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ABSTRACT 

The objective of this study was to evaluate whether total amino acids (AA) or methionine have 

an effect on fetal programming of calves using 108 Angus Brangus cows. Treatments were 1) 

Control, limpograss hay with molasses plus urea (16% CP as fed basis) at 2.72 kg./hd/d,  2) 

Fishmeal, Control plus 0.33 kg./hd/d of fishmeal ( methionine 2.85 % of RUP), and 3) 

Methionine, Control plus 10 g/hd/d of MetaSmart liquid (Addisseo Alpharetta, GA) . Fishmeal 

and Methionine treatments supplied similar amounts of metabolizable methionine. Weight of 

cows and calves along with body condition score of cows were measured at the start and end of 

the 120 day supplementation period, and milk yield was measured at 3 time points by weigh-

suckle-weigh technique. In Year 2, 24 steer calves conceived during the treatment period in Year 

1 were fed individually during a metabolism experiment following weaning at approximately 7 

months of age. Body weight, feed intake, plasma metabolites, and nutrient digestibility were 

measured in steers during the metabolism experiment. Body weight and body condition score 

change of cows were not different among treatments during the treatment period in Year 1. 

Treatment did not affect calf weight gain even though there was a trend for Methionine dams to 

have greater energy-corrected milk yield and for Fishmeal and Methionine dams to have greater 

milk protein content than Control dams. In Year 2, treatment did not affect weaning weight of 

calves conceived during the treatment period in Year 1. During the post weaning metabolism 

experiment, Average daily gain, final body weight (FBW), and gain: feed ratio were greater in 

steers whose dams supplemented with Fishmeal or Methionine during early gestation. Steers 

born to Control and Methionine dams had greater plasma urea nitrogen concentrations before 

and after feeding, and tended to have greater change in plasma urea nitrogen concentration than 

steers born to Fishmeal dams. Steers born to Methionine dams had lower plasma glucose 

concentration before and after feeding, but greater change in plasma glucose concentration than 

steers born to Fishmeal dams. There was a trend for treatment to effect Neutral detergent fiber 

(NDF) and Acid detergent fiber (ADF) digestibility with steers born to Methionine dams having 

greater digestibility than steers born to Control or Fishmeal dams. In conclusion, methionine is a 

key nutrient in fetal programming and can be used in conjunction with poor quality forage to 

improve performance of offspring.  
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INTRODUCTION 

 

Justification for Study  

Beef cows in the Southeastern United States begin calving in late fall and rebreed during 

the winter months. During this time, the nutritional value of warm season forages is poor while at 

the same time nutrient requirements of the cow is greatest. This presents a serious challenge for 

beef cattle producers, supplementing their cows with an economical and practical feedstuff that 

also meets the nutritional needs of the lactating beef cows. Nutritional management of pregnant 

or lactating beef cows impacts not only the cow and her currently nursing calf but also the calf 

that is developing in utero. Liquid molasses, a by-product of the sugar cane industry, is a high 

energy feedstuff and an effective feedstuff for beef cattle producers (Pate, 1983; Arthington et 

al., 2004), although effective it requires supplementationwith a high-protein feedstuff in order to 

meet metabolizable protein requirements of the cow and potentially fetus in utero.   

Essential amino acids are vital to in vivo protein synthesis and diets deficient in them do 

negatively impact a cow’s performance. Methionine is typically first limiting amino acid when 

cattle rely almost exclusively on microbial crude protein (Richardson and Hatfield, 1978), and is 

an important methyl donor in the process of DNA methylation that is thought to influence fetal 

development (Wu et al., 2006).  Patton et al. (2010) reported that when supplemental by-pass 

methionine was added to the diet of dairy cows, milk yield and milk protein content increased in 

similar to what you might see in lactating beef cows that are fed low quality hay and molasses 

supplement. Researchers supplemented beef cattle diets with ruminal protected methionine to 

cows being fed chopped rye hay. The results were cattle fed the ruminal protected protein had 

increases in total milk yield, protein and fat. This study shows that supplementing with by-pass 
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methionine can increase milk production (Hess et al., 1998) and improve reproductive 

performance in beef cows (Clanton and England, 1980). Addition of methionine also has been 

shown to increase retention of nitrogen in late gestating beef cows, which may suggest that 

methionine is limiting in their diets (Waterman et al., 2007). Santos et al. (1998) reported that 

only 17% of dairy cattle saw an increase in milk yield when supplemented with by-pass protein, 

subsequently the 17% was mostly comprised of fishmeal and treated soybean meal both of which 

have relatively high levels of by-pass methionine and lysine. Santos research indicates that 

additional methionine may be required in order to optimize growth in calves.  

 

Problem Statement 

Supplemental metabolizable protein appears to be important to maternal nutrition in 

enhancing fetal development and subsequent offspring performance. However, it is not 

understood whether total metabolizable protein supply or key individual amino acids are 

responsible for the improved offspring performance.   

 

Objective and Null Hypothesis  

Our null hypothesis is that increasing the methionine supply to lactating cows will not 

enhance milk production and reproductive performance of cows, as well as fetal development 

and performance of offspring.   

Objective #1: Determine the effect of increased metabolizable protein or metabolizable 

methionine supply to lactating beef cows consuming low quality hay during early gestation on 

digestibility, plasma metabolite profiles, and growth performance in subsequent offspring.  
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Objective #2: Determine the effect of increased metabolizable protein or metabolizable 

methionine supply to lactating beef cows consuming low quality hay on milk yield and 

components, pregnancy rates, body weight, body condition score in beef cows, and weight gain 

in currently nursing calves.  
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LITERATURE REVIEW 

 

Fetal Development in Bovine 

Early-gestation. Timeline for early-gestation is from d 0 to d 90 of the fetus life. The 

process in which sperm penetrates into the ovum sets forth the process known as oocyte 

activation. The ovum phase is a short process lasting 11 to 14 days and is characterized by rapid 

cell division (Gerrard and Grant, 2003). The single celled structure develops into many cells 

uniform in size known as blastomeres. Once completed the structure undergoes compaction with 

the inner cells become associated. This gives rise to the morula which is a structure of 20 cells 

and signals the end of the ovum stage of development (Gerrard and Grant, 2003). Morphogenesis 

is the term that refers the changes in the embryo as directed by structures both internal and 

external. Two main events occur that progress the embryo to the blastula phase. First, increasing 

the numbers of blastomeres forms a blastocyst (Gerrard and Grant, 2003). Secondly, the 

formation of trophoblasts which surrounds the blastocoele (Gerrard and Grant, 2003). This forms 

the embryonic disc which consists of the epiblast and hypoblast. Gastrulation then occurs, which 

is a period in which regions begin to exert more control over development rather than the 

specific cells. Neurulation then occurs with the formation of what will then be the spinal cord. 

During somitogenesis two ridges develop in the neural tube which are known as paraxial 

mesoderm and lateral plate mesoderm (Gerrard and Grant, 2003). After embryonic maturing the 

elongated groups of cells organize into masses known as somites. After the somitocoele 

formation, two specific populations of somatic cells develop, these two populations are 

dermomyotome and sclerotome (Gerrard and Grant, 2003). Cells than migrate to the spinal cord 

and develop the spinal column. Limb formation then begins to occur when cells from somites 
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move to the closest point of limb formation and migrate to just under the surface ectoderm to 

form limb buds.  

