain 

plate likely played a role in the loading of the Rapid River plate down to 7-9 kbar (McKay, 2011; 

McKay et al., 2017). Garnet growth in the Rapid River plate records metamorphism overlapping 

with the Pollock Mountain plate, beginning at 124 Ma and continuing until at the minimum, 113 

Ma (McKay et al., 2017). This timescale works with an Early Jurassic depositional age given for 

the Squaw Creek Schist at 194.48 ± 2.89 Ma. from U-Pb zircon dating. Any metamorphism 

occurring in the region would have had to occur after this time. Hornblende cooling ages of 109-

107 Ma (Lund and Snee, 1988) track exhumation of the Rapid River thrust plate, implying 

movement towards the surface along the fault plane at this time.  

 

Model for Deformation During Arc-Continent Collision 

The earliest evidence for thrust fault development in the Heavens Gate 7.5-minute 

quadrangle is the ~123 Ma intrusion of the Echols Mountain pluton that cuts across the Morrison 

Ridge thrust fault., recording pre-123 Ma faulting in the western portion of the Salmon River 

suture zone. Activation of the Pollock Mountain thrust fault began likely by 118 Ma, which 

uplifted and exhumed the Pollock Mountain plate in the hanging wall, while burying the Rapid 

River plate in the footwall to mid-crustal metamorphic conditions. The Rapid River thrust fault 

was likely not active until after peak metamorphism of the Rapid River plate at 113 Ma. These 

spatiotemporal trends suggest out-of-sequence thrust fault development in a mid-crustal shear 
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zone, where early faulting developed at the shallowest structural levels (the pre-123 Ma 

Morrison Ridge thrust fault) in the west, then shifted eastward to the mid-crustal, high 

geothermal gradient rocks of the Pollock Mountain plate, resulting in the 117 Ma Pollock 

Mountain thrust fault. The final sequence of thrust faulting occurred between these two faults 

and at mid-crustal conditions, within the Rapid River thrust fault. The complex nature of the 

Rapid River thrust fault suggests that thrust faulting and crustal thickening played a role in the 

Cretaceous metamorphism that occurred in the Salmon River suture zone. 

 

Crustal Shortening 

To estimate the magnitude of crustal shortening that the Salmon River suture zone 

underwent in the Paleozoic, horizontal transport distances were calculated across the region. The 

Morrison Ridge thrust fault juxtaposes rocks in the hanging wall that experienced ~9 kbar of 

pressure (McKay, 2011), while the Deep Creek pluton in the footwall was emplaced into the 

Seven Devils Group at 2.4-2.8 kbar of pressure (Jeffcoat et al., 2013). To account for the ~6.4 

kbar pressure discrepancy present along the fault requires transport of the high pressure, hanging 

wall from mid-crustal conditions to upper crustal levels, resulting in significant uplift and 

shortening. Shortening was calculated using the equation for hydrostatic pressure: P = ρ* g * d, 

where P is the pressure, ρ is the density of the crust, g is gravity (9.8 m/s^2) and d is the depth 

below the surface. Once depth was calculated, fault geometries were inferred to estimate 

horizontal tectonic transport (Table 1). Assuming crustal densities from Simmons et al. (2007) 

(Table 1) an initial fault angle of approximately 15 degrees, like those found in local analogues 

in Idaho and Wyoming thrust belts (Armstrong and Oriel, 1965), shortening over the Salmon 

River suture zone during Cretaceous metamorphism is estimated to be between 72.6 and 86.1  
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km. The percent shortening for the region was calculated first between the Morrison Ridge plate 

and the Rapid River plate using the minimum pressure estimates for shortening (Fig. 20). The 

modern distance between these plates was measured to be 6.4 km, from the Heavens Gate road to 

the sample location for ID26 from Mckay et al. (2017). These measurements resulted in a 

percent shortening of 91.9. Percent shortening was also calculated between the Morrison Ridge 

and Pollock Mountain plates at two locations: (1.) between the Heavens Gate road and Allison 

Creek; and (2.) between the boundary of the Morrison Ridge thrust plate just west of the Rapid 

River and Patrick Butte. The distances between these points were 13.1 and 17 km respectively.  

