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ABSTRACT 

This research investigates the influence that various flight plan and mission design strategies for 

collecting small unmanned aerial system (sUAS) imagery have on the accuracy of the resulting 

three-dimensional models to find an optimal method to achieve a result. This research also 

explores the effect that using gradual selection to reduce the sparse point cloud has on product 

accuracy and processing details. Imagery was collected in the spring of 2018 during leaf-off 

conditions at six field sites along the North Fork of the White River. The aerial imagery was 

collected using a DJI Phantom Pro 4 sUAS. Four different image acquisition missions were 

flown at each of the sites. Each of the base mission imagery sets were processed individually and 

in various combinations. The commercial Structure-from-Motion (SfM) photogrammetry 

software known as Agisoft PhotoScan was used to process the data and generate the Digital 

Elevation Models (DEMs) and orthophotos. Due to the high number of processing iterations 

required in this research, a script was developed to automate the point cloud filtering gradual 

selection process. Profile views were used to assess the differences between each mission design 

and to visualize systematic errors. In this investigation, the imagery set which consistently 

performed with high relative accuracy and low relative processing times was the NS Oblique 

imagery set utilizing automated gradual selection. Imagery sets created by combining two or 

more of the base mission photosets generally produced results with accuracy levels similar to or 

worse than the results of the NS Oblique imagery set and the other base mission imagery sets. 

Results produced with and without gradual selection were similar in most cases, however, 

gradual selection reduced dense cloud processing time by an average of 37%. 

 

KEYWORDS:  photogrammetry, sUAS, UAV, DEM, orthophoto, gradual selection, point cloud 

filtering, SfM, mission design 
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CHAPTER 1 – INTRODUCTION TO SUAS SFM PHOTOGRAMMETRY 

 

Introduction  

The use of small unmanned aerial systems (sUASs) as a tool for Structure-from-Motion 

(SfM) photogrammetry is increasing for a variety of applications. Due to advances in technology 

and consumer demand, sUASs have become a cost-effective means of collecting imagery to 

create high-resolution digital elevation models (DEMs) and orthophotos with SfM 

methodologies. In sUAS photogrammetry, high-resolution sUAS imagery and SfM 

photogrammetric processing techniques are combined to generate products such as DEMs and 

orthophotos. DEMs provide a representation of the land surface elevation within a study area. 

Orthophotos provide a two-dimensional orthorectified image, meaning there is no distortion and 

the scale is uniform across the image. SfM photogrammetry uses a series of overlapping photos 

to extrapolate accurate depth information. The depth information is found by identifying the 

common features between the images and then using a mathematical camera model and the 

known information regarding camera metrics, position, and orientation to establish the common 

features as points in 3D space (James and Robson, 2014). GCPs are used to increase the accuracy 

of the photogrammetric products by providing reliable and accurate coordinates that aid 

geometric camera model refinement during the bundle adjustment (Sanz-Ablanedo et al., 2018). 

A bundle adjustment refers to the simultaneous estimation of the 3D point locations, camera 

positions, and camera parameters to achieve an optimal solution (Carrivick et al., 2016). The 

addition of GCPs also aid in the georectification of the products. If some of the GCPs are not 

included in the bundle adjustment, they can be used as check points (CPs). CPs serve as a way to 

assess the accuracy of the resulting DEMs and orthophotos by providing accurate 3D point 
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coordinates that can be compared to the predicted 3D point locations in the resulting products. 

This method is frequently used in other research to assess accuracy (Carrivick et al., 2016; 

Dietrich, 2015; Eltner et al., 2016; Javernick et al., 2014; Sanz-Ablanedo et al., 2018). 

The rapid collection of imagery across field sites can be accomplished with sUASs. 

Additionally, flight planning software allows the design of repeatable missions with control over 

flight pattern, camera angle, and image overlap. Because of the ease of image acquisition and a 

lack of scientific literature exploring best practices in mission design, most sUAS projects err on 

the side of obtaining large amounts of imagery to ensure a suitable final product.  However, 

acquiring more imagery than necessary leads to considerable time and costs involved in 

processing the data. Consequently, efficient methods for collecting and processing the data to 

achieve optimal results is necessary. This research has two main purposes. One, to evaluate the 

effect of various flight plan and mission design techniques on the accuracy and processing 

characteristics of generated SfM products. And two, to determine the effect that using gradual 

selection to reduce the sparse point cloud has on product accuracy and processing characteristics.  