 Fetal organogenesis begins simultaneously with the development of the placenta, in beef 

cattle a heartbeat can be detected in as few as 21 days. At 25 days into pregnancy extremities 

begin to develop followed by vital organs including the pancreases, liver, adrenals, lungs, 

thyroid, spleen, brain, thymus and kidney (Hubbert et al., 1972). Although the growth trajectory 

for each organ is different, nutritional deficiencies have the greatest control on how quickly or 

slowly organs develop. Other areas where development has documented change is in the 

reproductive tract of females. By day 60 testicles begin to develop in male calves, and female 

ovarian development has begun. 

Mid gestation. Timeline for mid-gestation is from d 91 to d 180 of the fetus life. Mao et 

al., documented a significant growth of kidneys during mid gestation (2008).  Primary 

myogeneis occurs during d 60 and d 90 of early gestation (Russell and Oteruelo, 1981). Initial 

myogeneis is minimal skeletal muscle development the majority of skeletal muscle fiber 

development occurs during mid gestation. Muscle weight increased between 214-fold and 483-

fold in biceps femoris muscle from d 90 to d 270 months of age (Mao et al., 2008) Primary 

muscle fiber development continues until 210 d of gestation in cattle, Mao et al. (2008) 

concluded that muscle weight to BW ratios increased in mid gestation and continued to grow 

into late gestation. 

 Secondary myogeneis myofibers form during this stage in the fetus life. Secondary 

myogeneis fibers account for most of the skeletal muscle fibers at this point in gestation. 

Adipogenesis process begins at the tail end of mid gestation.  
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Late gestation. Timeline for late gestation is from d 181 to parturition. Mao et al., found 

that during late gestation accelerated growth in both liver and heart occurred in cattle. In cattle, 

skeletal muscle matures around d 210 of gestation. Adipogenesis and muscle fiber hypertrophy 

are the main process occurring during late gestation in beef cattle. During late gestation a greater 

number of mesenchymal cells are directed toward adipogenesis. The amount of fat is determined 

by the size and number of adipocytes (Du et al., 2010). Both skeletal muscle cells and adipocytes 

originate from the same group of mesenchymal stem cells. Also during late gestation 

fibrogenesis occurs where fibroblasts synthesize connective tissue that forms the endomysium, 

perimysium and epimysium in skeletal muscle (Du et al., 2010). Mao et al. (2008) reported that 

contrary to muscle weight to BW ratios, fat weight to body ratios significantly increased 

throughout gestation. This increase indicates that fat accretion in the fetus significantly increases 

towards the end of gestation. Mao et al. (2008) found that while body weight ratios to organs 

decreased, body fat increased continuously from 3 to 9 mo of gestation.  

 

Fetal Programming  

Epigenetics is the study of heritable but potentially reversible modifications at the 

molecular level of DNA (Li., 2003). As more research is conducted, it is recognized that 

epigenetics develops a mechanical link between environment and genetics. Some of the most 

common forms of epigenetic mechanisms include DNA methylation, histone modifications, 

nucleosome position along DNA, and the modulation of gene expression by noncoding RNA 

(Mohr et al. 2011; Niculescu and Lupu 2011; Skinner, 2011).  

Dutch Famine. During World War II, German troops made their way into the 

Netherlands setting up a blockade that caused, a vast restriction in the food coming into the 
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country. In December 1943, the daily ration was 1800 Cal, then it was decreased to 1400 Cal in 

October 1944, by the height of the famine caloric intake was down to between 400-800 calories 

per person (Burger, 1948). Those that were most affected by the famine were pregnant women 

and their subsequent offspring. Children were considered to be prenatally exposed to famine if 

the mother experienced an average daily ration of under 1000 calories for 13 weeks. Research 

conducted at the University of Amsterdam in 2012, looked at the 1,423 men and women who 

were in utero during the Dutch Famine. Researchers looked at long term health issues observed 

in children who were born during the Dutch Famine (Figure 1.) (Roseboom et al., 2006).  In 

2013, researchers from the University of Amsterdam conducted an observational study on 150 

people who were born during the Dutch Famine. They saw a statistical difference in both grip 

strength and lower physical performance score (P>0.05) in men, but not women (Bleker et al., 

2016).  

Exposure to Famine 

In late gestation In mid gestation In early gestation 

Glucose Intolerance Glucose intolerance Glucose intolerance 
 

Microalbuminuria Atherogenic lipid profile  
Obstructive airway disease Altered blood coagulation 

  
Obesity (women only)   
Stress sensitivity   
Coronary heart disease 

 

 
Breast cancer 

 

Figure 1. Adapted from Roseboom et al., 2006 
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DNA Methylation  

The development of a fetus from conception to birth is a complex process that involves a 

collaboration of a multicellular organism to achieve this goal. The primary regulation of genes is 

predominately encoded in cis regulatory elements and is carried out by transcription factors. 

Which are stretches of DNA pairs where transcription factors bind and regulate the expression of 

genes and their rate of transcription. Genes are also regulated by modifications that occur from 

heritable covalent modifications i.e. DNA methylation. DNA methylation is a process that occurs 

with the covalent addition of methyl groups to DNA predominately at the 5th atom of the 

cytosine ring which is followed by a guanine nucleotide. Although other nucleotides can also be 

methylated, methylation of cytosine is one of the most studied and mechanically understood 

epigenetic modifications.  

Folate (Vitamin B9) is the most extensively studied methyl donor in epidemiological 

DNA methylation research. This not an issue in ruminants, due to the fact that ruminants produce 

folate to meet their requirements via microbial synthesis. Folate is reduced to dihydrofolate 

(DHF) and then to tetrahydrofolate (THF) which serves as a donor in single carbon metabolism 

in the form of 5-methly THF (Anderson et al. 2012). 5-methyl THF functions in one carbon 

metabolism by donating a methyl group to homocysteine, creating methionine. Other B-vitamins 

serve as enzymatic cofactors in the process of SAM regeneration: cobalamine, pyrodoxine, and 

the quasi-vitamin choline (Ba et al., 2011). Reduced folate status decreases global methylation 

causing permanent phenotypic changes in small intestinal tissue of young women (Shellnutt et 

al., 2004) and decreased global DNA methylation in liver of offspring (Ly et al., 2011) 

demonstrating that folate restriction has a key role in global DNA methylation.  
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 The Vitamin B family plays a crucial role in the function of one-carbon 

transfers. Riboflavin, pyrodoxine and cobalamine play a crucial role in folate and one carbon 

metabolism. Riboflavin is a precursor for flavin adenine dinucleotides, which is the cofactor for 

methylenetetrahydrofolate reductase (MTHFR), an enzyme that is responsible for the reduction 

of 5, 10-methylene THF to 5-methly-THF (Chan et al., 2010). Pyridoxine is a coenzyme for 

serine hydroxymtheyltransferase which is the enzyme responsible for converting THF to 5, 10-

methyl-THF in the folate cycle (Perry et al., 2009). Finally, cobalamine is the coenzyme for 

methionine synthase, which catalyzes the conversion of homocysteine to methionine.  