The three locations where distance was measured are shown in Figure 20. The shortening 

calculated at each of these locations was 86.8 (1.) and 83.5 percent (2.). Shortening amounts and 

percentages are shown in Table 1 for a variety of conditions and variables. 

The lateral transport and crustal thickening that resulted from the compressional forces 

driving metamorphism between 141 Ma and 108 Ma in the Salmon River suture zone amounted 

to shortening of nearly 90% of the region’s original distance. The shortening estimates presented 

here are similar to the shortening estimates proposed by Giorgis et al. (2008) that were required 

to account for the compressed geochemical boundary between arc and continental affinity rocks. 

These estimations call for as much as 80-90 km of shortening (Giorgis and Tikoff, 2004; Giorgis 

et al., 2005; Giorgis et al., 2008). Activation of the western Idaho shear zone has been 

hypothesized to be responsible for much of the shortening that occurred throughout the Salmon 

River suture zone (McClelland et al., 2000; Tikoff et al., 2001; Giorgis et al., 2008). It is possible 

that the amount of shortening required to provide the compressed geochemical boundary and 

feldspar finite strain analysis found by Giorgis et al., (2008) could have been accommodated in  
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Figure 20.  Distances across the Salmon River suture zone thrust sheets, 
aerial imagery. Imagery from google earth showing the distances measured across the Salmon 
River suture zone thrust sheets. Yellow line corresponds to the distance between the Rapid 
River and Morrison Ridge thrust (6.4 km) between the Heavens Gate road and the sample 
location for ID26 from McKay et al. (2017). Orange line corresponds to the minimum 
distance between the Pollock Mountain and Morrison Ridge thrusts (13.1 km) between the 
Heavens Gate road and Allison Creek. Red line represents the maximum distance between the 
Pollock Mountain and Morrison Ridge thrusts (17 km) between the Martin Bridge-Seven 
Devils group boundary west of the Rapid River to Patrick Butte. 
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the Salmon River suture zone. This would imply that the western Idaho shear zone is not the 

major zone of shortening in the Blue Mountain province, rather the Salmon River suture zone 

represents this, with the western Idaho shear zone serving to activate the periods of shortening. 

 

Exhumation Rates 

Exhumation rates have been calculated for the Pollock Mountain and Rapid River plates. 

Peak pressures for both the Rapid River and Pollock Mountain plates are assumed to be ~9 kbar 

(Selverstone et al., 1992; McKay, 2011) and are assumed to have been exhumed from crustal 

depths similar to rocks in the Seven Devils Mountains at ~2.6 kbar by the end of accretionary 

orogenesis. Therefore, the minimum exhumation required to account for current structural 

juxtaposition is ~6.4 kbar. These values are shown in Table 1 based on McKay et al. (2017). 

Densities used are the same as those shown in Table 1. If metamorphism in the Pollock 

Mountain plate began at 141 Ma (McKay et al., 2017), and exhumation was complete by 117 Ma 

(McKay et al., 2017), the Pollock Mountain plate was exhumed at a minimum rate of 0.95 mm 

per year. The duration of metamorphism in the Rapid River plate has been constrained to ∼15 

m.y. by early garnet growth (124-113 Ma; McKay et al., 2017) and postmetamorphic cooling of 

hornblende (109 Ma; Lund and Snee, 1988). Using these age estimates, exhumation rates of 1.57 

mm per year would be required for the Rapid River plate. Exhumation rates of approximately 1-2 

mm per year are consistent other Cordilleran accretionary orogens, including the north Cascades 

which were loaded at a rate of 1-3 mm per year (Gatewood and Stowell, 2012). Loading rates of 

1 mm/yr calculated by McKay et al. (2017) for the Rapid River plate are consistent with the rates 

of exhumation calculated here for the Pollock Mountain plate, supporting the theory that thrust 
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fault-driven exhumation of the Pollock Mountain plate resulted in tectonic loading and burial of 

the Rapid River plate. 
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CONCLUSIONS 

 

Geologic mapping within the Salmon River suture zone coupled with geochronology 

demonstrates the distribution of geologic units in the Heavens Gate 7.5-minute quadrangle and 

brackets the timing of tectonic deformation recorded in the Salmon River suture zone. By 

integrating structural relationships, geochronology data, and pressure estimates, estimates for 

crustal shortening and exhumation can be calculated for accretionary orogenesis in the Blue 

Mountains province. A visual representation of the timing of these events is shown in Figure 21. 

