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SUMMARY 

 

This report describes results of the third year of a 3-year investigation of reproductive biology of 

freshwater mussels (unionoids).  The first two years of this project focused on identification of hosts and 

on development of methods related to propagation of threatened species (Barnhart 1998, Barnhart and 

Baird 1999).  In the third year of the grant we continued propagation efforts with Neosho muckets 

(Lampsilis rafinesqueana), and began propagation efforts with scaleshell (Leptodea leptodon).  We also 

investigated the effects of chronic exposure to low oxygen on survival of juvenile Lampsilis.  We plan to 

continue propagation of threatened species and investigations of the biology of juvenile mussels over the 

next three years, with continued support from U. S Fish and Wildlife Service and the Missouri 

Department of Conservation (MDC). 

Production of Neosho muckets was again successful in 2000.  Glochidia were obtained from 

females collected in the Fall River, Kansas and were transformed on largemouth bass at the MDC 

Chesapeake Fish Hatchery.  Hatchery largemouth bass were inoculated with glochidia from two female 

mussels.  Approximately 33,000 juvenile mussels resulted and were released at sites in the Fall River 

Wildlife Refuge and the Verdigris River in Kansas.  The total number of juvenile Neosho muckets that we 

have released over the past 2 years is approximately 52,000.  Cooperators in this project included 

personnel of the Missouri Department of Conservation, Kansas Wildlife and Parks Department, and the 

U.S. Fish and Wildlife Service.

An unsuccessful attempt was made to propagate scaleshell for release.  Only a single gravid 

female scaleshell and 9 live males were located during 45 man-hours of search time in the Gasconade and 

Bourbeuse rivers.  Difficulties were also experienced in obtaining host fish (drum).  Glochidia from the 

female were eventually placed on a single host fish, but only a few juveniles were produced.  A source of 

captive-propagated drum was later located and 150 fish are presently being held at Neosho Hatchery.  

Therefore, host availability is less likely to limit efforts to propagate scaleshell during the coming year.   

Fieldwork yielded a large collection of shells of scaleshell, permitting analysis of morphometrics 

and sex ratio.  Differences were found in the shape and size of scaleshell between Gasconade and 

Meramec populations.  The sex ratio of scaleshells at the Gasconade study site appears to be skewed 

heavily toward males, with females comprising only 15% of the population.  A previous study (Roberts 

and Bruenderman 2000) also indicates a skewed sex ratio in the Meramec population.  Rarity of females 

and small body size will complicate efforts to locate this species for propagation.  However, in spite of 

small body size of females, fecundity appears to be high (~400,000 glochidia per female). 

The tolerance of juvenile mussels to chronic hypoxia (low oxygen) was tested in Lampsilis 

siliquoidea and Lampsilis reeveiana.  Young juveniles of both species (1-6 weeks post-transformation) 



 3 

were surprisingly tolerant of hypoxia.  Significant depression of survival time (LT50) occurred only at 

dissolved oxygen (DO) levels below 1 mg/L (less than 10% of air saturation).  Individuals survived for 

weeks, even at the lowest DO tested (<0.4 mg/L).  Lampsilis siliquoidea also grew at similar rates at DO 

ranging from 4-82% of air saturation.  These results suggest that juveniles could occupy interstitial 

habitats that are relatively hypoxic. 
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1. NEOSHO MUCKET PROPAGATION 

 
Introduction 

 

This was the second year in which we propagated and released Neosho muckets (Lampsilis 

rqfinesqueana).  The Neosho mucket is endemic to the Neosho, Spring and Elk river systems in 

southeastern Kansas, northeastern Oklahoma, and southwestern Missouri.   It is state-listed as endangered 

in Kansas and Oklahoma, and S2 (imperiled) in Missouri.  The distribution and conservation status of 

Neosho muckets in Kansas and Missouri are well understood because of recent surveys (Obermeyer et al. 

1997).  We chose to begin our propagation efforts with this species not only because of its conservation 

status, but also because of characteristics that make it relatively easy to work with as we develop our 

methodology.  These features include relatively easy access to females, large numbers of glochidia, and a 

host fish (largemouth bass) that is readily available in hatcheries (Barnhart and Baird 1999).   

 
Methods 

 
Two gravid female Neosho muckets were collected on June 23, 2000 from the Fall River at Huser 

Bridge in Wilson County, Kansas (Figure 1).  This site was the source of Neosho muckets previously 

used for propagation (Barnhart and Baird 1999).  Inoculation of host fish took place on July 18 at 

Chesapeake Fish Hatchery.  Glochidia were removed from one marsupial gill from each of the two gravid 

females.  Each gill was emptied as completely as possible by flushing with water, so that a count of the 

contents could be made.  The contents of each gill were suspended in 500 ml water, stirred vigorously, 

and five 200-ul samples were withdrawn with a volumetric micropipette while stirring the suspension.  

These samples were stored in vials in ethanol.  Later, each sample was dispersed in a small Petri dish and 

digitally photographed using a Nikon 950 digital camera attached to a dissecting microscope.  The 

glochidia and undeveloped eggs were then counted using a graphics program to mark each glochidium 

and egg in the image.  The sample counts from each gill were averaged and multiplied by 2500 to 

estimate the number of glochidia and eggs in the gill.   These figures were multiplied by 2 to estimate the 

total number of glochidia and undeveloped eggs in each female (Table 1). 

We inoculated a total of 637 bass with Neosho mucket glochidia.  Approximately equal numbers 

of fish were inoculated from each of the two batches of glochidia.  The fish were anaesthetized briefly 

with MS-222 (Finquel®) and a plastic Pasteur pipette was used to apply ~5ml of glochidia suspension 

directly onto both gills via the opercula and the mouth.  After inoculation the fish were counted and then 

returned to a 4 by 20 foot rectangular fiberglass tank.  Three workers required approximately 2.5 hours to 

complete this process.  We sacrificed 14 of the fish by placing them in 95% ethanol immediately after 
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inoculation.  Another 7 fish were sacrificed 1 week later and examined without preservation in ethanol.  

These fish were used for counts of attached glochidia.  Each gill arch was dissected free and placed in a 

~1% solution of KOH for a few minutes to make the gill tissues transparent.  The attached glochidia were 

then counted using a dissecting microscope.   

Following inoculation, the fish were held in a 4’ by 20’ rectangular fiberglass tank.  Water was 

delivered to the tank continuously at one end, and exited via a standpipe behind a screen at the opposite 

end.  Feeding was stopped 2 days after inoculation and thereafter the fish were not fed.  The tank walls 

were cleaned by brushing and vacuuming at 4-days post-inoculation.  Beginning at 6 days post-

inoculation, the bottom of the tank was vacuumed at 2-3 day intervals and the water was run through two 

brass soil sieves.  The first sieve had 250 micrometer mesh to remove larger frass, and the second sieve 

had 125 micron mesh to recover the juveniles. 