Choline is an indirect donor to one-carbon metabolism (Figure 2). Choline is oxidized to 

form betaine by the enzyme intermediate betaine aldehyde (Kidd et al., 1997); betaine is the 

primary methyl group donor converting homocysteine into methionine. Choline deficiency has 

been linked to changes in neurogenesis along with declines in memory function (Craciunescu et 

al., 2010; Mehedint et al., 2010). Rats fed choline deficient diets, showed a hypomethylation of 

promoter genes that are involved in fetal brain development (Niculescu et al., 2006).  

 

   

 

 

 

 

 

 

Figure 2. Chemical structure of 5-methylcytosine (Adapted from Bartosik et al., 2016) 
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Single Carbon Metabolism  

Folate, methionine, and choline are methyl donors responsible for regulation of single 

carbon metabolism. These are key nutrients in the generation of S-adenosylmethionine (SAM), 

which is the universal methyl donor responsible for methylation of DNA and histones. When 

SAM is demethylated it becomes S-adenosylhomocysteine (SAH), if SAH accumulates it can 

begin to interfere with methylation reactions (figure 3). S-adenosylhomocysteine concentration 

in the cell is a determining factor of methylation capabilities of certain tissues. S-

adenosylhomocysteine is hydrolyzed to homocysteine and adenosine via a reversible reaction 

that favors SAH synthesis; therefore, removal of SAH is essential for allowing the methionine 

cycle to function properly (Brosnan, 2006). Methionine is an essential nutrient that has a 

multitude of functions in the diet of ruminants. Methionine plays a key role in protein synthesis; 

it also functions as a methyl donor and precursor to a number of antioxidants and other 

compounds. Research have implicated that close to half of the methionine requirements of rats, 

cats, dogs, pigs, and chicks can be replaced by cysteine (Chung and Baker, 1992; Baker et al., 

1996). While these animals can efficiently convert cysteine to methionine, ruminants specifically 

cattle, have not observed the same conversion (Campbell et al., 1997) Methionine is often the 

most limiting amino acid (AA) in beef cattle diet particularly along with lysine and threonine 

(Richardson and Hatfield, 1978).  
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Figure 3. Involvement of dietary micronutrients in one-carbon metabolism (1) Vitamin B6 

is a cofactor to serine hydroxymethyltransferase in the conversion of tetrahydrofolate (THF) to 5, 

10-methylene THF. (2) Vitamin B2 is a precursor to FAD, which is a cofactor to 

methylenetetrahydrofolate reductase (MTHFR) in the conversion of 5, 10-methylene THF to 5-

mthyl THF. (3) Vitamin B12 is a precursor to methionine synthase, involved in the production of 

methionine from homocysteine and betaine. DHF, Dihydrofolate; FAD, Flavin adenine 

dinucleotide; DMG, dimethyl glycine; MTHFR, methylenetetrahydrofolate reductase; SAH, S-

adenoslyhomocysteine; THF, tetrahydrofolate. Adapted from Anderson et al., 2012 

 

 

Key vitamins that act as coenzymes in one carbon metabolism are folic acid, riboflavin, 

pyridoxine and cobalamine. DNA methylation is dependent on methyl donors and cofactors from 

the diet which are involved in methionine and folate metabolism (Chmurzynska, 2010). 

Methionine is vital because unlike the vitamins involved in one-carbon metabolism, it cannot be 

synthesized in the rumen of cattle. In mammal's, protein synthesis and synthesis of S-

adenosylmethionine (SAM) compete for the available methionine in the body (Finkelstein 
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1998). Two process trying to utilize similar nutrients can be detrimental, in situations when 

methionine is scarce, the animals body will pull methionine from the DNA methylation process. 

 

Rodents  

The liver potentially plays a central role in the fetal programming. Expression of key 

enzymes in carbohydrate and lipid metabolism such as, phosphoenolpyruvate carboxykinase 

(PEPCK), acyl-CoA carboxylase-1 (ACC-1) and liver carnitine palmitoyl transferase-1 (L-CPT-

1) was decreased in the liver. (Desai et al., 1997; Zhang and Byrne, 2000; Maloney et al., 2003; 

Rees et al., 2006; Maloney et al., 2007). When rats were fed a low protein diet just before 

conception researchers observed gender specific effects on hepatic PEPCk and 11B-HSD1 gene 

expression during fetal development (Kwong et al., 2006).  

 Bertam et al., (2001) conducted research looking at the effects of protein-restricted (PR) 

diet to pregnant rats. Rat pups had an increase in glucocorticoid receptor (GR) expression and a 

reduction in the enzyme that is responsible for the inactivation of corticosteroids, 11β-

hydroxysteroid dehydrogenase type II, in major organs (i.e., liver, lung, kidney and brain). 

Research shows that, nutrient restriction while the fetus is in utero in the early stages of 

pregnancy can have effect on the development of major organs which subsequently can affect the 

animal’s ability to utilize nutrients and function properly.  

Previous research has also evaluated the effect diet can have on the development of major 

organs. Interestingly, nutrient restriction of the dam affected one-carbon metabolism and the 

concentration of SAM and SAH which led to decreased methylation status of PPARα 

(Peroxisome proliferator-activated receptor alpha) and GR genes in the offspring's liver 

(Lillycrop et al., 2005). Even after the offspring were fed a protein sufficient diet, hypo 
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methylation of GR and PPARα persisted indicating the potential long-term effects on offspring 

performance from epigenetic changes in utero   

When maternal diets were deficient in folic acid and other methyl donors, researchers 

saw a reduction in acetyl-CoA carboxylase, the rate limiting enzyme in fatty acid synthesis in 

rats, (McNeil, 2008). Further research in fetal programming narrowed the scope and specifically 

looked at how deficiency in methyl donors could affect subsequent offspring. When fed a diet 

deficient in methyl-donors, studies show that multiple functional groups change in the offspring 

of dams who received methyl-deficient diets during pre-conception and preimplantation stages 

(Maloney 2011). At 6 and 12 months of age, key proteins involved in energy metabolism, 

antioxidant defense, and amino acid and peptide metabolism were expressed different which 

suggested that maternal diets deficient in methyl donors during the beginning stages of cell 

division can have lasting effects on metabolic processes (Maloney 2011).  

  

Sheep   

Fetal programming research in sheep has focused on the effects of total nutrient 

restriction during early- to mid- gestation on fetal development and subsequent performance of 

offspring. Researchers fed ewes a restricted (50% NRC requirements) or adequate diet (100% 

NRC requirements); NRC, 2000) from day 28 to 78 of gestation. Once slaughtered (d 78) organ 

weights of ewes, were recorded and were similar in both control and nutrient restricted ewes 

(Vonnahme et al., 2003). Plasma glucose concentrations were decreased and plasma T4/T3 ratio 

increased in nutrient restricted compared to control-fed ewes (Vonnahme et al., 2003).  