1. Deposition of a 139 Ma siliceous tuff (Coon Hollow Formation?) within Wallowa terrane 
strata in the footwall of the Morrison Ridge thrust fault. Therefore, the Wallowa-affinity 
rocks to the west were folded between 139 and 123 Ma. The Morrison Ridge fault 
truncates this structure and was active between 130 and 123 Ma. 

2. The Pollock Mountain thrust fault cuts a 117 Ma tonalite pluton, suggesting movement 
during or after ca. 117 Ma. 

3. Age controls to the north of the quadrangle suggest that metamorphism and deformation 
of the Riggins Group has been constrained to ∼15 m.y. by early garnet growth beginning 
by 124 Ma and ending around 109 Ma as constrained by post-metamorphic cooling of 
hornblende ages.  

4. These age controls suggest that thrust fault development in the Salmon River suture zone 
is out-of-sequence. Faulting was active in the west (Morrison Ridge thrust fault), which 
overlaps with late mid-crustal metamorphism of the Pollock Mountain plate in the east. 
The second phase of deformation resulted in exhumation of the Pollock Mountain plate 
and burial of the Rapid River plate along the Pollock Mountain thrust fault beginning at 
~124 Ma. In the central portions of the quadrangle, metamorphism of the Rapid River 
plate ended coeval with uplift and exhumation along the Rapid River thrust fault at ~109 
Ma.  

5. Shortening estimates suggest ~ 80 km of tectonic transport between [what] and 83.5% 
and 91.9% shortening [between what!] The calculated shortening is approximately the 
magnitude required to account for the compression observed in the geochemical 
boundary between the North American cratonic rocks and the units of the western Idaho 
shear zone. 

6. Exhumation of the midcrustal metamorphic rocks at rates of 0.97 mm/year to 1.38 
mm/year for the Pollock Mountain plate and 1.71 mm/year to 2.15 mm/year for the Rapid 
River plate are similar to rates of thrust fault loading, suggesting that (a) burial and 
metamorphism may be controlled by thrust faulting, (b) exhumation was controlled by 
thrust fault movement. 
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Figure 21.) Schematic timeline showing the timing of thrusting and 
deformation in the Salmon River suture zone from 154Ma to <113 Ma. Not to 
scale. 
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GEOLOGIC MAP AND CROSS SECTIONS OF THE HEAVENS GATE
7.5’ QUADRANGLE, IDAHO COUNTY, IDAHO

by

Samuel G. DeYoung, Matthew P. McKay, Jordan Cruzan, Sage Muttel, and Tessa Mills
2019
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The Heavens Gate Quadrangle contains Permian-Triassic age strata originating in the Wallowa terrane that have been folded, 
potential folds in some mid crustal metamorphic rocks, as well as three major thrust faults which juxtapose increasingly higher grade 
metamorphic rocks atop lower grade rocks in the foot wall.

Along the western portion of the Heavens Gate quadrangle, rocks of the Wallowa terrane (Seven Devils) are folded, with a large 
anticline dominating the area, placing the Hunsaker Creek Formation in the center of Wild Sheep Creek Formation rocks. Additionally 
there are several smaller scale folds contained within the Wild Sheep Creek, with both anticlines and synclines being present. All folds 
discussed above plunge to the north east, and there is potentially some folding in the Martin Bridge Formation which is located across 
the Morrison Ridge Thrust Fault from the Seven Devils Rocks. If these faults continued across the fault boundary this means that they 
are predated by the fault and must have occurred later in the regions history. 

Of the major thrust faults which traverse the quadrangle, all three are NNE-SSW striking, and east dipping. These split the region 
into thrust sheets which each contain rocks of differing characteristics. 

The easternmost thrust, the Pollock Mountain thrust fault, separates mid-crustal orthogneiss and amphibolites within the Pollock 
Mountain thrust plate in the east, and the rocks of the Rapid River thrust to the west. The differences in the makeup of these rocks and 
thrust sheets are due to the differences in formation conditions for each. Those units within the Pollock Mountain thrust sheet formed with 
peak metamorphism occurring at temperatures of 700°C and at 7.5 kbar of pressure. This is in contrast to those rock units within the 
Rapid River thrust plate, which experienced peak metamorphism at ~650°C, and at >8 kbar. These differences in temperature and pres-
sure suggest that the Pollock Mountain thrust fault may have played the role of a major crustal boundary as it seperates rocks from 
distinctly different metamorphic regimes. In the Heavens Gate quadrangle, The Pollock Mountain thrust fault cuts a 117 Ma tonalite pluton 
in the western portion of the map (McKay et al., 2017), and hornblende cooling ages record 118 ma cooling of the Pollock Mountain thrust 
plate suggesting displacement along the Pollock Mountain thrust fault ~118 Ma.