 

 

 

 
 
Figure 1.  Neosho mucket collection site below Huser bridge, 2 miles east of Neodesha, Wilson County, 
KS (NEODESHA KS quadrangle 1:24000).  Map coordinates are UTM 15 259095E 4145991N (NAD27 
datum).  This site was also the source of glochidia that were collected last year. 
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Results 
 

Collection of mussels & glochidia:  Flow at the Huser Bridge site was ~80 cfs on June 23, which 

was just low enough to permit searching by groping without snorkeling.  Three workers searched for 

approximately 9 man-hours total and recovered 5 Neosho muckets, two of which were gravid females.  

Other rare and endangered species observed included 2 live Cyprogenia aberti and 3 live Ptychobranchus 

occidentalis.  The two Neosho mucket females were transported to SMSU for study.   

One of the two gravid Neosho muckets had an unusually large number of undeveloped ova  

(Table 1).  This female released several intact conglutinates, which were photographed to document the 

distribution of these ova within the conglutinates.  The undeveloped ova tended to be concentrated in 

particular areas of the conglutinate (Figure 2). 

 

 
Table 1.  Estimates of the number of glochidia and sterile eggs in the two Neosho muckets used for 
propagation.  Values for one gill are the mean ± standard error of subsamples (n=5) of a suspension 
of the gill contents.   The means were doubled to provide estimates for totals in both marsupial gills 
of each female.   
 

Female # Gills Glochidia Ova Total % Ova  

      

One 375,440 ± 25,733 83,720 ± 19,342 459,160 ± 37,277 
6-23-00-5 

Both 750,880 167,440 918,320 
18.2% 

      

One 333,900 ± 15,274 18,060 ± 7,171 351,960 ± 10,638 
6-23-00-6 

Both 667,800 36,120 703,920 
5.1% 

 

Attachment to host fish:  Although the range of fish body size was small (85-110 mm) the 

number of glochidia that attached to individual fish was significantly dependent on body size (Figure 3).  

Those fish placed into ethanol immediately after inoculation with glochidia had only 64% as many 

glochidia attached as those that were examined 8 days after inoculation (Table 2).  The difference was not 

statistically significant after removing the effect of length (ANCOVA), but the sample size was small.  

We feel that it is probable that placing the fish into ethanol immediately after inoculation dislodged some 

of the attached glochidia, which had not had time to encyst.   
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Figure 2.  Portion of a Neosho mucket conglutinate viewed from two sides.  The whole conglutinate 
was  measured about 25 x 7 x 2 mm.  Eggs containing glochidia are bright.  Undeveloped eggs are 
dark.  Note that the dark areas with high proportions of undeveloped ova are continuous through the 
conglutinate and show on both sides. 
 

 

The mean number of glochidia attached to each host (244) was in the range of last year’s results 

with Neosho muckets.  Inoculations of two batches of similar size fish last year gave averages of 407 and 

155 attached glochidia per fish (Barnhart and Baird, 1999).  These results could be affected by a number 

of factors, particularly the concentration of glochidia in the suspension and the technique used in pipetting 

the glochidia onto the gills.   The number of glochidia attached per fish was extrapolated to estimate the 

total number and proportion of glochidia that were successfully placed on the host.  Assuming 244 

glochidia per fish and 637 fish inoculated, a total of 155,428 glochidia attached to the hosts.   

Approximately 709,340 glochidia were in the suspension used to inoculate the fish (Table 1).  Therefore, 

approximately 22% of glochidia attached.    
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Table 2.  Fish length and number of attached glochidia.  Fish were sampled on two dates.  The 
first group (7-18-00) was preserved in ethanol immediately after inoculation.  The second 
group was examined 8 days later and was not preserved in ethanol.  Values are mean ± 
standard error.  
 

Sample date N fish Total length N glochidia 
    

7-18-00 14 96.1 ± 1.8  205 ± 34.2 
7-26-00 7 99.7 ± 2.6  321 ± 41.9  

All 21 97.3 ± 1.7  244 ± 28.9 
 

Length of fish (mm)

80 85 90 95 100 105 110 115 120

N
um

be
r o

f g
lo

ch
id

ia
 p

er
 fi

sh

0

100

200

300

400

500

600

First sample
Second sample

 
Figure 3.  Number of glochidia attached to individual bass versus size of fish.   Fish in the first 
sample were preserved in ethanol immediately after inoculation.  Fish in second sample were 
sacrificed at 8 days post-inoculation and were not preserved in ethanol.  The line is the linear 
regression of number of glochidia on length, pooling the two samples (N= 12[length]-927, R2 = 
0.34, P = .003).   
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Recovery of glochidia:  Juveniles were first recovered at 11 days after inoculation.  It is probable 

that drop-off began a day or two earlier, because some individuals showed growth and because no 

collection was attempted on July 27-28.  The number of juveniles recovered peaked on day 13, and had 

dropped to a low level by 17 days post-inoculation, at which time collections were terminated (Figure 4).  

The 614 inoculated fish that were held for recovery of juveniles carried an estimated 149,816 encysted 

glochidia.  Of these, an estimated 41,250 (~27% of those attached) were eventually recovered either live 

or dead.  Of these, 32,830 (over 79%) were recovered alive (Table 3).     

 
 

Table 3.  Juvenile Neosho muckets recovered from largemouth bass.  Data for each collection are 
mean ± standard error (n samples).  These data are graphed in Figure 1. 
 

Collection 
Date 

Days post-
inoculation 

Number of live 
juveniles 

Number of dead 
juveniles 

Percent live 
 

 
7-24-00 

 
6 

 
0  

 
0  

 
- 

7-26-00 8 0  0  - 
7-29-00 11 10750 ± 1510 (5) 2250 ± 250 (5) 82.7 
7-31-00 13 13520 ± 1516 (5) 1040 ± 637 (5) 92.9 
8-2-00 15 8000 ± 1159 (5) 3750 ± 884 (5) 68.1 
8-4-00 17   560 ± 160 (5) 1360 ± 349 (5) 29.2 

 
TOTALS  

 
32830   

 
8400  79.6% 

 
 
 

Flatworms:   Similar to last year, rhabdocoel turbellarian flatworms increased in abundance in the 

holding tank during the drop-off period.  They were observed and photographed feeding on the juvenile 

mussels, as well as on cladocerans, ostracods, and annelids.  These flatworms are a source of concern 

because they appear to be responsible for at least some of the mortality of juveniles after leaving the fish.  

We attempted to remove the flatworms from collections before they were shipped for release.  Although 

the worms locomote nearly constantly in quiet conditions, they tend to adhere quickly and tenaciously to 

surfaces when exposed to turbulence.  Passing the juveniles through a 250-micron screen removed many 

of the flatworms.  If a collection was left sitting in a glass dish for a few minutes, then swirled and poured 

into another dish, many of the flatworms would remain behind, adhering to the glass. 
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Figure 4.  Timing of drop-off of juvenile Neosho muckets from largemouth bass.  Each 
pair of bars represents the estimated number of juveniles that dropped off during the 
preceding two days, except the pair at 11 days, which represents the preceding 3 days.  
Error bars indicate standard error.  Temperature during the transformation period was 
approximately 25 C.    