 Ford (2010) conducted similar research with a flock of ewes at the University of 

Wyoming to evaluate restriction of total nutrients on concentrations of amino acids and 
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polyamines in maternal and fetal plasma and fetal fluids. Similar to Vonnahme et al., (2003) 

nutrient restricted ewes were fed 50% of NRC nutrient requirements compared with 100% for 

the control ewes from day 28 to 135 of gestation. Total amino acid concentrations were 

substantially reduced, specifically serine, arginine-family amino acids, and branched chain 

amino acids. Furthermore, polyamine concentrations in maternal and fetal plasma and in fetal 

allantois and amniotic fluids were decreased during both mid and late gestation (Kwon et al 

2004). This research shows that 50% global nutrient restriction decreases total amino acids and 

polyamines in the ovine fetus could affect key functions in fetal development (Kwon et al., 

2004). Results are important to the understanding of the mechanisms responsible for growth 

retardation in utero and how those retardations can affect adults later in life.  

In a second study, Kwon et al., (2004) evaluated the effects of nutrient restriction in a 

flock of ewes near Baggs, Wyoming that are managed using low input and reared in a low 

nutrition environment. The objective of the study was to evaluate nutrient restriction in a flock of 

ewes subjected to low nutritional environment. Interestingly, nutrient restriction of ewes selected 

under low nutritional environment did not result in decreased fetal amino acid concentrations as 

was the case with the traditionally managed ewes were records were kept and animals were 

culled due to poor performance at the University of Wyoming (Kwon et al 2004). Also, contrary 

to the intensively managed UW ewes in the prior research, fetal growth was not reduced in 

extensively managed Baggs ewes in response to severe maternal nutrient restriction.  

Diet of the damn can affect reproductive tissues as well, ewes that were fed 60% of the 

NRC recommendations from d 50 to 135 during gestation saw a decrease cellular proliferation 

rate in primordial follicles compared to the ovaries of those fed 100% of NRC recommendations 
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(Grazul-Bilska et al., 2009). Researchers speculated that this decrease could affect future 

fertility. 

 

Cattle  

Early Development. Maternal nutritional status is a key factor in programming nutrient 

partitioning and ultimately the growth, development, and function of the fetal organ systems 

(Wallace 1948; Wallace et al., 1999; Godfrey and Barker, 2000).  Although 75% of the growth in 

ruminant fetus occur in the final two-month, crucial framework is established in the beginning 

months (Robinson et al., 1977). The critical events that occur during the early phase of fetal 

development include: maximal placental growth, differentiation of, vascularization, and fetal 

organogenesis.  

The reproductive tract in cows is a vital part of development of the calf. The placenta is 

crucial in the development of the ruminant fetus. The placenta attaches itself to the uterine walls 

using structures called caruncles which are the primary area for exchange of nutrients between 

mother and fetus. The uteroplacental blood flow is directly related to growth of the fetus in utero 

by affecting placental nutrient transport and oxygen exchange (Reynolds and Redmer, 1995; 

2001). Vonnahme et al. (2007) reported that nutrient restriction from d 30 to d 125  of gestation 

followed by supplementation from d 125 to 250 affected both placental angiogenesis (i.e. 

capillary vascularity) and angiogenic factor mRNA in cows. Cows who were nutrient restricted 

from d 30 to d 125 had decreased vascular permeability and vascular endothelial growth factor 

(VEGF) mRNA. Restriction was observed in both the caruncular and cotyledonary tissue 

compared with cows supplemented throughout gestation.  
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Similar effect was observed by McMullen et al. (2005) when they restricted ewes for 7 

days during mid-gestation and measured a decrease in mRNA abundance of the angiogenic 

factor, VEGF, and placental weights on d 90. However at the day of lambing, placental weight 

between nutrient-restricted and the control (100% NRC requirements) were not different. In 

cattle, there was a difference in placental weight on d 125 between nutrient-restricted and 

control, and continued to be suppressed even after re-alimentation on d 250 (Vonnahme et al., 

2007; Zhu et al., 2007). This difference can be correlated to species variation between ovine and 

bovine. Randuz et al., (2012) saw increases in birth weights and increased carcass weights in 

calves from cows that were fed hay a low starch diet in late gestation. Reported an increase in 

marbling score and intramuscular fat content in the carcass of calves whose mothers were fed 

hay compared to those that were supplemented with corn. Wang et al., (2015) concluded that diet 

of the dam during late gestation specifically affects postnatal growth and adipose deposition in 

the cattle.  

Additional, research has evaluated maternal nutrition during pregnancy on long-term 

performance of offspring with effects on progeny growth, glucose tolerance, and carcass 

composition. Radunz et al., (2012) reported that maternal late gestation energy source (starch 

versus fiber) altered fetal growth, birth weight, and had long term effects on intramuscular fat 

deposition of the progeny. Calves born to these cows were lower grading when slaughtered and 

carcasses analyzed.   This research suggests that fetal programming in cattle can affect 

development of several physiological systems.  

Protein restriction of the cows during late gestation decreases fetal muscle fiber number 

resulting in less muscle cross-sectional area (Larson et al., 2009). Other research demonstrated 

that calves from nutritionally-restricted cows had reduced body and carcass weight compared to 
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those that were fed control diets throughout gestation (Greenwood et al., 2004). Larson et al. 

(2009) reported retail yield of calves from nutrient-restricted cows was greater than calves from 

nutrient-adequate cows.  

 Research stated that maternal protein supplementation might affect the integrity of the 

oocyte or embryo resulting in fewer calves within the first 21 days of calving season (Martin et 

al., 2007). Martin et al. (2007) also noted that dams that were supplemented during late gestation 

gave birth to heifers that were more reproductively efficient, with increased pregnancy rates 

during first pregnancy compared to those whose dams were not supplemented. Supplementing 

cows not only boosted reproductive performance in subsequent calves, but improvements in calf 

birth weight, pre-breeding calf weight, and calf 205-d adjusted weaning weight were observed 

when mothers were supplemented protein while grazing low quality forage prior to calving. 

Maternal nutritional management also affected feedlot performance post weaning with increased 

feedlot ADG and increased final weight and HCW, and had a tendency to have a higher 

marbling: yield grade ratio (Larson et al., 2009).  

The majority of research involving cattle and the effects of maternal nutrition was done in 

the later part of gestation. Because the majority of structural growth of the fetus occurs in the 

final third of the pregnancy (NRC, 2000), it was hypothesized this is where the greatest 

differences would be observed. Multiple studies have reported effects on calf birth weight by 

protein and energy deficiency of the dams (Holland and Odde, 1991). However, nutrient 

restriction of cows in early gestation could have a pivotal role in the development of vital organs 

that are responsible for many aspects of future productivity.  

Long et al., (2009) tested this hypothesis by evaluating fetal development during nutrient 

restriction of cows in early gestation. When maternal undernutrition in early-gestation, fetal 
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intrauterine growth restriction (IUGR) can occur (McMillen et al., 2001; Vonnahme et al., 2003). 