In this investigation, the imagery set which consistently performed with high relative accuracy 

and low relative processing times was the NS Oblique mission imagery set utilizing automated 

gradual selection. Combined imagery sets generally produced results with accuracy levels similar 

to or worse than the results of the NS Oblique imagery set, and the other base mission imagery 

sets. Combined imagery sets also required significantly more time to process and create dense 

point clouds. Results produced with and without gradual selection were similar in most cases, 

however, gradual selection reduced dense cloud processing time by an average of 37%. Table 1 

displays terms and definitions related to this investigation. 
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Table 1: Glossary of terms and definitions. 

Glossary of Terms 

Term Definition 

Ground Control Point (GCP) A marked point on the ground inside a study site with a 

known GPS coordinate. 

Check Point (CP) A GCP that was not used to process the SfM products and 

can be used to assess product accuracy. 

Base Missions Refers to the four sUAS flights that were used to collect 

imagery at each field site. 

Imagery Set Refers to the nine different combinations of the base mission 

photos. 

Base Mission Imagery Set Imagery set consisting of photos from a single base mission. 

Combined Imagery Set Imagery set consisting of photos from two or more base 

missions. 

Bundle Adjustment The simultaneous optimization of 3D point coordinates, and 

internal and external camera orientations. 

Photogrammetry The science of making measurements from photographs. 

Structure-from-Motion (SfM) 

Photogrammetry 

Photogrammetric technique which automatically generates 

3D scenes from 2D imagery while also deriving the camera 

positions in an arbitrary coordinate system. 

Keypoints The points of interest located on a 2D image that can be 

easily recognized from image to image.  

Tie Points The 3D points that are generated from the corresponding 2D 

keypoints detected in the imagery. 

Digital Elevation Model (DEM) Digital representation of the land surface elevations within a 

field site. 

Gradual Selection The three-step point filtering process used to remove points 

with unsatisfactory error values for reconstruction 

uncertainty, projection accuracy, and reprojection error. 
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Literature Review 

 Structure-from-Motion Photogrammetry. In traditional photogrammetry there are a 

variety of conditions that must be met to obtain a useable final product. There is a heavy reliance 

on specific amounts of image overlap, accurate camera calibration methods, and accurate 3D 

location of camera positions and GCPs (Carrivick et al., 2016). Meeting these conditions can be 

a time-consuming and challenging process. A commonly used photogrammetric technique, 

known as Structure-from-Motion (SfM), does not require the 3D location of the camera or GCPs 

for feature extraction. Instead SfM uses the series of overlapping offset photos to solve the 

camera calibration and image orientation problem by conducting a bundle adjustment on the 

matching features between images (Westoby et al., 2012).  All of the system parameters are 

simultaneously determined by using a bundle adjustment, including estimates of the precision 

and reliability of the extracted calibration parameters (Remondino and Fraser, 2006). The self-

calibrating bundle adjustment is able to provide accurate sensor orientation and object 

reconstruction by refining the three-dimensional points found in a set of images (Remondino and 

Fraser, 2006). However, in some SfM software, such as Bundler, the self-calibrating bundle 

adjustment does not assume that the same camera is used to acquire all of the imagery (Carrivick 

et al., 2016). The camera is calibrated for each individual photo which can yield inaccurate 

geometry/image overlaps which cause the overall camera model, and therefore, dataset to have 

inaccuracies (Micheletti et al., 2015a).  

Manual camera calibration can be also utilized to increase the accuracy of the camera 

models. Camera calibration can occur in the field but is typically performed in the lab (Colomina 

et al., 2007). Proper calibration of a camera requires that the principal distance, principal point 

offset and lens distortion are known (Remondino and Fraser, 2006). 
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While not necessary for feature extraction, supplementary GPS data will aid in 

georeferencing and increasing the overall accuracy of the resulting models (James and Robson, 

2012). Image triangulation is aided by the use of global navigation satellite systems (GNSS) and 

an inertial navigation system (INS). Standard sUASs come equipped with sensors that allow the 

tracking of position and orientation within a local or global coordinate system (Eisenbiess, 

2009). Collected GNSS/INS data, acquired during image acquisition, aids in locating keypoints 

as the location of each image can be referenced in SfM software such as Agisoft PhotoScan 

during photo alignment. 