 

 

Shipping and release:  Juveniles were placed in groups of several thousand in 1-gallon ziplocks, 

with ~250 ml of water and ~1 liter of air.  These bags were stored at 15 C for 0-2 days before shipping.  

For shipping, the bags were “double-bagged”, and placed in an insulated shipping box along with 2 or 

more “blue-ice” packs.  The ice packs were wrapped in cloth to prevent direct contact with the bags.  The 

collections were shipped overnight (Federal Express) to Brian Obermeyer and Ed Miller (KWP), who 

carried out their release within 1-2 days of receipt (Table 4, Figures 5 and 6).  In each case, the juveniles 

were released within 2-5 days after recovery at the hatchery.  Cursory microscopic examination indicated 

good survivorship after shipping, but this was not quantified.   
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Table 4.  Sites and releases of juvenile Neosho muckets 1999-2000.  See Figures 4 and 5 for site maps.  
Note: the previous report on these sites (Barnhart 1999) switched the description and coordinates of 
Sites A and D.  The positions marked on the map for these sites were correct.   
 
Locality Date Workers Number 
    
Site A:  Fall River.  E½ S20 T26 R11 
Greenwood Co. KS.  Map 
coordinates: UTM 14 744743E 
4184452N (NAD27 datum). 

Sept-14-99 Ed Miller and Rick Tush 3500 

    
Site B:  Fall River.  SW¼ S21 T26 
R11 Greenwood Co KS.  Map 
coordinates: UTM 14 745266E 
4183543N (NAD27 datum). Side 
channel north of stream, just below 
abandoned ford. 

Oct-15-99 Brian and Bernice Obermeyer 3500 

    
Site C:  Fall River.  SW¼ S 21 T26 
R11 Greenwood Co KS.  Map 
coordinates: UTM 14 745790E 
4183924N (NAD27 datum).  Side 
channel on west side of stream 

Oct-8-99 Brian Obermeyer and John Bills 
 

850 

    
Sept-14-99 Ed Miller and Rick Tush 3500 
Oct-8-99 Brian Obermeyer and John Bills 3200 
Oct-15-99 Brian and Bernice Obermeyer  5000 
Aug-2-00 Brian Obermeyer 8800 

Site D:  Fall River.  S½ S27 T26 R11 
Greenwood Co. KS.  Map 
coordinates: UTM 14 747725E 
4181958N (NAD27 datum). 

Aug-8-00 Brian Obermeyer  3800 
    

Aug-2-00 Ed Miller  11600 Site E:  Verdigris River.  SW¼ S4 
T36 R16 Montgomery County KS.  
Map coordinates: UTM 15 263603E 
4139591N (NAD27 datum). 
(property of Dan Small). 
 

Aug-8-00 Ed Miller 8600 
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B 

C 

D 

 

 
 
Figure 5.  Neosho mucket release sites in the Fall River, Greenwood County, Kansas. TONOVAY MO 
quadrangle 1:24000. 
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E 

 

 
 
Figure 6.  Neosho mucket release site E on the Verdigris River, Montgomery County, KS.  Dotted 
line indicates the reach in which the juveniles were released.  SYCAMORE MO quadrangle 
1:24000. 
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Discussion 
 

We have now released approximately 52,000 juvenile Neosho muckets at 4 sites in the Fall River 

and 1 site in the Verdigris river.  These juveniles are the offspring of 3 Fall River females and an 

unknown number of males.  Presumably, multiple males may fertilize each female, increasing the 

proportion of the gene pool represented in the glochidia.  It should be possible to relocate the oldest of 

these juveniles in one or two years when they reach a size that can be easily spotted.  Over the next 3 

years we hope to continue stocking these sites as well as begin propagating the glochidia of Spring River 

females for stocking in the Spring and North Fork Spring rivers in Missouri.  These glochidia will 

probably be taken from a site in Shoal Creek near Joplin, where we recently marked 35 individuals in 

conjunction with an MDOT relocation project.   

The high proportion of unfertilized ova observed in one of the Huser Bridge females is unusual 

for Lampsilis (personal observations). This condition could be caused by an insufficient number of sperm 

available to fertilize the eggs during the period when they were entering the marsupial gills.  The banding 

pattern of the distribution of fertilized and unfertilized eggs might reflect the time course of egg 

production and sperm availability.  The observation is interesting, because apparently nothing is known 

about the time course of oviposition into the marsupial gills or the timing of fertilization.  It appears that 

eggs that have become incorporated into the conglutinate without being fertilized cannot subsequently be 

fertilized when sperm become available.   

 Some refinements of technique are notable from this year’s work with Neosho muckets.  We 

learned that it is not advisable to preserve fish for counts of attached glochidia immediately after 

inoculation, because many of the unencysted glochidia apparently fall off when the fish is placed in 

ethanol.  In the future, we will allow at least 1 day for encystment to take place before counting attached 

glochidia.  About 22% of glochidia pipetted onto the gills were able to attach.  Possibly this number could 

be improved.  The number attached was significantly correlated with length of fish, even over a small size 

range, indicating that using larger fish may improve the proportion that attach.   

The proportion of juveniles that were recovered after drop-off was much lower this year (~27%) 

compared to last year (~100%).  The loss is probably attributable to use of the rectangular holding tank 

rather than the circular tank that was used last year.  It was difficult to do a thorough job of vacuuming the 

lower end of the rectangular tank, around the screen and standpipe, and a substantial number of shells 

were noted in an accumulation of frass in these areas when the tank was later cleaned.  In the future we 

hope to use several 4-foot diameter cylindrical tanks, which will allow separation of different batches of 

juveniles and facilitate their recovery. 

Drought conditions in eastern Kansas during the summer impacted at least one of the release 

sites, as was described by Brian Obermeyer: 
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The other Fall River release sites were not visited during this period, so we don’t know if they were 

similarly affected by the drought.  It is likely that they were, because the other 3 sites are upstream of site 

D.  It is impossible to know whether small juveniles were affected as severely as adult mussels.  Although 

this drought event was unfortunate, it was also unlikely, and it should probably not discourage us from 

continuing to stock Neosho muckets in these reaches in the future.  The upper Fall River has several 

advantages as a site for reintroduction of Neosho muckets (Barnhart 1999).  Obviously, it will be wise to 

distribute some of the juveniles in the deepest parts of the available habitat.  Here, and at other sites, we 

feel that the presence of populations of adult mussels of long-lived species is probably the best indicator 

of long-term suitability of habitat.   