Long et al., (2009) documented the first decrease in fetal growth although fetal growth restriction 

only occurred in the NR IUGR group and not the NR non-IUGR group. Necropsy on the calves 

at d 125 were documented in this study. Fetal weight and empty carcass weight were 

significantly reduced (p<0.01) in offspring of NR dams compared to offspring of dams that were 

not restricted, brain and heart weight were increased, left and right atrium thickness also 

increased and, liver and lungs saw a decrease in weights during development. Although kidney 

and pancreas weights did not change in nutrient restricted cows, the absolute glomerular number 

and glomeruli per gram of tissue in kidneys were reduced in nutrient restricted fetuses. 

 Limesand et al., (2005) saw a decrease in pancreas weight among intrauterine growth 

restriction (IUGR) fetuses. Reported a reduction of 76% of β-cell mass in fetuses near term 

which was a result of decreased rates of β-Cell proliferation and neoformation. Limesand et al., 

(2006) reported decreases in glucose oxidation in IUGR at high concentrations of glucose. 

Reported impairment of islet oxidative glucose metabolism (Limesand et al., 2006). Thus, even 

though tissue mass was not impacted, physiological function of the vital organs was changed, 

which could have long-term consequences on growth of the calf.  

Maternal nutrition impacts development of the fetus throughout gestation with the effects 

somewhat dependent upon the organ systems developing during each stage of gestation. Organ 

systems can be affected through changes in overall growth and mass, as well as, changes in 

physiological function. Total nutrient restriction has been well studied in beef cattle, but less 

research has focused on the role of specific nutrients. Methionine may be one of the specific 

nutrients that are key in the development of the fetus.  
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METHODS 

 

This study was conducted at the University of Florida Range Cattle Research and 

Education center in Ona, FL. All animal handling techniques were approved prior to data 

collection from the University of Florida Institutional Animal Care and Use Committee (protocol 

#201408583). 

 

Year 1 

Cow Management. One-hundred and eight Brangus-Angus crossbred lactating beef 

cows (n=108) were used in this experiment. Cows were stratified by previous calving date and 

assigned to 1 of 3 treatments (2 herds per treatment; 18 cows per herd) while fed low-quality 

limpograss (Hemarthria altissima) hay and grazing dormant bahaigrass (Paspalum notatum) 

pastures. The treatments consisted of: (1) Control, supplemented with molasses plus urea (16% 

CP as fed basis) at 2.72 kg/hd/d, (2) Fishmeal, 2.27 kg/hd/d molasses with urea supplement plus 

0.33 kg/hd/d of fishmeal (2.85 methionine % RUP; NRC, 2000) to meet metabolizable protein 

requirement providing an estimated 3.5 g of by-pass methionine, and (3) Methionine, 2.72 

kg/hd/d of molasses with urea plus 10 g/hd/d of Metasmart Liquid© (Adisseo, Alpharetta, GA) 

to provide 3.7 g of by-pass methionine. The base diet (Treatment 1) provided 100% of the 

metabolizable energy and 87% of the metabolizable protein requirement (NRC, 2000) for 

lactating beef cows having peak milk yield of 7 kg/d. Treatment 2 was designed to meet or 

exceed metabolizable protein and methionine requirement as well as other essential amino acid 

requirements. Treatment 3 was designed to meet or exceed the metabolizable methionine 

requirements providing similar methionine as Treatment 2.  At calving in October and November 
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2014, birth weight and birth date of calves and body condition score of cows were recorded by 

two trained personnel. Dietary treatments began on December 8, 2014. On d 35 (early January 

2015) and d 120 (end of March 2015) of the treatment period, cows and calves were weighed 

following overnight withdrawal from feed, and body condition score of cows assessed by 2 

trained personnel. On d 120, hay feeding and supplementation ceased, and cows grazed 

bahaigrass pastures from April to December 2015. Cow herds were rotated among twenty 4-ha 

pastures such that all herds grazed each pasture during the grazing season. In June 2015, 

pregnancy status of cows was determined by rectal palpation.   

Milk production. On d 35 (early January 2015), 70 (mid-February 2015), and 120 (end 

of March 2015) of the treatment period, milk production was determined on cows using the 

weigh-suckle-weigh technique (Hess, 1998). Cows and calves were gathered to the working pens 

in the morning. Calves were separated from dams at 1200h, then allowed to suckle for 30 

minutes at 1600h, and again separated from dams overnight. At 0800h, calves were weighed, 

placed with their dams for 30 minutes to suckle, and weighed again. Each time, calves were 

weighed using a squeeze chute on load bars with a scale indicator set for 0.454-kg increments 

(Tru-Test XR3000, Datamars, Mineral Wells, TX). On d 35, 70, and 120 of the treatment period, 

a sample of milk from the udder of each cow was collected for analysis of milk components.  

 

Year 2  

Cow Management. In December 2015, cows were fed similar to Treatment 1 allowing 

ad libitum access to limpograss hay while grazing dormant bahaigrass pastures and 

supplemented with molasses-urea. At the end of March 2016, hay feeding and molasses 

supplementation ceased and cows grazed bahaigrass pastures. 
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Calf Management. At calving, birth weight and birth date of calves was recorded. At 

weaning in July 2016, weaning date and body weight of calves was recorded. Weaning weight 

was adjusted to standard 205 days of age. 

 

Metabolism Trial  

A subset of 24 steer calves (4 per herd; 8 per treatment) were weaned on June 1, 2016 at 

7 months of age. After weaning, steers were placed in individual pens and fed a diet of grain and 

hay (80:20) at 2.2% of BW. Steers were fed concentrate and hay separately with mineral salt 

added to the concentrate at 0800h each day.  

Body Weight. On June 17, 2016, steer calves from year 1 cows were weighed and placed 

in pens. Calves were given a 7-day adaptation period before being put in their individual pens. 

Calves were limit-fed the growing diet and feed offered was adjusted based on BW. On June 27 

(day 0), steers were weighed after overnight withdrawal of feed and water and place in individual 

pens, feed offered for the next 14 d was adjusted based on BW collected on d 0. Body weight 

was measured every 14 d to adjust feed offered at 2.2% of BW. Final BW was collected on d 42 

after overnight withdrawal of feed and water.   

Nutrient Digestibility. Determination of apparent total tract digestibility of DM, OM, 

starch, CP, neutral detergent fiber (NDF) and acid detergent fiber (ADF) was performed using 

indigestible NDF (iNDF) as an internal marker. Concentrations of iNDF in feed and fecal 

samples were determined as described by Cole et al. (2011) with modifications proposed by 

Krizsan and Huhtanen (2013). Diet and rectal fecal samples were collected beginning on d 36 

and 37, respectively, for 4 consecutive days. Both feed and fecal samples were collected twice 

per day, at 0800 and 1700 h. After collection, samples were frozen at -20°C until further 
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processing and analysis. At the end of the experiment, feed and fecal samples were dried at 55°C 

for 48 h in a forced-air oven. Then, samples were ground in a Willey mill (Arthur H. Thomas 

Co., Philadelphia, PA) to pass a 2-mm sieve and pooled within steer, on an equal weight basis 

per sample, for determination of nutrient and marker concentration.   