The Rapid River thrust fault places the midcrustal garnet-mica schists of the Riggins group above the Lucile slate in the footwall 
of the thrust. The Fiddle Creek, Lightning Creek Schist, and Squaw Creek Schists are thrust in slices by this west-directed thrust fault. 
Overriding all of these units is likely a splayed thrust sheet of Squaw Creek schist, which tectonically thickens the unit at the surface, 
accounting for the much thicker size of the unit. Hornblende cooling ages of 109-107 Ma (Lund and Snee, 1988) track exhumation of the 
Rapid River thrust plate, implying movement at this time.

The westernmost thrust, the Morrison Ridge thrust fault emplaces the lower greenschist facies rocks of the Lucille Slate and 
Martin Bridge Formation over top the Seven Devils Group. This thrust is cut by the by the Echols Mountain pluton, implying that the fault 
predates the plutonism. U-Pb zircon from a quartz diorite and tonalite int eh Deep Creek pluton records a 123 Ma age (Jeffcoat et al., 
2013). If a similar age is assumed for the quartz diorite of the Echols Mountain pluton, movement along the Morrison Ridge fault must 
have occurred prior to 123 Ma.

Based on the age correlations above, it is apparent that the thrusting which occurred in the Heavens Gate quadrangle is out of 
sequence. The first activated thrust was the Morrison ridge fault, at pre-123 Ma, which was closely followed by the thrusting of the Pollock 
Mountain plate at around 118 Ma. This thrusting event is likely what loaded the Rapid River thrust plate to mid-crustal metamorphic condi-
tions.  The approximately 109 degree Ma Rapid River thrust fault was the final thrust fault to develop in the Salmon River suture zone. 
This occurred just before the uplift and extension of the rocks of the western Idaho shear zone (Giorgis et al., 2008; Schmidt et al. 2016).
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The Heavens Gate (7.5-minute) quadrangle is located in Idaho County, Idaho. Land use within the quadrangle is a mixture of 
National Forest and Privately-owned land. Two national forest service branches manage the land in the quadrangle with the northern 
regions of the quadrangle falling into the Nez Perce national forest, while in the south the Payette National forest manages the land. 
The Hells Canyon wilderness area exists to the west of the quadrangle. Access to the quadrangle is provided through a series of 
unnamed forest service roads. Access to the northern regions of the map are provided by forest service roads 2109 and 517. Forest 
service road 624 and 2056 provide access to the eastern-central sections of the map. Peaks in the quadrangle include Vista Point 
lookout (8429 feet), Mount Sampson (6462 feet), Cannon Ball Mountain (7178 feet), and Bryan Mountain (8358 feet). Trails are 
maintained by the U.S. Forest Service for recreational access. The closest cities to the quadrangle are Riggins (7.1 miles) to the 
northeast and New Meadows (33 miles) to the south. Historic land use in the region has been grazing as well as copper and gold 
mining. Abandoned mining pits are present in the Seven Devils unit, primarily near limestone units which have been intruded by 
plutons.

This report and accompanying map summarize the basic geology of the area. This will provide insight into the timing of 
accretion and deformation in the area. Relationships between the thrust sheets within the Salmon River Suture Zone (SRSZ) and ages 
for greenschist facies volcaniclastic sequences will be critical to interpreting the events which shaped the western margin of North 
America during the Mesozoic.