“I first noticed a stranding problem for mussels [at Fall River ‘D’ release site] on 26 
August 2000.  Low flows combined with extremely high air temperatures, especially 
between 14-31 August, were severely stressing mussels that had become stranded.  Most 
were killed unless at least half of the shell was immersed in water. There were even some 
fully immersed mussels killed at the site, especially where they were covered by algal mats 
or in stagnant water.  The only sanctuary for mussels was in a narrow chute on the north side
(left bank) of stream, deeper glide habitat (above the riffle), and run habitat immediately 
downstream from the riffle. The highest concentration of live mussels was found in the 
chute. Even though temps weren't quite as severe, low flow conditions remained until we 
finally got some rains in October. Our first rain, after 67 days, was on 5 October (0.85").  
However, the river didn't resume "normal" flows until mid-October after 3 more rain events: 
1.6", 1.7" and 1.7" (16th, 22nd and 24th, respectively). 
The chute where the majority of remaining mussels was found receded to about a 1 - 2 m 
wide channel, with maximum depth of about 8" (average 3-4").  Obviously, raccoons were 
taking advantage of the situation. We probably rescued 200+ live mussels (most were placed 
in the chute), but many of these were later harvested by coons.  Just guessing, I'd estimate 
that about 200 - 300 mussels were killed from the event.  Unfortunately, I have no way of 
knowing how many, if any, juveniles were affected.  The vast majority of the habitat where I 
had released juvenile Neosho muckets was exposed. The only release areas not severely 
impacted by the adverse conditions were the upstream glide and downstream run habitats. I 
had avoided the chute when we made the releases because the current was too swift.” 

 

Literature Cited 

 

Barnhart, M. C.  1998.  Fish hosts and culture of mussel species of special concern: annual report for 
1998.  Report to Missouri Department of Conservation.  45 p. 

 
Barnhart, M.C. and M. Baird.  1999.  Fish hosts and culture of mussel species of special concern: annual 

Report for 1999.  Report to Missouri Department of Conservation. 39 p. 
 
Obermeyer, B. K., D. R. Edds, C. W. Prophet, and E. J. Miller. 1997.  Freshwater mussels (Bivalvia: 

Unionidae) in the Verdigris, Neosho and Spring River basins of Kansas and Missouri, with 
emphasis on species of concern.   Am. Malacological Bull. 14:41-56. 
 

  



 16 

2. SCALESHELL PROPAGATION 

 

Introduction 

 
 We intend to propagate this species over the next 3 years.  We previously identified the fish host, 

which is freshwater drum (Barnhart 1998).  There are several reasons for working with scaleshell.  This 

species has undergone one of the most dramatic range reductions of any unionid.  It formerly occurred in 

at least 53 rivers in 13 states throughout most of the eastern US (Williams et al. 1993).  Currently, 

scaleshell is known to occur in only 13 rivers in 3 states, and is rare at most of these sites.  These trends 

led to the proposal of scaleshell for federal endangered species (ES) status.  The listing process is 

presently near completion but has been delayed by controversy regarding designation of critical habitat 

and the current freeze on ES listings. 

Presently, we have a unique opportunity to work with this species because of our location, and 

because recent surveys by MDC in the Gasconade and Meramec basins have given us knowledge of 

scaleshell distribution.  The best populations of scaleshell that remain are in these rivers (Symanski 1998, 

Roberts and Bruenderman 2000).  However, this opportunity might not last for long.  Scaleshell are 

apparently unusually short-lived mussels, meaning that failure of recruitment for even a few years could 

lead to local extirpation.  This may be one reason that the species has declined so rapidly range-wide, and 

it is reason to assume that the remaining populations are not secure.  Therefore, we feel that it is important 

to work with this species as soon as possible. 

 

Methods and results   

 

Scaleshell were sought in June and early July at two sites, the Gasconade River near Schlicht 

Springs Access in Pulaski County, and the Bourbeuse River at Schmitt Ford in Franklin County.  Three 

workers spent 45 man hours of search time snorkeling in shallow water in good conditions of water level 

and light.  Dead shells were collected and measured for analysis of size distribution, sex ratio, and for 

comparison of size and shape between the Gasconade and Bourbeuse River sites.  We found only 1 live 

female and 9 live males.  However, a large number of dead shells were recovered, suggesting that the 

populations at these sites are reasonably numerous.  These collections are detailed below.   

Gasconade site:  Site MB12 is on the Gasconade River about 1 mile south of Schlicht Springs 

Access, Pulaski County (see map, Figure 1).  The river makes a large sweeping bend from the southeast.  

The site is a riffle, below the head of which is a mussel bed containing approximately 25 species (see 

table 1).  This site was visited twice (June 7 and July 7, 2000).  Water level was unusually low on both 
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dates.  The Richland gage, a few miles upstream, read 475 cfs on June 7 (vs. 2000 cfs median for that 

date) and 650 cfs on July 7 (vs. 1100 cfs median for that date).  Three workers spent 37 man-hours total 

searching for live and dead scaleshell.  Most time was spent snorkeling.  In all, we found intact shells of 

43 dead individuals and fragments of several others.  We found 8 live individuals, 1 male and 1 gravid 

female on June 7, and 6 males on July 7.   Most search time was spent in the riffle and the live individuals 

were found there.  The dead shells were found in the riffle and also upstream and downstream.  They 

were one of the more common dead shells, and were easily spotted because of the bright purple nacre.  

We found 25 unionoid species at this site, 23 live and 2 from dead shells only. 

Bourbeuse site:  The second site where we sought scaleshell was Schmitt Ford on the Bourbeuse 

River (Figure 2).  Two workers searched for 8 man-hours on June 8, mainly at the head (upstream) end of 

the ford, which is a long riffle.  We collected 10 fresh shells of scaleshell and found 2 live males, but no 

females.  Andy Roberts recalled finding 4 scaleshell in a short time here on a previous visit.  We found 25 

species at this site, including 2 live males and several dead shells of snuffbox (Epioblasma triquetra). 

Sexual dimorphism:  The relatively large number of dead shells recovered permitted analysis of 

morphometrics, including allometry of shape and comparisons between sites (Gasconade males and 

Bourbeuse males), and between sexes (Gasconade males and females).  Sexual dimorphism was marked.  

Female shells were distinguished by the presence of a broad, thin, and ruffled posterior margin of the 

shell (Figures 3, 4).  Gasconade females were 33% smaller than males (Table 1) and were also less tall 

relative to length than Gasconade males (Figure 5).  The umbones of females were significantly further 

anterior (Figure 6).  Both of these measurements reflect the elongation of the posterior margin of the shell 

in females.  Plots of shell height versus length were linear (Figure 7) showing that scaleshell have 

approximately isometric growth.   

Size distribution:  The size distribution of male and female scaleshell differed.  Large male shells 

were more common than large females and small male shells were generally lacking.  A similar pattern is 

evident among live scaleshell from the Meramec river system  (Figure 8).  At least two explanations for 

this difference are possible.  First, female scaleshell may have a shorter lifespan than males, so that the 

female shells that we collected tended to be younger and therefore smaller. Second, female scaleshell may 

grow more slowly than the males and therefore be smaller at similar age.  Both factors may be at work.  

Female mussels of some other species grow more slowly than males after sexual maturity (Riusech 1999).  

The lack of small male shells cannot be attributed to taphony (differential preservation), because small 

female shells were present.   
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Figure 1.  Collection site MB12 (CROCKER MO quad 1:24000).  Coordinates are UTM 15 562635E 
4193311N (NAD27 datum).  SE¼ S31, T37N R12W, Pulaski Co MO. 
 