For determination of feed and fecal sample DM and OM, approximately 0.5 g of sample 

was weighed in duplicate, dried in a forced-air oven at 100°C for 24 h and ashed at 550°C for 6 

h. For determination of the fibrous components, 0.5 g of dry feed and fecal samples were 

weighed in duplicate into F57 bags (Ankom Technology Corp., Macedon, NY) and analyzed for 

NDF, using heat-stable α-amylase and sodium sulfite, and subsequently for ADF as described by 

Van Soest et al. (1991) in an Ankom 200 Fiber Analyzer (Ankom Technology Corp). 

Concentration of CP in the samples was determined by rapid combustion using a micro 

elemental N analyzer (Vario Max CN, Elementar Americas Inc., Mt. Laurel, NJ) according to the 

official method 992.15 (AOAC, 1995). Starch concentration in feed and feces was measured by 

an enzymatic-colorimetric method as described by Hall (2015).   

For the determination of iNDF, 0.5 g of feed and fecal samples were weighed in duplicate 

into F57 bags (Ankom Technology Corp.), incubated in the rumen of a cannulated steer for 288 

h, and the residue analyzed for NDF, as previously described. Apparent total tract digestibility of 

DM, OM, CP, NDF, and ADF were calculated using the following formula:  

 

100 − 100 ×  [(
𝑚𝑎𝑟𝑘𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑒𝑑

𝑚𝑎𝑟𝑘𝑒𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑐𝑒𝑠
) × (

𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑐𝑒𝑠

𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑒𝑑
)] 
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Blood Collection. On d 28, steers were weighed and blood was collected before feeding. 

Once the feeding was complete and 4 hrs had passed blood was once again collected. Blood was 

collected via jugular venipuncture into sodium-heparin (158 USP) containing tubes (Vacutainer, 

Becton Dickinson, Franklin Lakes, NJ). Blood samples were immediately placed on ice 

following collection and then centrifuged at 1,200-x g for 25 min at 4℃ to separate plasma. 

Plasma samples were then stored at -20℃ until analysis. Commercial quantitative colorimetric 

kits were used to determine the plasma concentrations of urea nitrogen (B7551; Pointe Scientific 

Inc., Canton, MI) and glucose (G7521; Pointe Scientific, Inc., Canon, MI). Inter- and intra-assay 

CV for assays of PUN and glucose were 2.9% and 3.5% and 3.7% and 5.8%, respectively.   

 

Statistical Analysis 

            All data were analyzed as a completely randomized design. Pasture was used as the 

experimental unit for cow and calf performance data in both years. Individual animal was 

considered the experimental unit for data collected during the metabolism trial.  All data was 

analyzed statistically using the PROC MIXED of SAS (version 9.4; SAS Inst. Inc., Cary, NC). 

For steer performance data during the metabolism trial, initial body weight was evaluated as a 

covariate. For blood metabolite data during the metabolism trial, pre-feeding plasma glucose or 

urea nitrogen concentrations were evaluated as covariates for the appropriate parameter. 

Treatment comparisons were performed using Turkeys-Kramer method of adjusting for multiple 

pair-wise comparisons. LS means were considered significant at P < 0.05 and tendencies at 0.05 

< P < 0.10. 
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RESULTS  

 

 

Forage Nutrient Composition. There was no difference (P > 0.10) between treatments 

in nutrient composition of dormant bahaigrass pasture or limpograss hay. The mean and standard 

deviation for each nutrient analyzed in bahiagrass pasture and limpograss hay are presented in 

Table 1, as well as the nutrient composition of molasses and fishmeal supplements crude protein 

content of bahiagrass pasture and limpograss hay for Control, Fishmeal, and Methionine were 

7.1%, 7.7%, & 7.8% and 8.1%, 8.0% and 8.0% respectively.  

Dam Performance. Performance data of the dams during the treatment period in early 

gestation is presented in Table 2. Treatment had no effect on final BW, ADG or final BCS (P > 

0.11). There was a trend (P < 0.10) for Methionine dams to have greater ECM and Adj. ECM. 

Control dams tended (P = 0.08) to have lesser milk protein content than Fishmeal and 

Methionine dams, but there was no difference in milk fat, urea N, lactose, or somatic cell count. 

There was no effect of treatment on pregnancy rate (P = 0.45) following the treatment period.  

Pre-Weaning Growth Performance of Calves. Performance of nursing and fetal-

programmed calves from birth to weaning are presented in Table 3. Calendar day of birth, birth 

weight, and 205-d adjusted weaning weight did not differ (P > 0.15) among treatments for 

nursing or fetal-programmed calves.   

Post-Weaning Growth Performance of Fetal-Programmed Steers. Growth 

performance of fetal-programmed steers during the post-weaning metabolism trial is presented in 

Table 4. There was no difference (P = 0.52) in initial BW between treatments, which coincides 

with the lack of difference in weaning weight of calves. However, ADG and final BW were 

greater (P < 0.05) in steers whose dams were supplemented with fishmeal or methionine during 
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early gestation. Dry matter intake and DMI as a percentage of BW did not differ (P = 0.59) 

among the treatments per experimental design. Feed efficiency was greater (P < 0.05) in steers 

whose dams were supplemented with Fishmeal or Methionine during early gestation.   

 

Table 1. Nutrient composition of bahaigrass pasture, limpograss hay, molasses and fishmeal 

fed to early gestation beef cows during the treatment period in Year 1 

 Bahaigrass Limpograss   

Nutrient1 Mean SD Mean SD Molasses Fish meal 

DM, % 87.68 0.15 92.18 0.45 77.50 91.90 

CP, % DM 7.53 0.52 4.20 0.57 15.10 65.4 

NDF, % DM 74.20 1.19 80.28 1.09 -- -- 

ADF, % DM 46.67 1.00 42.32 1.39 -- -- 

EE, % DM 1.32 0.12 0.98 0.40 1.60 10.30 

TDN, % DM 54.00 1.67 53.50 1.38 58.00 74.00 

Lignin, % NDF 5.35 0.80 6.58 0.47 -- -- 

Ash, % DM 5.61 0.22 2.96 0.75 12.68 19.66 

1DM= dry matter; CP= crude protein; NDF= neutral detergent fiber; ADF= acid detergent 

fiber; EE= ether extract; TDN= total digestible nutrients 
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Table 2. Performance of dams during the treatment period in early gestation in Year 1 