 The ability for a system to identify common features between images is an essential 

component in SfM photogrammetry. Lowe (1999, 2004) conducted research crucial to the 

development of SfM techniques by establishing the means for computer systems to recognize 

objects in photographs regardless of scale, distortion, contrast or color. Proper object 

identification in photographs regardless of the orientation has led to the ability for SfM 

photogrammetric software packages to generate high-resolution 3D models from overlapping 

imagery regardless varying image characteristics. Object identification allows the proper 

extraction of common points between images known as keypoints. The keypoints are 

fundamental components in the image matching and scene reconstruction process. Keypoints 

represent the points of interest located on a 2D image that can be easily recognized from image 

to image. Tie points are the 3D points that are generated from the corresponding 2D keypoints 

detected in the imagery. 

Systematic Error. One thing to note with SfM photogrammetry is that SfM-based DEMs 

can portray some systematic error expressed as vertical doming of the surface (Figure 1) (James 

and Robson, 2014).   
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Figure 1: From James and Robson (2014), displays a simulated example of the systematic error 

known as doming. 

 

 

Incomplete camera calibration or inaccurate estimations of the internal orientation of the camera 

can lead to an inaccurately estimated lens model that can be identified from the presence of 

systematic deformation, visible as ‘doming’ within surface models (Wackrow and Chandler, 

2008). Doming also occurs in models created using predominantly perpendicular sUAS imagery 

and camera self-calibration. (James and Robson, 2014, Javernick et al., 2014). Fixed camera 

models have been used to simulate the inaccuracies displayed as a result of radial camera lens 

distortion (Wackrow and Chandler, 2008; Wackrow and Chandler, 2011). In Wackrow and 

Chandler (2008), they showed that using a mildly convergent image configuration can minimize 

the systematic radial distortion error in stereo-pairs. Some practical examples have shown how a 

mildly convergent image configuration obtained through the inclusion of oblique imagery can 

reduce the distortion to negligible levels (James and Robson, 2012; James and Robson, 2014; 

Wackrow and Chandler, 2008; Wackrow and Chandler, 2011).  

 Tools for SfM Photogrammetry. There are a variety of SfM-based software options 

currently available such as Pix4DMapper, Visual SfM, Autodesk ImageModeler, Bundler, Apero 

MicMac, and Agisoft PhotoScan to name a few. Agisoft PhotoScan is typically the chosen 

product for performing geomorphological surveys (Eltner, et al. 2016).  Agisoft PhotoScan (i.e., 

PhotoScan) is a commercial SfM-based software capable of creating photogrammetric products 
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such as DEMs and orthophotos. PhotoScan uses still images to reconstruct 3D content with a 

great deal of automation. Very little user experience or technical skills are necessary to create 3D 

models in PhotoScan. PhotoScan offers many tools and functionality to adjust settings that allow 

advanced users to refine the program to accomplish specific tasks on various forms of data.  

PhotoScan and various other available SfM software options have been tested and compared to

 one another and to alternative point cloud generation techniques in an assortment of studies 

(Aicardi et al., 2016 ; Barbasiewicz et al., 2018; Kersten and Lindstaedt, 2012; Turner et al., 

2014). Jaud et al. (2016) compared the results of PhotoScan and MicMac with Terrestrial Laser 

Scanning (TLS) data in sub-optimal survey conditions. Despite the rugged terrain, poor GPS 

reception and other complications, they determined that both software options provided 

satisfactory results. Eltner and Schneider (2015) tested the performance of five SfM software 

solutions to compare the resulting DEMs and to assess the ability for different variables (i.e. 

camera, geometric camera model, and GCP presence) to mitigate the presence of doming. They 

show that SfM tools which utilize complex geometric camera models, such as PhotoScan and 

Apero, with assistance from GCPs were able to minimize the effects of doming in their results. 

Also, less complex geometric camera models, such as Bundler and Visual SfM, failed to mitigate 

radial distortion when no GCPs were used in models generated from imagery with parallel or 

non-convergent viewing angles (Eltner and Schneider, 2015). 

sUAS Applications. There are a wide variety of applications that have utilized the 

photogrammetric capabilities of sUAS imagery. The images acquired using sUASs have been 

used in applications such as fluvial geomorphology, cultural heritage/archaeology, forestry, 

agriculture, rangeland management, and geology. The following is an overview of some of the 

applications and research conducted using sUASs. 
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Fluvial Geomorphology. Quantifying the topography of fluvial landforms is a central 

theme in fluvial geomorphology and can be accomplished using sUAS imagery and SfM 

photogrammetry. Through-water photogrammetry has also been found to be capable of providing 

sufficiently accurate measurements of channel beds in shallow clear water (Woodget et al., 