 
 
 

 
Figure 2.  Collection site at Schmitt Ford (SPRING BLUFF MO quad 1:24000).  Map coordinates: UTM 
15 659287E 4247540N (NAD27 datum).  SW¼ S20 T42N R02W Franklin Co MO. 
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Figure 3.  Shells of female (left) and male (right) scaleshell from the Gasconade River.  Note the 
broad, thin, uncalcified, posterior extension of the female.  Female shells also tended to be less 
tall, relative to length, and the umbones tended to be positioned slightly more anterior. 

 

 

 

 

Figure 4.  Ventral view of gravid female scaleshell.  Foot is partly extended at left.  Note the 
gravid marsupium, right of center.   The posterior extension of the shell is damaged on one side 
(top right of photograph).   
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Table 1.  Morphometrics of scaleshell from the Gasconade and Bourbeuse Rivers.  Values are 
mean ± standard error of mean. 
 
Measurement Gasconade  

Males (N=47) 
Gasconade 

Females (N=9) 
Bourbeuse  

males (N=9) 
 
Height (mm) 

 
28.1 ± 0.552 

 
20.0 ± .074 

 
40.6 ± 2.86 

Length (mm) 55.8 ± 1.11 43.1 ± 1.86 77.1 ± 5.24 

Height/length 0.505 ± 0.002 0.465 ± 0.007 0.526 ± 0.008 

Umbone/length 0.219 ± 0.0213 0.185 ± 0.0260 0.225 ± 0.0244 
 

Shell length (mm)

0 10 20 30 40 50 60 70 80 90 100

Sh
el

l h
ei

gh
t/l

en
gt

h

0.40

0.45

0.50

0.55

0.60
Gasconade males
Gasconade females
Bourbeuse males

 
Figure 5.  L. leptodon shell shape (H/L) versus shell length.   Although H/L appeared to increase 
with length among groups, the slopes of the regression lines within groups did not differ 
significantly from zero.  Therefore, differences in shape among groups were not attributed to 
length.   All pairwise comparisons of means among the 3 groups were significant (ANOVA , 
P<0.05). 
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Male scaleshell from the Bourbeuse River site were larger than those from the Gasconade (Table 

1) and had slightly different shape (Figure 6).  A collection of live scaleshell from the Meramec and its 

tributaries also shows larger body size than the Gasconade specimens (Figure 8).   

Skewed sex ratio:  Very few females were found, either live (1) or dead (9).  At the Gasconade 

site, we recovered 47 male and only 10 female specimens.  At the Bourbeuse site, 8 males and no females 

were found.  For both collections combined, the tally was 15% female.  This proportion differs 

significantly from 50:50 (binomial distribution; P<0.0001).  
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Figure 6.  Leptodea leptodon umbo position ([distance from anterior margin]/length), versus 
shell length.  Umbo position did not change significantly with length within groups.  
Therefore, differences in shape among groups were not attributed to length. The umbones 
were significantly more anterior in females than in males (ANOVA, P<0.05).   
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Figure 7.  Leptodea leptodon shell height vs. length.  Lines are linear regressions through 
the origin.  Within each group, shell growth was isometric.  However, Gasconade males 
were significantly larger and proportionately taller than the females.  Bourbeuse males 
were significantly larger and proportionately taller than Gasconade males.  (Table 1, 
Figure 5). 

 

Propagation:  The single gravid female recovered on June 7 was returned to the laboratory to 

provide glochidia for propagation on host fish (freshwater drum).   The female was held at 15 C while 

attempts were made to capture drum.  However, after about 2 weeks the scaleshell appeared unhealthy 

and it became necessary to act quickly.  A captive drum was located at Bass Pro Shops and permission 

was granted to use this fish as a host.  On June 28 glochidia were sampled from both marsupial gills of 

the female.  Glochidia from one side appeared healthy, while those on the other side were heavily infested 

with small ciliate protists and had low viability.  Glochidia from the healthy side were harvested and used 

to inoculate the Bass Pro fish, which weighed approximately 4 pounds.  The fish was anaesthetized and 

the gills were inoculated with several thousand glochidia on both sides.   
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Figure 8.  Shell length frequency distributions for scaleshell from Gasconade site MB12 (51 dead 
and 5 live- present study) and for specimens from multiple sites in the Meramec river system (8 
dead [present study] and 44 live specimens [data from Roberts and Bruenderman 2000]).  Bin 
width = 2 mm. 
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The next day (July 29) several 6-8” long drum were obtained by Andy Roberts (USFWS) from 

hoop nets in the Missouri River and immediately driven to Springfield.  Preparations were made to 

inoculate these fish, and glochidia were again harvested from the healthy gill of the female.  

Unfortunately, the fish were dead on arrival in Springfield, apparently as a result of trauma during 

capture.  The female scaleshell also died on July 30, so that no further inoculations of hosts were possible.  

The death of the female may be attributable to an injury suffered before capture.  The posterior margin of 

one valve of the shell was broken away (Figure 4, top panel).  The presence of the ciliates in the 

marsupium on the broken side may also have contributed to its poor condition. 

The Bass Pro fish was monitored at 2-3 day intervals by vacuuming the bottom of its tank 

through a 40-micron filter and examining the filtrate for excysted juvenile mussels.  An empty shell was 

found on July 12, two more on July 15, and one more on July 18.  These shells showed considerable 

growth, which was expected because Leptodea grow during the period of encystment on the host fish 

Table 2, Figure 9).  Based on previous experience, most of the juveniles were expected to excyst within 3 

weeks of inoculation.  Unfortunately, these empty shells were the only evidence of excystment seen over 

4 weeks.  On August 3 the drum was anesthetized and examined, and no attached juveniles were seen. 

Numbers of glochidia:  Although scaleshell are small, the glochidia are also very small and the 

number produced can therefore be large.  The number of glochidia was estimated as follows:  The female 

had one marsupial gill apparently fully charged, while the other gill, which was infested with ciliate 

protists, had several empty water tubes.  Therefore, glochidia were harvested and counted only from the 

healthy, fully charged, gill.  The glochidia were flushed from the water tubes by inserting a hypodermic 

needle and injecting sterile water.  The removal of the glochidia was carried out in two stages for the two 

rounds of host inoculation.  Each of the two batches was suspended in 100 ml of water, and agitated with 

a pipette to suspend the glochidia evenly in this volume. While the glochidia were suspended, five 200-ul 

samples were removed and stored in vials of ethanol.   Later each of these samples was counted and 

multiplied to provide an estimate of the total number in the 100 mL suspension.  These 100-ml estimates 

were combined to estimate the total in one marsupial gill and this number was then doubled, on the 

assumption that the other gill had originally contained a similar number of glochidia. The total estimated 

fecundity was 419,000 ± SD 6,500 glochidia.  This fecundity exceeds that of some other unionids with 

larger glochidia, even species having much larger adult body size  (Table 3).  
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Table 2.  Dimensions of the 4 scaleshell juvenile shells recovered from the Bass Pro drum. 
   