The Heavens Gate (7.5-minute) quadrangle is located in the eastern Blue Mountain Province in Idaho. This edge marks the 
boundary of accreted terranes to the North American craton (Armstrong et al., 1977). These terranes exhibit the magmatism, 
metamorphism, and sedimentation which was occurring here from the late Paleozoic to the Mesozoic (Dickinson, 1979; Walker, 1986; 
Schwartz et al., 2010). These terranes are intruded by late Jurassic-Early Cretaceous plutonic complexes which are exposed below the 
accreted (primarily) Cenozoic rocks (Schwartz et al., 2010). The eastern edge of the quadrangle contains rocks from the Salmon River 
suture zone, a north and south trending zone (Lund and Snee, 1988) that marks the boundary between the volcanic rocks in the Blue 
Mountains province, and the units originating in the Precambrian in central Idaho (Gray and Oldow, 2005).

Within the quadrangle, Permian to Triassic sedimentation and subsequent Jurassic to Cretaceous metamorphism are evident 
in the Seven Devils Group. In addition,  Cretaceous thrusting and deformation of the Salmon River suture zone rocks is recorded within 
the quadrangle. The rocks of the Heavens Gate quadrangle can be broken up into four thrust sheets, from east to west; Pollock 
Mountain, Rapid River, Morrison Ridge, and Seven Devils thrust sheets. Cretaceous plutons are present within the Pollock Mountain 
Thrust sheet.

Mining reports by multiple mine inspectors for hte state of idaho provide the earliest documentation of the rocks in the area 
around the Heavens Gate quadrangle. In the southern Seven Devils region, Livingston and Laney (1920) documented some of the 
earliest mining activities. 

The earliest geologic mapping and documentation of the rocks in the Heavens Gate quadrangle produced was by Hamilton 
(1963) at a 1:125000 scale. Hamilton was the first to formulate any tectonic interpretations of the region, and hypothesized that 
metamorphism was occurring related to an intrusion of the 100-54 Ma Idaho batholith (Gaschnig et al., 2010). The Seven Devils 
volcanics mapped previously were only stratigraphically differentiated as the Seven Devils Group by Vallier (1967, 1977) in the Blue 
Mountains region later. The Seven Devils group was only mapped at a 1:125,000 scale by Lund (2004) until Nandi (2018) mapped the 
units at a 1:24,000 scale in the Purgatory Saddle quadrangle. The Salmon River suture zone (SRSZ) was mapped first by Aliberti 
(1988) and then Lund (2004) but at a large scale (1:125,000). The nearest published quadrangle, the Lucille 7.5-minute quadrangle 
(Lewis et al., 2011) maps the metamorphic rocks of the SRSZ at a 1:24,000 scale. There is a geologic transect map that covers the 
arc-continent boundary done by Gray (2013) and covers the top of the Heavens Gate quadrangle. This study provides structural fabrics 
for the various members of the Seven Devils group in detail, which can be compared to the structural data collected by this study to 
identify changes in the structural fabric throughout the region. Tectonic studies within the region determining accretion timing are 
generally split into two separate models, one of early and one of late collision. Structural relationships within terranes, U-Pb zircon 
ages of fault stitching plutons (Schwartz et al., 2010; 2011), and Garnet Sm-Nd ages of metamorphism (Getty et al., 1993; McKay et 
al., 2017), amongst others, have been conducted to attempt to determine what model of timing is more likely.

The Heavens Gate (7.5-minute) quadrangle was mapped as a part of the author’s Master’s thesis in cooperation with the U.S. 
Geological Survey, National Cooperative Geologic Mapping Program, award No. G18AC00128. Age dates were funded in part  by 
Missouri States Graduate College grant. The authors would like to thank Reed Lewis for his support and expertise. Additional thanks to 
Erik Whiteman and Morgan Zedalis from the U.S. Forest Service for allowing our team to conduct research in the National Forest 
areas.
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Table 1. Geochronology samples collected in the Heavens Gate quadrangle as of 2017

Sample ID Reference Isotopic
system

Mineral 
phase

Age
(Ma)

No. 
grains± (Ma) MSWD Unit Mapped unit

11ID58

17IDSN528

McKay et al., 2017 U-Pb Zircon

Detrital Zircon 193.9
189.2

1.8

4.6
3.6

1.8

2.4
1.0

116.1
176.1

4.1
3.0

0.15
3.01

128.6
226.6

3.96
6.8

1.01
0.94

16
19

6 (of 7)
4 (of 7)

Tonalite

Garnet, quartz
biotite schistU-Pb

117.1 Kt

Kt

Kt

Kt

JPscthis study

17IDMB427

18IDSD162a

17IDMB506

17IDMB443

this study

this study

this study

this study

U-Pb

U-Pb

U-Pb

U-Pb Tonalite

Tonalite

Tonalite

18IDSD51 this study U-Pb Siliceous Tuff(?)