2015). Repeat surveys are possible and affordable with sUAS photogrammetry, allowing for 

changes in stream channel morphology and net change in overall sediment storage to be tracked 

over time (Wheaton et al., 2010). In a similar study, Prosdocimi et al. (2015) analyzed channel 

bank erosion to quantify the amount of eroded material and managed to achieve acceptable 

results when using an iPhone camera. This provides evidence to the versatility of SfM 

photogrammetric techniques as they can produce sufficient results with sUASs or phone cameras 

depending on the need of the study. 

Cultural Heritage and Archaeology. Cultural heritage and archaeological applications 

benefit greatly from the ability to quickly and accurately derive 2D and 3D data from sUAS 

imagery and SfM photogrammetric techniques. Chiabrando et al. (2015) demonstrated the ability 

to use sUAS imagery and SfM techniques in archaeology through the survey and documentation 

of the archeological excavation of Aquileia in Italy. They also utilized SfM techniques to capture 

photogrammetric data for the vault of the hall of honour in the Stupinigi royal estate and for the 

frieze of the Roman Arch of Susa, both located in Italy. Also, sUAS photogrammetry is 

beneficial for the 3D modeling of complex archaeological sites due to the affordability of the 

method when compared to other common methods which utilize expensive surveying sensors 

such as terrestrial laser scanners, total stations, and/or ground-penetrating radar (Fernández‐

Hernandez et al., 2015). Effective 3D reconstruction of archaeological sites provides a powerful 

means for overall site investigation and analysis. 
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Forestry. Measuring forest canopy height is an important aspect of forest quantification. 

Forest canopy height quantification can be achieved through the use of high resolution, low-

oblique angle (inclined with respect to vertical but does not include the horizon) imagery 

collected from a sUAS and photogrammetric and SfM techniques (Siebert and Teizer, 2014). 

Forest fire monitoring provides another use of sUASs in forestry. Manned aerial surveillance of 

forest fires is potentially dangerous to the crew. Using a single sUAS or network of sUASs, 

allows for efficient monitoring and collection of forest fire data without risk to crews (Tang and 

Shao, 2015). Though for forest fire monitoring, medium to high altitude drones are more suitable 

(Tang and Shao, 2015). 

Agriculture. The ability to view and assess the state of crops and fields is a useful tool in 

agriculture. Zecha et al. (2013) studied the use of mobile sensor platforms, such as sUAS, for 

precision farming. Precision farming refers to using less input to achieve a greater output. Sensor 

technology aids in efficient fertilizer use while reducing the amount of chemicals applied to a 

field (Zecha et al., 2013). One simple way sUASs can aid in precision farming is by detecting 

weed spots. Weeds directly influence crop growth and the detection of problem areas can be 

beneficial to make decisions on weed management (Zecha et al., 2013). 

Rangeland Management. Rango et al. (2009) experimented with the capability of sUASs 

for rangeland assessment, monitoring and management. Rangeland areas pose a unique challenge 

for assessment, monitoring, and management. They cover vast areas and are remote, making it 

difficult to successfully assess from the ground. Satellites and manned aerial vehicles are capable 

of obtaining imagery. However, the resolution is not high enough to meet the requirements for 

proper rangeland health assessments and monitoring (Rango et al., 2009). Also, sUASs benefit 

from being available on demand. When aerial imagery is needed, sUAS allow for quick, efficient 
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deployment and acquisition of high-resolution data. Rango et al. (2009), found that sUAS can 

obtain the sub-decimeter resolution imagery necessary to depict rangeland health information 

including vegetation, bare soil, and vegetation type for some plants.  

Geology. Reliable data can be obtained for geologic studies through sUAS 

photogrammetry. Various spatial scales are necessary in geologic studies depending on the intent 

of the study. Scales can vary from hand sample to regional extents. Bemis et al. (2014) 

conducted a review of the generation of 3D surface reconstruction techniques for the surveying 

of trenches, rock exposures, and hand samples. High-resolution sUAS imagery is capable of 

being used across multiple spatial scales (Bemis et al., 2014). This allows sUASs to be very 

useful in structural geology and neotectonics. Each requires vast quantities of accurate 3D 

geospatial data from locations that would otherwise be inaccessible or unsafe (Bemis et al., 

2014). James and Varley (2012) utilized photogrammetry to develop DEMs to monitor the 

topographic change of active lava domes. Multiple DEMs of the lava dome were developed to 

provide spatiotemporal change information that aided in understanding underlying structural 

controls (James and Varley, 2012). 