Days post-inoculation Initial length Final length Final height 

12 0.0644 0.119 0.111 

15 0.0691 0.177 0.148 

15 0.0692 0.182 0.148 

18 0.065 0.194 0.175 

 
   
 
      

 
Figure 9.  Scaleshell glochidia and juvenile shells recovered from drum, showing growth.  
Numbers indicate days post-inoculation (zero = glochidia before encystment).   

 

 

1815120

 
  

 

Table 3.  Estimated fecundity (number of glochidia) for some individual unionids.  Scaleshell have 
relatively high fecundity despite their small size because of their very small glochidia.  Numbers 
are means ± standard deviation of n=5 estimates from subsample counts. 
 

Species Body dimensions Total number of glochidia 
Leptodea leptodon 
Gasconade River, Pulaski Co MO L = 44.1, W=11.2, H= 21.0 419,000 ± 6,500 

Venustachoncha pleasii 
James River, Green Co MO 

L = 37.3, W=14.3, H=22.3 
Tissue mass = 3.04 grams 46,947 ± 3,268 

Pyganodon grandis 
Fellows Lake, Green Co MO 

L=125.5, H=81.1, W=56.5 
Tissue mass = 211.6 grams 235,210 ± 33,117 
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Discussion 

 

Scaleshell from the Gasconade site and the Meramec and Bourbeuse sites differed significantly in 

size and shape.  These differences could reflect either genetic differences among populations or differing 

conditions for growth.  Population genetic differences appear unlikely, given the mobility of the host fish 

and the proximity of the two drainage systems.  Nonetheless, it is probably not desirable to mix stocks 

between the two drainages.   Further morphological and genetic comparison among the remaining 

scaleshell populations is certainly desirable, given the broad geographic range and the range-wide decline 

of the species. 

The smaller number of female scaleshells recovered is puzzling.  Most specimens collected were 

dead shells.  Therefore, a possible explanation for the skewed sex ratio is differential taphony 

(preservation after death).  Female shells are smaller and thinner, and might therefore disintegrate faster 

after death than male shells.  If so, the dead shells may not accurately represent the sex ratio of living 

animals.  However, a collection of 44 live scaleshell from the Meramec River system was only 36% 

female, which also differs significantly from 50:50 (binomial P=0.048) (data from Roberts and 

Bruenderman 2000).  Thus, it appears that female scaleshell are relatively rare, or at least more difficult to 

find than males.   Small mussels are easy to miss in qualitative sampling, and this may account for the 

apparent rarity of females.  Another possible explanation is that the host fish (drum) prey differentially 

upon females, and destroy the shells.  It is interesting to speculate that the small size, thin shell, and 

peculiarly elaborated posterior mantle and shell margin in female scaleshell all might be related to a habit 

of “female sacrifice” in which the host is infected by feeding on the female.  The elaborated posterior 

mantle might be adapted to produce chemical attractants for the host fish.  Luckily, females produce large 

numbers of glochidia (Table 3).  This high fecundity is possible in spite of small body size, because the 

glochidia are also very small.  Scaleshell glochidia grow during encystment and increased more than 4-

fold in length before excysting (Barnhart 1998).   

 Growth lines of the Gasconade scaleshells were relatively indistinct, so that it was difficult to 

infer age.  Roberts and Bruenderman (2000) used growth lines to estimate age of 44 live specimens from 

the Meramec and Bourbeuse Rivers.   Their estimates range from 2-6 years, with a mean of 3.07 years.   It 

is probable that the first year growth line was overlooked in these counts, so that the estimate might be 

adjusted upward by one year (A. Roberts, personal communication).  There is strong suspicion that these 

small, thin-shelled mussels are very short-lived, but estimates of their age and lifespan are speculative 

because the relationship between growth lines and age has not been validated in this species. 

The difficulty of finding female scaleshell presents problems for propagation efforts.  Low water 

conditions in summer 2000 made conditions nearly ideal for fieldwork, but only a single female was 
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located.  Greater effort and an earlier start will be necessary in 2001.  Gravid females could potentially be 

collected throughout the winter and spring months.  Scaleshell apparently follow the winter-brooding 

habit that is typical of lampsilines.  Three females observed in the Meramec River were gravid with ova 

by mid-August and mature glochidia the following spring (Barnhart 1998).   Glochidia release probably 

normally occurs by early July, so that late-summer collecting may not be productive. 

The failure of scaleshell glochidia to transform on the single drum that we inoculated is 

problematic. In previous laboratory host tests, scaleshell transformed only on drum (Aplodinotus 

grunniens) of 24 fish and one amphibian species that were tested.  It is not clear why the glochidia failed 

to transform on the Bass Pro fish.  Similar inoculation of a smaller, wild-caught, drum produced over 

3300 juveniles (Barnhart 1998).   Although a few glochidia apparently attached and developed in this 

trial, it appears likely that most of the glochidia were lost during the first few hours after inoculation.  

Loss of the glochidia occurs if the host fish is either genetically unsuitable or if it has developed 

immunity through previous exposure to glochidia.  There is also some evidence in the literature that fishes 

exposed to gill-parasitic copepods can develop immunity to glochidia as well as copepods (Wilson 1916).  

The Bass Pro fish was a long term captive and had been exposed to copepod infections, which were 

formerly common in the display tanks (Mitch Henson, Live Exhibits Director, personal communication).  

The possibility of acquired immunity is an argument for use of young fish for mussel propagation. 

Although drum are abundant in many rivers, it is difficult to capture young fish in large numbers 

without damaging them.  Wild-caught drum are delicate and nervous and difficult to acclimate to aquaria 

and artificial food.  Luckily, Conrad Kleinholtz of Langston University has recently been successful in 

spawning and pond-rearing drum.  He has generously supplied us with 150 fish, which are being held at 

Neosho National Hatchery.  The staff of the Neosho Hatchery acclimated these fish to artificial food and 

they appear to be thriving.  We anticipate having a reliable supply of fish for propagation of scaleshell 

and other species that require drum (e.g. the federally endangered, Potamilus capax), in the future.  
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3.  EFFECTS OF CHRONIC HYPOXIA ON  SURVIVAL AND GROWTH OF JUVENILE LAMPSILIS. 

 

Introduction 

 
Juvenile unionids are very small and occupy the interstitial spaces among sediment particles in 

streambeds (Yeager et al.1994).  This microhabitat is one of the most poorly understood of stream 

environments (Hynes 1983, Hendricks and White 1991).  One of the significant factors in the interstitial 

environment may be the availability of oxygen.  In stream substrates, macroscopic gradients of dissolved 

oxygen (DO) occur with depth in the streambed and also longitudinally along riffle-pool systems, and are 

strongly influenced by hyporheic flow (Whitman and Clark 1982, Hendricks and White 1991).  Less well 

understood are microscopic gradients that may occur within the interstitial spaces in the streambed.  It is 

reasonable to expect that local flow patterns and biological oxygen demand may result in gradients of DO 

at scales of millimeters.  Microenvironments on this scale are certainly significant for post-metamorphic 

unionids, which have body length ranging from 0.06- 0.3 millimeters.   