OrthogneissZircon

Zircon

Zircon

Zircon

Zircon

1.3 1.48 23216.4

0.9 1.7 42116

3.34 24.5 7139.04

2 (of 4)
2 (of 4)

2 (of 4)
2 (of 4)

TRsu

TRdg

Kt

Qal

Tcrb

Tcrb

Tcrb

Jsc

Jsc

JPfc

JPfc

JPfc

TRdg

TRdg

TRdg

TRdg

TRdg

TRpm

TRpm

TRpm

TRsw

TRsw

TRsw

TRsw

TRm

TRm

TRm

TRm

TRm
Psh

  lTR

  lTR

JPlc

JPlc

  lTR

TRm

TRm

TRm

TRm

TRm

Qal

Qal

Qal

Qal

Qal

M.P. McKay, Ph.D.
Primary Investigator

Tectonics and Geologic Mapping 
USGS Award No. G18AC00128.

TRdg

KTRpm

Pollock Mountain plate

Pollock Mountain Amphibolite (Triassic)—Garnet-Kyanite-tourmaline-quartz-  biotite  amphibolite. 
Present in the eastern sections of the map as continuous units at the surface, well exposed on 
hillsides to the east of the Rapid River. There appear to be two main variations, one with 
approximately equal amounts of hornblende and plagioclase, and one which occurs 
discontinuously and is dominated by hornblende (70-90%) with lesser quantities of plagioclase. 
Euhedral to subhedral almandine garnet occur on average at nearly 0.5 – 1 cm sizes, however they 
can be found in much larger sizes, up to 10 cm. Garnets are often ringed with plagioclase. Weathers 
fissile. In places interbedded with a light quartzite (post kinematic). P-T estimates and Sm-Nd 
geochronology suggest that the Pollock Mountain Amphibolite was buried to >7.5 kbar and ~700°C 
between 144 and 123 Ma (09ID03; 10ID23; Selverstone et al., 1992; Getty et al., 1993; and McKay 
et al., 2017). 

Kt

INTRUSIVE SUITES
Cretaceous tonalite and quartz diorite (Early Cretaceous?)—Medium- to course-grained, biotite rich 

tonalite to quartz diorite units intrude the Pollock Mountain Amphibolite and Cold Springs 
Orthogneiss in the eastern-central region of the map. Units are white to gray in color, and are made 
up of primarily plagioclase feldspar, hornblende, biotite, and quartz. Some sections exhibit a weak 
fabric and are perhaps genetically linked to the Echols Mountain pluton, suggesting a cretaceous 
age. Some sections are more heavily altered than others and exhibit a more friable texture, 
particularly those cut by the fault on forest service road 624. Exposures are heavily jointed.  

+ +
+ +

Jsc

JPfc

Rapid River plate
EASTERN SALMON RIVER BELT

Squaw Creek Schist (Jurassic)—Fine- to medium grained, pelitic biotite-garnet schists. Present running 
north-south on the eastern side of the quadrangle. Exposed at the surface in wide swathes, likely 
due to fault splays which thicken it at the surface. Garnet is present in discontinuous zones. 
Amphiboles are present and are randomly oriented. Unit is very quartz rich. Some sections exhibit 
serpentinization, particularly to the northeast near Riggins. Squaw Creek Schist weathers to a 
reddish brown and exposures are heavily weathered and friable. Locally contains minor quartzite 
and marble as well as talc schists. Interbedding relationships with these suggest that S1 may be 
parallel to original bedding (S0). In the eastern portion of the map garnet growth in the Squaw Creek 
Schist occurred ~124 Ma (McKay et al., 2017). In the Riggins quadrangle to the north east, 
preliminary (Table 1.) detrital zircon dating yields an age of approximately 200 Ma. 