Advantages of sUAS Use. The widespread use of sUASs within a variety of applications 

provides evidence for the advantages they have over other data acquisition systems, including 

terrestrial, manned airborne, and satellite borne. Manned airborne lidar based DEMs were 

compared to sUAS based DEMs by Leitão (2016) for urban flow modeling. They found that, 

after down sampling the pixel size of the high resolution sUAS DEM, the results of the two 

methods were comparable. The sUAS is more flexible for small to medium size areas when 

acquiring elevation data (Leitão, 2016). Also, if sUAS flights were conducted during leaf-off 

conditions, DEMS with less canopy interference could be produced (Leitão, 2016). 
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Many low-cost sUASs are available. They provide a flexible means of acquiring imagery 

without the high costs and work involved with manned aerial flight imagery. The costs of sUAS 

cover a wide range of values. Some off the shelf models would be sufficient for certain 

applications and cost a few hundred dollars while others cost well over $100,000 (Rango et al., 

2009). The wide range in sUAS values display the versatility of the platforms developed. Some 

applications may only require a low-cost sUAS to collect photogrammetric data, while others 

may require extremely accurate sensors, cameras, and other instrumentation leading to a more 

expensive system (Nex and Remondino, 2014). In applications such as forestry, where areas to 

take off are limited, rotary-wing sUAS may be used for precise take-off and landing (Horcher 

and Visser, 2004). In regions where imagery over a large area is needed, fixed wing sUASs may 

be used for longer controlled flights (Horcher and Visser, 2004).  

In dangerous situations or hazardous terrain, sUAS can be used to collect data safely, 

where a crew would be put at risk acquiring the same data. An example of this was discussed 

above in forestry applications where sUAS could monitor forest fires without risk to a crew 

(Tang and Shao, 2015). They can also collect data in hazardous terrain such as in landslide 

studies where the area is not stable or suitable for a crew to assess safely (Niethammer et al., 

2012). Compared to alternative means of acquiring aerial imagery, such as satellite and manned 

aircraft, sUAS are readily available which allow for quick deployment to satisfy the requirements 

of rapid monitoring, assessment and mapping (Feng et al., 2015). 

The presence of GNSS/INS on the sUAS allows automated flight plans to be used to 

collect imagery from a study area (Eisenbiess, 2009). Autonomous flight allows for precise 

replication of flights which is important when conducting scientific research. The sUAS will 

follow the planned flight path while obtaining photos at waypoints located at specified intervals 
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(Colomina and Molina, 2014).  Precise control over flight path and image acquisition also 

ensures that enough overlap is obtained in the imagery.  

Limitations of sUAS Use. Despite the many opportunities for, and advantages of, sUAS 

use, they are not without limitations. Unexpected situations, such as unforeseen weather changes 

or the sudden danger imposed by an unanticipated obstacle, pose as a limitation to sUAS use. 

Recent advances in sUAS collision avoidance systems allow many systems to intelligently sense 

and avoid many obstacles, however, visual line of sight is still required in most situations so that 

a pilot can intervene if necessary. The Federal Aviation Administration (FAA) only provides 

beyond visual line of sight waivers on very specific occasions when risk-mitigation strategies, 

risk analysis, and supplementary technologies are utilized to ensure an operation is as safe as 

possible. In the majority of situations line of sight to the sUAS must be utilized to allow the pilot 

to see if aircraft, people, or other potential dangers are around and effectively react to them. 

 In many cases, sUASs are a low-cost alternative means to collect data. However, some 

sUAS systems are very expensive. Horcher and Visser (2004) discussed using the Bat III sUAS 

for forestry applications. The cost of the Bat III was approximately $42,000, which included 

necessary training, base station, and guidance software. Replacing the sUAS in the event of a 

crash would cost around $20,000 (Horcher and Visser, 2004). While still a useful tool, some 

sUASs are a significant investment. The wide range in values provide evidence for the range in 

complexity of the systems available. This allows the sUAS of choice for a mission to be tailored 

to the cost restrictions and needs of the user. Safe mission design and flight planning are 

essential to prevent the loss of costly sUAS platforms.  