Oxygen availability may limit metabolism directly and may also directly or indirectly influence 

other chemical parameters such as ammonium and nitrate concentrations and pH.  Benthic organisms 

respond to oxygen gradients by altering their position and their behavior (Rees 1972, Hoback and 

Barnhart 1996).  Little is known regarding the tolerance of young juvenile unionids for hypoxia. The heart 

rates of 14-day old Utterbackia imbecillis and Pyganodon cataracta, 400-600 microns long, were 

constant over a wide range of DO but fell by up to 75% at DO below 5% of air saturation.  The lack of 

compensatory change in heart rate above this limiting level suggested that these juveniles were unable to 

regulate oxygen uptake during hypoxia (Polhill and Dimock 1996).  If so, aerobic metabolic rate might be 

affected by DO even at higher levels.   

Organic pollution reduces oxygen availability, because of increased biological oxygen demand 

from the higher biomass that results from increased nutrient availability.  Eutrophication of streams 

resulting in hypoxic habitat is a potential contributing factor in the decline of unionids, but the possibility 

is difficult to assess without information on tolerance of unionids for hypoxia.  Therefore, we investigated 

the effects of chronic hypoxia on survival and growth in recently metamorphosed juveniles of Lampsilis 

siliquoidea and Lampsilis reeveiana.   

 

Methods 

 
Control of dissolved oxygen. Water was deoxygenated using a gas-stripping column (Barnhart 

1995) and then re-oxygenated by passing over a series of partitions and pools (aeration ladder, Nebeker 

1972). Water was continuously recycled through the system from a ~100 liter reservoir at a flow rate of 
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approximately 0.5-L•min-1.  A thermostat controlling a small refrigeration compressor regulated 

temperature.  Water in the reservoir was circulated over a titanium heat exchanger attached to the 

compressor, and a 100W aquarium heater in the reservoir provided a heat load to buck the cooling 

system.  Water temperature was similar among pools ± 0.5 oC and ranged from 19.5 to 21.0 °C during the 

experiments.   

The aeration ladder consisted of an inclined rectangular acrylic box, 4 feet in length and 5 inches 

square.  Eleven 4-inch high partitions separated the water flowing through the box into 12 pools.  Water 

entering the ladder at the upper end flowed over the partitions and through the pools before exiting at the 

lower end of the ladder and returning to the reservoir.  Containers holding juvenile mussels (see below) 

were placed in six of the 12 pools having the desired levels of oxygenation. Supplemental aeration was 

provided in some pools using an air pump and air stones to help oxygenate the water as it flowed down 

the aeration ladder, but containers were not placed in those pools.  

Homogeneity of PO2 within each pool was measured prior to experiments using a Cameron 

oxygen meter (Model OM-201) with a semi-micro oxygen electrode (Microelectrodes, Inc., Model MI-

730).  Oxygen varied less than 1 Torr (0.7%) with position within each pool.  During experiments, 

oxygen in each pool was checked every 1-3 days using an Orion Model 820 oxygen meter.  Calibration of 

the oxygen meters was checked with nitrogen gas and air.  All oxygen measurements were recorded as 

percent of air saturation and later converted to mg/L based upon barometric pressure and temperature.  

Containers.  Juvenile mussels were kept in custom-made acrylic containers (Figure 1).  Each 

container consisted of two rectangular Plexiglas® plates joined face-to-face by a pair of alignment pins 

and a connecting bolt.  The dimensions of the back plate were 3½” x 2½” x ½”.  The dimensions of the 

front plate were 3½” x 1¾” x 5/16”.  A series of eight holes was drilled through the joined plates.  These 

holes were tapered slightly from the front to the back (5/8” diameter on the facing side and ½” diameter 

on the back side).  The front and back of each hole was covered with Nitex® nylon screening (202 µm 

mesh) attached with acrylic cement, to form 8 tapered cylindrical compartments in each container.   When 

the plates were separated, juvenile mussels could be placed in the compartments on the back plate using a 

pipette.  When the plates were joined with the connecting bolts, the flat surfaces of the plates abutted 

closely to form a seal adequate to retain the juveniles.   The 8 compartments in each container allowed the 

juveniles to be divided into small groups, which greatly facilitated observations.   

The closed containers were placed vertically in the pools of the oxygen ladder.  Water flowing 

through the oxygen ladder also flowed through the compartments via the screened openings.   The flow 

rate of water through the oxygen ladder was measured volumetrically and was approximately 0.5 liters 

per minute.  The containers spanned the width and depth of the raceway, so that most of this flow passed 
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through the chambers.  Flow was checked before the experiments by injecting dye (food color) in front of 

each compartment and observing the passage of the dye through the compartments. 

 

 

 
Figure 1.  Container for hypoxia experiments.  Similar units were placed at each of 6 different 
levels of dissolved oxygen in a flowing system.  The facing plate is removable for placing 
juveniles in the compartments and for observations.  The compartments are bounded on both ends 
by nylon screen to allow water to pass through.   

 

 

Juvenile mussels were obtained by artificially infecting largemouth bass with glochidia.  Gravid 

female Lampsilis siliquoidea were collected from Stockton Lake, Cedar County, MO, and Lampsilis 

reeveiana were collected from the James River, Greene County Missouri.  Glochidia from a single female 

were used for each experiment.  Glochidia were removed from the female mussels by injecting sterile 

water into the marsupia.  The glochidia were transformed on largemouth bass and then placed in a rearing 

system for 1-5 days before the experiments began.  During this time, and during the experiments, the alga 

Neochloris oleoabundans was provided as food.  Algal cell concentration was checked every 1-2 days 

using a hemocytometer, and algal culture was added as necessary to maintain a concentration of 
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approximately 40, 000 cells/ml.  Half of the water in the system was replaced every 10 days to maintain 

water quality. 

Groups of six juveniles were placed into each of 4 wells in each of six containers (24 juveniles 

per container, 144 juveniles total).  Juveniles were observed every 1-2 days by removing the containers 

from the oxygen ladder and placing them face up in a tray in shallow water a few mm deep.   A squirt 

bottle was used to rinse each compartment and wash the juveniles into the back half of the compartments.  

The facing plate was then removed and the backing plate and tray were placed under a dissecting 

microscope.  At ~1-week intervals the juveniles were pipetted out of the compartments temporarily and 

the Nitex screens were cleaned of any debris or attached protists to prevent the screens from becoming 

clogged. 

Juvenile growth and mortality were recorded.  The number of surviving individuals was recorded 

every other day for the first two weeks, then every three days for the following three weeks (five weeks 

total).  Dead individuals soon opened and bacteria and protists rapidly emptied the shells.  In some cases, 

recently dead individuals remained closed but were recognized by the presence of protists within the 

shell.  Live individuals were typically closed, and cilia movements could be seen.  Stalked ciliate protists 

(Vorticella) appeared on the juvenile shells during and following the third week of the experiment.  If 

abundant, these protists were gently removed with a fine paintbrush while the shell measurements or 

survival checks were conducted.  In the experiment with Lampsilis siliquoidea, shell length was measured 

prior to the beginning of the experiment, and three more measurements were conducted approximately 

every ten days.  Shell length was measured with an ocular micrometer (precision of measurement was ± 

0.025 mm).   