Item1 Control Fish meal Methionine SEM P-value 

IBW, kg 428.6 445.9 448.0 21.4 0.36 

FBW, kg 426.2 448.2 441.4 19.5 0.30 

ADG ,kgd -0.05 -0.02 -0.08 0.20 0.72 

Initial BCS 4.15 4.55 4.21 0.11 0.15 

Final BCS 3.85 4.23 4.01 0.09 0.11 

BCS change -0.29 - 0.30 -0.19 0.07 0.49 

MY, kg/d 4.85 4.93 6.50 1.01 0.12 

Adj MY, kg/d 5.66 5.76 7.72 1.26 0.12 

ECM, kg/d 8.40x 8.96xy 12.32y 0.84 0.07 

Adj. ECM, kg/d 9.31x 11.30xy 14.50y 1.10 0.09 

Milk Composition      

 Fat, % 1.83 2.22 2.30 0.31 0.56 

 Protein, % 2.84x 3.06y 2.97z 0.05 0.08 

 Lactose, % 4.98 4.96 4.96 0.04 0.87 

 MuN, mg/dL 10.82 13.35 11.73 0.92 0.28 

 SCC, per/mL 69.63 129.73 117.21 31.81 0.43 

Pregnancy Rate, 

% 94.0 89.0 82.0 0.7 0.45 

1IBW = initial body weight; FBW = final body weight; ADG = average daily gain; BCS = 

body condition score; MY = milk yield; ECM = energy-corrected milk yield; SCC = somatic 

cell count 

xyz LS means within a row with a common superscript differ (P ≤ 0.10) 

abc LS means writhing a row with a common superscript differ (P ≤ 0.05) 
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Table 3. Growth performance of nursing calves in Year 1 and fetal-programmed calves in 

Year 2 from birth to weaning 

Item1 Control Fish meal Methionine SEM P-value 

Nursing Calf 

DOB 320.40 322.02 323.60 4.44 0.86 

BW, kg 34.3 34.1 34.1 2.5 0.99 

Adj. WW, kg 204.7 221.3 214.5 10.9 0.18 

Programmed Calf 

DOB 323.94 325.21 321.05 3.58 0.70 

BW, kg 32.5 32.6 32.1 2.4 0.94 

Adj. WW, kg 204.4 211.7 211.5 17.9 0.77 

1BW = birth weight; WW = weaning weight; DOB = calendar day of birth 

 

Plasma Metabolites. Concentrations of plasma urea nitrogen (PUN) and glucose of fetal-

programmed steers before and after feeding during the post-weaning metabolism trial are 

presented in Table 5. In year 2 saw an effect (P < 0.05) on PUN both before and after feeding, 

and tended (P = 0.10) to effect the change in PUN from the calves. .Steers born to control and 

methionine dams had greater PUN concentrations, but also greater change in PUN concentration 

than steers born to fishmeal dams. Treatment also affected (P < 0.05) plasma glucose 

concentrations both before and after feeding as well as the change in plasma glucose. Prior to 

feeding, steers born to methionine dams had lesser plasma glucose concentration than steers born 

to Fishmeal dams with steers born to control dams being intermediate. In contrast, after feeding, 

steers born to control and fishmeal dams were not different, but steers born to methionine dams 

had lesser plasma glucose concentrations than the other treatments. Steers born to methionine 
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dams also had greater change in plasma glucose concentrations from before feeding to after 

feeding than steers born to control or fishmeal dams.  

 

Table 4. Performance of fetal-programmed steers during the post-weaning metabolism trial 

in Year 2. 

Item1 Control Fish meal Methionine SEM P-value 

IBW, kg 222.4 210.7 205.8 24.6 0.52 

FBW, kg 247.9a 255.0b 255.4b 5.0 0.04 

ADG2, kg/d 0.83a 0.99b 1.01b 0.12 0.04 

DMI, kg/d 12.05 11.61 11.24 0.60 0.59 

DMI, % BW 0.02 0.02 0.02 0.0002 0.60 

FE, kg/kg 0.16a 0.19b 0.19b 0.01 0.02 

1IBW = initial body weight; FBW = final body weight; ADG = average daily gain; DMI = 

dry matter intake; FE= gain: feed 

2Initial BW was a significant covariate (P< 0.05). 

abc LS means writhing a row with a common superscript differ (P ≤ 0.05) 

   

Nutrient Digestibility. Nutrient intake and digestibility for fetal-programmed steers 

during the post-weaning metabolism trial are presented in Table 6. Treatment did not affect (P > 

0.13) intake of feedstuff analyzed, which is expected based on the experimental. Treatment did 

not have an effect on DM, OM, CP and Starch digestibility (P=0.52). There was a trend (P=0.06) 

for treatment to effect NDF and ADF digestibility with steers born to methionine dams having 

greater digestibility than steers born to control or fishmeal dams. 
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Table 5. Plasma metabolite concentrations of fetal-programmed steers during the post-

weaning metabolism trial in Year 2 

Item1 Control Fish meal Methionine SEM P-value 

PUN 

Pre, mg/dL 12.58a 11.20b 12.85a 0.43 0.02 

Post, mg/dL 14.60a 12.33b 13.77ab 0.61 0.04 

Change2 2.33x 0.16y 1.48xy 0.71 0.10 

Glucose 

Pre, mg/dL 82.82ab 90.40b 75.25a 4.32 0.05 

Post, mg/dL 81.18ab 82.75b 69.61a 3.05 0.01 

Change3 -1.27ab 1.07b -13.64a 3.35 0.01 

1PUN = plasma urea nitrogen; Pre = blood collected prior to the morning feeding; Post = 

blood collected 4 h following the morning feeding; Change = difference between post-

feeding and pre-feeding measurements. 

2Pre-feeding PUN was a significant covariate (P < 0.05) 

3Pre-feeding glucose was a significant covariate (P < 0.05) 

abc LS means writhing a row with a common superscript differ (P ≤ 0.05) 

xyz LS means within a row with a common superscript differ (P ≤ 0.10) 
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Table 6. Nutrient intake and apparent total tract digestibility in fetal-programmed steers during 

the post-weaning metabolism trial in Year 2 

Item Control Fish meal Methionine SEM P-value 

Intake, kg/d 

DM1 5.99 5.27 5.88 0.29 0.17 

OM 5.58 4.94 5.47 0.26 0.20 

NDF 2.30 2.02 2.34 0.12 0.13 

ADF 1.42 1.29 1.43 0.07 0.32 

CP 1.10 0.95 1.04 0.07 0.38 

Starch 0.50 0.45 0.45 0.05 0.81 

Digestibility, % 

DM 76.47 75.99 78.35 1.53 0.52 

OM 78.08 77.82 79.94 1.40 0.52 

NDF 68.17xy 65.2x 71.84y 1.81 0.06 

ADF 69.95xy 67.79x 73.74y 1.83 0.06 

CP 79.66 80.15 79.16 1.77 0.92 

Starch 92.38 90.71 92.60 2.40 0.52 

1DM = dry matter; OM = organic matter; CP = crude protein; NDF = neutral detergent fiber, 

ADF = acid detergent fiber 

xyz LS means within a row with a common superscript differ (P ≤ 0.10) 

 

 

 

 

 

 

 

 

 

 



31 

DISCUSSION 

 

Year 1   

In the current study, by-pass protein or methionine did not affect body weight or body 

condition in lactating beef cows. Similar to the current study, previous studies have reported no 

effect of supplemental rumen undegradable protein on body weight or body condition change in 

gestating or lactating beef cows (Triplett et al., 1995; Encinias et al., 2005) and lactating dairy 

cows (Chen et al., 2011). In contrast, protein supplementation to gestating beef cows consuming 

low to medium-quality forage (6-8% CP) decreased body weight and body condition loss 

(Stalker et al., 2006, 2007). Waterman et al. (2007) reported that by-pass methionine in addition 

to urea supplement for cows consuming low-quality forage, tended to increase N retention and N 

use efficiency. However, the effect of supplemental by-pass methionine was not evident in body 

weight or condition score change in the current study or Chen et al. (2011).   