Flight Plan and Mission Design. Through the use of flight planning software, missions 

can be designed with a high-degree of control over flight pattern, camera angle, image overlap, 
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and flight height. Flight and mission planning normally occurs in the lab, but can be conducted in 

the field, and uses knowledge of the study area to effectively plan each flight. Careful planning 

of aircraft trajectory, such as waypoints, strips, speed, and altitude along with real-time mission 

management, is important for achieving successful and repeatable missions (Colomina and 

Molina, 2014). Autonomous flights are designed and controlled through a ground control station. 

The GNSS/INS on the sUAS is used to guide image acquisition at specified waypoints along the 

flight path (Remondino et al., 2011). The flight plan is designed to acquire images with a 

specific amount of longitudinal and transversal overlap (Remondino et al., 2011). Higher degrees 

of overlap increase the amount of matching keypoints available to generate DEMs. Additional 

overlap in the imagery producing a higher number of images across the study area can provide 

additional camera perspectives that will help to decrease DEM error (James and Robson, 2012).  

However, the higher the overlap, the greater the number of photos that must be acquired. An 

increase in the number of images may increase the density of a sparse point cloud but is not 

guaranteed to improve the accuracy of generated products(Carrivick et al., 2016; Fonstad et al., 

2013; James and Robson, 2012; Micheletti et al., 2015b; Westoby et al., 2012). Greater amounts 

of overlap and imagery do not increase the accuracy of the product in a linear trend and may 

simply yield an increase in processing time with no obvious benefits (Micheletti et al., 2015b). 

An optimal amount of imagery will yield accurate results without needless additional processing 

time. There are many variables that play a role in determining quality of the DEMs and 

orthophotos produced. Altitude has the most significant effect on quality while others, such as 

GCPs and camera angle, will influence the accuracy of the resulting products (Rock et al., 2011). 

Altitude. The required ground sample distance (GSD) will be a determining factor in 

choosing a flight altitude as higher altitudes result in higher GSDs.  The GSD refers to the 
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distance between pixel centers measured on the ground. The benefit of SfM photogrammetry is 

that it is capable of being used at a wide range of scales. Accuracy for a survey is limited by the 

scale of the study area (Carrivick et al., 2016) and distance between the camera and the surface 

(Eltner et al., 2016; Küng et al., 2011). Eltner et al. (2016) found that the absolute error values of 

SfM photogrammetry are generally low at close ranges and the relative error becomes larger at 

greater distances. The altitude necessary for a survey will be dependent upon the goal of the 

survey and the camera used. Using a larger camera image sensor provides the ability to obtain 

the same GSD from higher altitudes thus lowering the number of images necessary to cover a 

study area. Using a smaller camera image sensor would require capturing additional imagery to 

yield results similar to those from the larger sensor. In the application of sUAS for rangeland 

assessment, Rango et al. (2009) required a GSD finer than 25 cm for proper estimates of 

rangeland indicators. Higher altitude flights require fewer photos to obtain sufficient overlapping 

imagery. Understanding the limitations of the camera being used and finding a balance between 

the required altitude for the survey and the necessary GSD will promote a more efficient flight 

plan and mission design. Also, the 400’ altitude ceiling in the U.S. means that most modern 

surveys must be high resolution. 

Obtaining imagery from various altitudes can be important for 3D scene reconstruction. 

Larger scale imagery can be used to cover the entire scene while the addition of closer imagery 

can be used to obtain the GSD or detail required (Eltner et al., 2016). Multi-scale imagery is also 

advantageous in that it provides a wider range of image directions that aid in the accurate 

solution of camera models (Eltner et al., 2016). 

Ground Control Points. GCPs are required to georeference the models with high 

accuracy. Without GCPs, georeferencing of the model occurs using the camera position 
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information gathered from the image’s geotag. This is known as direct geo-referencing (Sanz-

Ablanedo et al., 2018). Accurate direct geo-referencing requires highly accurate GPS data for the 

location of the camera at the moment each image was captured. Generally, the GPS 

measurements of the camera position are not accurate enough to use on their own and, even 

when they are, the resulting models still suffer from lower overall accuracies compared to 

surveys where GCPs are used. Mian et al. (2016) looked into the generation of accurate map 

products using direct georeferencing with post-processed kinematic (PPK) position data for the 

sUAS and was able to achieve a horizontal accuracy of 12 cm RMS and a vertical accuracy of 40 

cm without the use of any GCPs.  In another study, Mian et al. (2015) managed to achieve a 

horizontal accuracy of 3 cm RMS and a vertical accuracy of 11 cm RMS when using a single 