Fiddle Creek Schist (Jurassic-Permian)—Fine-  to medium grained, muscovite, quartz, garnet schist with
minior metaconglomerate, quartzite, and biotite, garnet schist. Found in the center of the 
quadrangle, striking roughly southwest-northeast, and is poorly exposed at the surface. Primary 
schist unit includes minor amounts of plagioclase, and retrograde chlorite. Light gray to green in 
color as schist. Metaconglomerate is monomictic and clasts are tonalitic in composition. Clasts 
range in size from four to twelve inches. Garnets increase in size with a shift to the biotite-garnet 
schist, and are around 1 cm in diameter on average. Distinguished from Lightening creek by an 
increase in white mica and quartz, less biotite and chlorite, as well as metaconglomerate’s absence 
in the Lightening Creek Schist. 

JPlc Lightening Creek Schist (Jurassic-Permian) —

Lorem ipsumLorem ipsum

Fine- to medium grained biotite-chlorite schist. Light to 
dark gray and green in color. Moderate amounts of quartz present.  Exposures limited to north 
eastern extent of Heavens Gate Quadrangle (Gray 2013). Local garnet, kyanite, and staurolite 
containing occurrences present as well as localities of marble. 

SCALE 1:24,000

CONTOUR INTERVAL 40 FEET
NATIONAL GEODETIC VERTICAL DATUM OF 1983

1/ 21 0 1 MIL
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Qt

P UNITS

Qal

Tcrb Imnaha Basalt (Miocene)—Imnaha Basalt of the Columbia River Basalt Group is present mostly in the 
southeast corner of the Heavens Gate quadrangle approximately ~1000 feet thick and continues 
into the Pollock Mountain quadrangle to the south. In the quadrangle, the Imnaha Basalt is a 
medium to coarsely porphyritic basalt flow with olivine and plagioclase phenocrysts dominating. 
Fewer are course hornblende phenocrysts in the unit. The unit weathers into a reddish brown or 
gray hue. Vesicular texture can be found in float, and is a result of olivine phenocrysts weathering 
away. 

DESCRIPTION OF MA

Qt

Alluvium deposits (Quaternary)—Unconsolidated Holocene and Pleistocene deposits of gravel, sand, 
clay, and silt. Quaternary deposits are not displayed in cross section due to thicknesses less than 
50 feet. 

Low terrace deposits (Quaternary)— Thick terrace deposits occur along the Rapid River especially in the 
north east corner of the map, near the Fish Hatchery. Terrace deposits contain pebble to boulder 
size clasts, clasts are aligned in some areas. Clast composition includes greenstone, tonalite, and 
basalt. Quaternary deposits are not displayed in cross section due to thicknesses less than 50 feet. 

WALLOWA TERRANE

Wild Sheep Creek Formation (Triassic)—The Wild Sheep Creek Formation conformably overlies the 
Hunsaker Creek Formation in the Heavens Gate quadrangle. The Wild Sheep Creek Formation is 
exposed throughout much of the quadrangle to the west of the Rapid River. It is inferred to be ~680 
meters thick in the quadrangle to the south west (Nandi, 2018) but it may be thicker here due to 
the structural trend of the region (interpreted as a plunging antiform). The Wild Sheep Creek 
Formation is dark gray-green on fresh surfaces, and is composed of porphyritic plagioclase-rich 
greenstone facies that are basalt dominated with almost no quartz porphyry, basaltic andesite, and 
polymectic volcaniclastics which include basaltic greenstone, limestone, argillite, and siltstone as 
clasts. Lenses of marble and limestone are present within the unit in this quadrangle. Weathering 
colors the unit brown to greenish black. 

Hunsaker Creek Formation (Permian)—The oldest stratigraphic unit exposed in the quadrangle, the 
Permian Hunsaker Creek formation was named and described by Vallier (1977) for exposures 
along Hunsaker creek, a Snake River tributary. This formation consists of siliceous greenstone 
facies (pyroclastic breccia and conglomerate) metavolcaniclastics with quartz clasts, and 
metabasalt flows with quartz porphyries. Clasts in the volcaniclastics are polymectic and include 
basalts, sedimentary rocks, and some plutonic rock. Brachiopod faunas reported in the Hunsaker 
Creek Formation constrain an Early Permian age (Vallier, 1977). Near Hunsaker Creek the unit is 
~2500 meters to ~780 meters thick. The estimated thickness of the Hunsaker Creek Formation in 
the Purgatory Saddle quadrangle to the south west is ~2200 meters (Nandi, 2018) 
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TRm Marble within volcaniclastic greenstone (Triassic)—Undifferentiated marble consists of gray to blue 
marbles, limestones, with minor interbedded greenstone. Marble and Limestone are exposed as 
discontinuous pods throughout the metavolcaniclastics of the Wild Sheep Creek Formation. 
Limestone ranges from crystalline to micritic. Calcite veins present in both limestone and marble. 
Limestones are thinly bedded. Thin talc schists and a dark blue to black quartzite are also 
intercalated throughout the marble units. 