         Energy-corrected milk yield and adjusted ECM tended to be greater for methionine 

supplemented cows, and milk protein content tended to be greater for cows supplemented with 

by-pass protein or methionine. Similar results were published by Chen et al. (2011) where dairy 

cows supplemented with rumen by-pass methionine had greater ECM and protein content of 

milk. Toledo et al. (2017) also reported greater milk protein content, as well as fat content, in 

dairy cows supplemented with rumen by-pass methionine, but there was no difference in ECM. 

In contrast, Triplett et al. (1995) and Encinias et al., (2005) reported no effect of rumen by-pass 

protein on milk yield or milk components in lactating beef cows. The differences in milk yield 

could be due to level of production between dairy and beef cows with dairy cows requiring 

greater amounts of methionine due to increased milk production. Differences could also be due 
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to supplementation with methionine alone versus total protein. In the current study, cows 

supplemented with fishmeal had similar milk yield as Control cows which was similar to Triplett 

et al. (1995) and Encinias et al. (2005), where cows fed methionine had greater milk yield than 

control cows similar to Chen et al. (2011).   

           Calf performance during the treatment year was not influenced by dietary treatment even 

though methionine cows tended to produce more milk. Similar to the current study, Encinias et 

al. (2005) found that calf growth was not affected by rumen by-pass protein supplementation to 

cows during early lactation, but milk yield also was not affected in this study. In contrast, 

Triplett et al. (1995) reported that calves tended to have greater ADG when cows were 

supplemented with rumen by-pass protein during early lactation, but milk yield was not different. 

The differences in calf growth among studies is not readily apparent, but could be due to calf 

access to cow supplement and (or) cow parity. In the current study, calves had access to the 

supplemental feed offered to cows, whereas in the studies of Triplett et al. (1995) and Encinias et 

al. (2005) the calves did not have access to cow supplement. Access to the cow supplement could 

have allowed calves from control and fishmeal cows to consume supplement thus replacing the 

nutrients not being consumed from greater milk yield as calves from methionine cows. In the 

study of Triplett et al. (1995) there was a dietary supplement by cow parity interaction where 

rumen by-pass protein supplementation increased milk yield in primiparous cows, but not 

multiparous females. Given that primiparous cows constituted 61% of treatment groups (Triplett 

et al. (1995) may have influenced calf growth for the overall treatment group resulting in an 

effect on calf growth.  
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Year 2  

Fetal-programmed calves had pre-weaning growth performance that was not affected by 

dietary treatments applied to cows during the periconception period. Similarly, Martin et al., 

(2007) reported no difference in weaning weight of heifers from cows fed a protein supplement 

during late gestation. In contrast, several studies (Stalker et al., 2006, 2007; Funston et al., 2008; 

Larson et al., 2009) reported greater weaning weight for calves from cows that were fed a protein 

supplement during late gestation. The lack of differences in calf weaning weight in the current 

study is unclear, but may be related to less replication per treatment. Previous studies report 

improvements in calf weaning weight of 5 to 9 kg, which is similar to the 7 kg difference in the 

current study. However, previous studies report SEM of 2 to 5 kg compared with the SEM in the 

current study of 18 kg.  

Post-weaning growth performance of steers was affected by dietary supplement fed to 

cows during the peri-conception period where calves from cows fed the fishmeal or methionine 

diet had improved ADG and feed efficiency compared to steers from cows fed the control 

diet.  Stalker et al. (2007) reported a tendency for calves from dams supplemented with protein 

during late gestation to have greater post-weaning ADG, but no difference in gainfeed ratio. In 

contrast, several studies (Stalker et al., 2006; Martin et al., 2007; Funston et al., 2010 and Larson 

et al., 2009) found that maternal nutrition during late gestation had no effect on post-weaning 

ADG or feed efficiency. This may be related to the stage of gestation in which maternal dietary 

treatments were applied. Previous work (Mao et al., 2008; Du et al., 2010, 2015) indicates that 

fetal development follows the pattern of organogenesis during early gestation, myogenesis 

during mid-gestation, and adipogenesis during late gestation. The current study altered maternal 

nutrition during the peri-conception period when organogenesis would be expected to occur, 
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which likely impacted development of important tissues in nutrient metabolism such as liver and 

gastrointestinal tract. Evidence is shown in the altered glucose and nitrogen metabolism, and 

nutrient digestibility of steers from cows supplemented with fishmeal or methionine.  

Plasma urea nitrogen concentrations were decreased in steers from fishmeal cows, 

and glucose concentrations were decreased in steers from methionine cows. Additionally, steers 

from methionine cows tended to have increased apparent total tract digestibility of NDF and 

ADF. Interestingly, Jacometo et al. (2016) found that calves from dams fed rumen-protected 

methionine during late gestation had lower blood glucose concentration at birth, and insulin 

concentrations were greater during the first few weeks of life. In the first few weeks after birth, 

blood urea concentration was altered by rumen-protected methionine supplementation of the 

cow, but not consistently across several time points. Interestingly, Jacometo et al. (2016) 

reported greater mRNA expression of genes involved in gluconeogenesis (phosphoenolpyruvate 

carboxykinase, fructo-bisphosphatase 1), fatty acid oxidation (carnitine palmitoyl-transferase 

1A), and insulin signaling (murine thymoma viral oncogene homolog 2 (AKT2), facilitated 

glucose transporter 2) in liver. No previous studies have evaluated nutrient digestion in fetal-

programmed calves, but the tendency for improved digestibility could be due to changes in 

gastrointestinal tract metabolism or microbiome.   
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CONCLUSION & IMPLICATIONS 

 

Conclusion 

Supplementation of methionine to lactating beef cows tended to increase energy 

corrected milk yield through a combination of increased milk yield while maintaining milk fat 

and protein concentrations. However, cows supplemented with methionine did not lose 

additional weight or condition score. But, methionine-supplemented cows did not wean heavier 

calves questioning the added cost of methionine supplementation.  

Neither fish meal nor methionine affected pre-weaning growth performance of fetal-

programmed calves. However, steers from cows supplemented with additional by-pass protein or 

methionine gained more weight and converted feed more efficiently post-weaning. Additionally, 

steers from methionine supplemented dams tended to have increased fiber digestion and regulate 

glucose metabolism differently. These results indicate that methionine is the key nutrient 

affecting fetal development when additional by-pass protein is fed to gestating beef cows. 

 

Implications 

Supplementation of methionine to cows during early gestation would be beneficial when 

fed poor quality forage that may limit metabolizable methionine supply. More research is 

required on methionine and fetal programming, specifically furthering our understanding of how 

one-carbon metabolism functions in ruminants and the supply of key nutrients to the fetus. 

Additionally, maternal nutrition during the peri-conception period could be used to improve post 

weaning growth and feed conversion through altered nutrient utilization.  
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