GCP. Many studies have found that the best results are achieved with an effective distribution of 

GCPs across the study area. One study by Sanz-Ablanedo et al. (2018) used 102 GCPs and 3,465 

different combinations with varying numbers of GCPs and layouts. They concluded that for large 

projects, greater than 3 GCPs per 100 photos is recommended to achieve high accuracy. The 

necessary amount of GCPs to achieve high accuracy varies depending on site characteristics. A 

greater number of GCPs generally increases accuracy, however, improvements in accuracy are 

not linear and may not dramatically increase with additional GCPs (Sanz-Ablanedo et al., 2018; 

Vericat et al., 2016). When generating DEMs, the greater the number of GCPs, the greater the 

accuracy of indirect sensor orientation (Rock et al., 2011). Using GCPs is important, however, 

the cost and time necessary for collecting sufficient ground control can be a limiting factor. 

Effective planning and optimal placement of GCPs can help to lower the number needed to 

achieve an acceptable result (Sanz-Ablanedo et al., 2018). 
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Camera Angle. The angle of the camera as imagery is collected can affect the accuracy of 

the DEM produced. Various angles and points of view of a study area improves the image 

network geometry (Carrivick et al., 2016). Rossi et al. (2017) demonstrated that oblique imagery 

resulted in increased consistency of reconstructed surfaces, especially in the presence of sub-

vertical objects. When the imagery consists of all near-parallel viewing directions and camera 

self-calibration is used, radial distortion can occur in the DEM (James and Robson, 2014). 

Doming occurs due to inaccuracies in modelling radial camera lens distortion when using 

parallel viewing imagery (James and Robson, 2014). James and Robson (2014) identify solutions 

to doming, such as the inclusion of oblique angle imagery and the use of GCPs. Other 

investigators have found that the use of oblique convergent imagery can help to minimize 

systematic error in SfM-based DEMs (Wackrow and Chandler, 2008; Wackrow and Chandler, 

2011). Convergent imagery refers to image acquisition with the focal point of consecutive 

photographs to tend toward or approach intersecting points on the surface of a study area. This is 

opposed to parallel imagery where each individual photograph has an independent focal point on 

the surface of the study area.  

Surface Texture. Feature matching in scale-invariant feature transform (SIFT) (Lowe, 

1999) requires texture and contrast sufficient enough to distinguish between features and allow 

for suitable image points to be found. Areas with low texture and contrast are problematic as 

fewer image features are able to be identified (Carrivick et al., 2016; Eltner et al., 2016). 

Vegetation also causes problems for feature detection due to the differences in appearance from 

various viewing angles. Trees specifically complicate the image-matching as their appearance 

changes with the viewing angles and they block the view of the ground surface around them, 

hindering the ability for ground features to be identified. Large vegetation can also cause 
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shadows throughout the area of interest. The presence of shadows tends to locally reduce 

accuracy within models (Wackrow and Chandler, 2011).  
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CHAPTER 2 – METHODS OF SUAS SFM PHOTOGRAMMETRY 

 

Introduction 

 The following methodologies lay out the basic workflow used to accomplish the research 

objectives described in Chapter 3 and Chapter 4 of this article. Those chapters will go into 

greater detail on steps taken to accomplish the specific research goals of that section. 

 

Study Area 

 In April 2017, extensive flooding occurred in the North Fork of the White River 

watershed located in south central Missouri. The National Science Foundation (NSF) Rapid 

Response Research (RAPID) program provided funding to study the effect of the flood on 

riparian zone vegetation and the effect of large woody debris on stream channel morphology. 

One objective of this larger project is to collect sUAS imagery to facilitate creation of high 

resolution DEMs and orthophotos of the field sites using SfM methods. Imagery of the April 

2017 flooding was collected in March of 2018 along six stream reach corridors within the 

watershed ranging from 1 to 16 hectares (Figure 2).  