Statistics:  The time to 50% mortality (LT50) and 95% confidence intervals were calculated at 

each level of DO by linear regression of log (mortality) versus time, and interpolation of LT50 from these 

regressions.  Values for mortality were calculated pooling all 4 groups at each DO.  The effect of DO on 

growth rate was tested as the interaction term in an analysis of variance (GLM) model of the effects of 

DO and time on shell length.  Statistical analyses were carried out using Minitab® version 13.   

 

Results 

 
Survival:  Lampsilis juveniles did not survive indefinitely in the test system regardless of DO.  

Survival time was affected by DO, but the juveniles were surprisingly resistant to even the most severe 

hypoxia tested, surviving for weeks at DO as low as 4% air saturation (0.36 mg/L) (Tables 1, 2; Figures 2, 

3).  The effect of hypoxia on survival can be quantified by the reduction of LT50  (time to 50% mortality).   
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Table 1.  Effect of dissolved oxygen on estimated time to 50% mortality (LT50) of juvenile Lampsilis 
reeveiana at 20 oC.  Units of DO are % air saturation and mg/L.  Units of LT50 are days. 

DO 7.1 % A.S. 
0.63 mg/L 

9.1% A.S. 
0.81 mg/L 

18.5% A.S. 
1.65 mg/L 

29.4% A.S. 
 2.62 mg/L 

42.5% A.S. 
3.79 mg/L 

75.0% A.S. 
6.69 mg/L 

LT50  
(95% CI) 

20.3 
(18.4-22.1) 

25.9 
(24.1-27.8) 

26.2 
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Figure 2.  Survival of Lampsilis reeveiana juveniles versus time during 37 days at 20 oC.   
Legend indicates DO treatment group in % air saturation and concentration. 
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Table 2.  Effect of dissolved oxygen on estimated time to 50% mortality (LT50) of juvenile Lampsilis 
siliquoidea at 20 oC.  Units of DO are % air saturation and mg/L.  Units of LT50 are days. 

DO 4.0% A.S. 
0.36 mg/L 

6.8% A.S. 
0.60 mg/L 

15.3% A.S. 
1.36 mg/L 

26.5% A.S. 
 2.37 mg/L 

37.5% A.S. 
3.35 mg/L 

82% A.S. 
7.32 mg/L 

LT50  
(95% CI) 

25.6 
(24.2-27.0) 

27.6 
(25.9-29.2) 

29.0 
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(26.9-34.9) 

33.3 
(29.2-37.5) 

31.5 
(28.9-34.0) 

Days elapsed

0 5 10 15 20 25 30 35 40

Pe
rc

en
t s

ur
vi

vi
ng

0

20

40

60

80

100

4%   (0.4 mg/L)
7%   (0.6 mg/L) 
15% (1.4 mg/L) 
27% (2.4 mg/L) 
38% (3.4 mg/L) 
82% (7.3 mg/L) 

 
Figure 3.  Survival of Lampsilis siliquoidea juveniles versus time during 34 days at 20 oC.   
Legend indicates DO treatment group in % air saturation and concentration. 
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Figure 4.  Time to 50% mortality of Lampsilis juveniles (LT50, days) versus dissolved oxygen  
(DO, mg/L) at 20oC.  Bars indicate 95% confidence intervals of LT50 estimated from regressions  
of mortality on time. 
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Table 3.  Effects of dissolved oxygen on growth of juvenile Lampsilis siliquoidea at 20 oC.  Days = days 
of exposure.  Units of D.O. are  % air saturation and mg/L.  Values are mean length in micrometers ± 
standard error of mean (N surviving). 

 

Days 3% A.S. 
0.27 mg/L 

6% A.S. 
0.53 mg/L 

15% A.S. 
1.34 mg/L 

26% A.S. 
 2.32 mg/L 

39% A.S. 
3.48 mg/L 

84% A.S. 
7.50 mg/L 

             
0 391 ± 7.3 (24) 391 ± 5.7 (24) 400 ± 7.5 (24) 393 ± 8.9 (24) 384 ± 5.0 (24) 371 ± 8.4 (24) 
9 423 ± 8.4 (22) 416 ± 8.9 (24) 412 ± 7.2 (24) 410 ± 8.3 (24) 420 ± 5.9 (24) 391 ± 7.9 (24) 

23 438 ± 8.6 (17) 441 ± 7.9 (20) 436 ± 10.5 (16) 419 ± 10.0 (23) 435 ± 6.4 (22) 427 ± 6.6 (20) 
34 468 ± 12.7 (2) 460 ± 7.4 (10) 459 ± 16.3 (6) 450 ± 10.5 (15) 446 ± 7.8 (11) 428 ± 9.3 (13)  
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Figure 5.  Growth of Lampsilis siliquoidea juveniles during 34 days at 6 levels of hypoxia.   
There were no significant differences in slope (growth rate) among treatment groups  
(GLM, P=0.49).  Data are shown in Table 3. 
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DO had little effect on LT50 at levels above 1 mg/L (Figure 4).  LT50 was consistently higher for 

the L. siliquoidea juveniles than for the L. reeveiana juveniles.  Lampsilis siliquoidea juveniles grew 

approximately 15% in length during the 34 days of the hypoxia experiment (Table 1).  Surprisingly, the 

rate of growth was not significantly affected by DO (Figure 5). 

 

Discussion 
 

 These experiments suggest that juvenile unionids are remarkably resistant to hypoxia.  Small 

body size and consequently large surface/volume ratio probably facilitate oxygen uptake in these tiny  

bivalves (Herreid 1980).  The constant renewal of the water boundary layer by cilia action must also 

facilitate oxygen uptake.  Tolerance of low oxygen by juvenile mussels is more likely to be explained by 

efficient oxygen transport than anaerobic metabolism.  Juvenile Pyganondon cataracta survive less than 

24 hours in anoxia, suggesting that anaerobic metabolic scope is limited (Dimock and Wright 1993). 

 These experiments are compromised somewhat by the fact that the juveniles did not survive 

indefinitely even at high levels of DO.  Presumably the Neochloris that was provided as food is not a 

sufficient diet.  Some individuals of Lampsilis siliquoidea may survive up a year or more eating 

Neochloris, but not all individuals thrive, and other species that we have tested do not do as well on this 

diet (Barnhart 1998).  Difference in nutritional condition may explain the difference in LT50 between L. 

reeveiana and L. siliquoidea.  If adequately nourished, these juveniles might be even more resistant to 

hypoxia. 

  The ability of young juvenile mussels to tolerate very low DO raises the possibility that they may 

be adapted to these conditions.  It is possible that hypoxic microhabitats might even be favored as a 

mechanism of predator avoidance.  Investigation of DO gradients on a scale of millimeters in benthic 

microhabitats could reveal some interesting and unexpected relationships.   
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