WESTERN SALMON RIVER BELT

Lucile Slate (Triassic)—Light- to dark-gray graphitic phyllite and slate with interbedded fine-grained 
quartzites. Present near the Rapid River in the quadrangle, trending north and south. Outcrops 
poorly. In contact with terrace deposits to the north, and Martin Bridge limestone throughout the 
quadrangle. Crenulation cleavage present in some outcropped exposures. 
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Undifferentiated Marble (Triassic)—Undifferentiated marble consists of gray to blue marbles, limestones,
with minor interbedded greenstone. In places, marble correlates to the Martin Bridge Limestone 
and Martin Bridge Formation (Hamilton, 1963; Lund, 2004). Exposed along the Rapid River, and 
striking north to south throughout the cross section are marbles of the Martin Bridge formation. 
Marble and Limestone are exposed a discontinuous pods throughout the metavolcaniclastics of the 
Wild Sheep Creek Formation. Limestone ranges from crystalline to micritic. Calcite veins present 
in both limestone and marble. Limestones are thinly bedded. Thin talc schists and a dark blue to 
black quartzite are also intercalated throughout the marble units. 

543

KTRpm

KTRpm

SYMBOLS FOR CROSS SECTIONS A-A & B-B' '

Stratigraphic contact

Fault showing relative movement

SYMBOLS FOR GEOLOGIC MAP

Metamorphic foliation

( M

Contact, located very approximately

Contact, concealed beneath mapped units

Trace of syncline axis, located approximately, arrow showing direction of plunge

Trace of anticline axis, located approximately, arrow showing direction of plungeF(

Geochronology sample location

(( Thrust fault, located very approximately, saw teeth on hanging wall

((( Thrust fault, concealed beneath mapped units

o15

v
Strike and dip of bedding (S0)

Vertical bedding

Strike and dip of metamorphic foliation (S1 &S2 )

Joint and fracture set

15

15

Cold Springs Orthogneiss and migmatite (Triassic-Cretaceous)—Course- to fine-grained felsic 
orthogneiss intercalated with a fine grained, undeformed tonalite and quartz diorite. Pegmatitic 
veins and leukosomes present discontinuously and in small areas. Undeformed portions of the 
units intrude the surrounding Cold Springs orthogneiss and Pollock Mountain Amphibolite. 
Orthogneiss exhibits a strong fabric, and includes biotite, quartz, hornblende, and plagioclase 
feldspar as primary constituents. Migmatites occur locally and are not observed to form a coherent 
partial melt zone or spatial trend. The protolith of the orthogneiss is interpreted to be Triassic (206 
Ma) based on U—Pb zircon and was overprinted by Cretaceous metamorphism at 141 Ma (10ID42; 
McKay et al., 2017). Based on U—Pb, partial melting occurred around 125 Ma with tonalite 
intrusions emplaced at 114 Ma (K. Johnson, pers. comm). Sample ID’s 17IDMB443, 17IDMB506, 
and 18IDSD162a are all unmetamorphosed tonalite and quartz diorites from within this unit. 
17IDMB427 is the Cold Springs orthogneiss. 

Undifferentiated Clastics and Volcaniclastics (Triassic-Cretaceous)—Undifferentiated Seven Devils 
unit. May correlate to some of the Hurwal or Coon Hollow Formations. Hurwal formation consists 
of two distinct lithologies, a metamorphosed argillaceous limestone and argillite below, and an 
upper unit consisting of metamorphosed musdstone and volcaniclastic rocks (Vallier, 1977). Rock 
types in the Coon Hollow formation are a primarily black and dark brown mudstone with minor 
siltstones and sandstones (Vallier, 1977). There are rare beds of conglomerate and breccia in the 
sequence (Vallier, 1977). In the Heavens Gate quadrangle, this unit also contains a siliceous tuff-
like unit within the volcaniclastics (sample ID no. 18IDSD51). 
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