 

Image Acquisition 

 The DJI Phantom 4 Pro sUAS was used to collect the high-resolution imagery. The 

camera on the Phantom 4 Pro is capable of an effective resolution of 20 megapixels. Each flight 

was flown at an altitude of 108 m (353 ft) which yields an estimated ground surface resolution of 

about ~3.0 cm/pix. It utilizes a global shutter rather than a rolling shutter which tends to be 

preferred for sUAS photogrammetric applications. A global shutter captures the entire scene in  
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Figure 2: Map showing the location of the six field sites found along the North Forth River in the White River watershed. 
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an instant. A rolling shutter is problematic for sUAS photogrammetry as the image is not 

captured in an instant in time.Instead the scene is developed by scanning across the scene 

rapidly. The sUAS platform is generally in constant motion and by the time the image is 

acquired the camera position has changed. Rolling shutter cameras can lead to image distortions 

that translate into errors in the resulting model (Carrivick et al., 2016). Agisoft PhotoScan does 

feature an option to correct for rolling shutter effects and this has been shown to increase 

accuracy (Mayer et al., 2018).  

 Individual flights of the Phantom 4 usually last 20-25 minutes and multiple flights may 

be required for each mission. Ground Station Pro was the software used to plan each of the four 

base missions flown at the six field sites (Figure 3). 

Flight paths included a front/side image overlap of 80%. Each base mission had sufficient 

overlap to produce accurate results independently. A camera pitch angle of -70⁰ (i.e., 20⁰ above 

nadir) was used for oblique missions. Each of the individual missions, were flown in north-south 

or east-west “lawnmower” patterns with orthogonal or oblique camera angles. Figure 4 depicts 

the general design for each of the four base mission flights.  

Each flight plan was created in advance and sent to the sUAS before take-off to allow for 

automated flight. Manual take-off was used to avoid trees in some areas but then the planned 

flight path was initiated allowing the sUAS to fly and acquire the imagery autonomously. 

All four base missions were flown at each of the six field sites over the course of three 

days. Light conditions were not always optimal for every site. Heavy shadows contrasting with 

brightly lit areas are present in the imagery for some of the sites. These sets of imagery were 

acquired in the morning and evening as the sun was rising and setting. The base missions flown  
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Figure 3: Screenshot from the Ground Station Pro software. Note that the front and side overlap 

used for the base missions in this study was 80% not 70%. 

 

 

at each individual site were flown consecutively under similar light conditions. The four base 

mission flights for each site took place over a time period of around 30 minutes to 2 hours. Table 

2 displays the specific time that each base mission flight was carried out. Some base missions 

required multiple flights and this information is conveyed by the flight numbers within the table. 

 

Global Positioning System Data Collection 

 Throughout each field site, GCPs were placed in locations that would be visible from the 

aerial photos. The size of the field site and the number of GCPs and CPs used varied for each site  
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Figure 4: Visual showing the flight plan of each of the base mission flights. 

 

(Table 3). A rover/base setup was used with a Geneq SXblue Platinum GNSS and a Gintec G10 

receiver to collect sub-decimeter GPS position data at each GCP and CP. We used ESRI 

Collector to average 60-180 RTK-corrected (real-time kinetic) readings to increase the accuracy 

of each position. A longer averaging duration was used on the GCPs that suffered from GNSS 

errors induced by limited horizon, tree cover, and poor base station/rover connection due to 

topography. Any GCPs that demonstrated high error values inconsistent with the rest of the 

GCPs and CPs were removed from use. Two points were removed from consideration at the Dry 

Creek site and one point was removed at the Lick Branch site. These points had poor accuracy 

due to poor distribution near areas with high tree density. This resulted in inability to place 
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Table 2: Base mission flight time information for each of the six field sites. 

Field Site Base Mission Flight Flight Number Start Time End Time Date 

Upper Tabor EW Ortho 1 10:04 10:13 3/2/2018 

 NS Ortho 1 10:14 10:26 3/2/2018 

 EW Oblique 1 10:39 10:46 3/2/2018 

 NS Oblique 1 of 2 10:47 10:54 3/2/2018 

  2 of 2 10:56 11:06 3/2/2018 

      

Lick Branch EW Ortho 1 11:32 11:38 3/2/2018 

 NS Ortho 1 11:40 11:48 3/2/2018 

 EW Oblique 1 11:48 11:54 3/2/2018 

 NS Oblique 1 11:55 12:04 3/2/2018 

      

Dry Creek EW Ortho 1 14:26 14:32 3/2/2018 

 NS Ortho 1 14:33 14:38 3/2/2018 

 EW Oblique 1 of 2 14:39 14:47 3/2/2018 

  2 of 2 14:49 14:52 3/2/2018 

 NS Oblique 1 14:53 15:02 3/2/2018 

      

Spring Creek EW Ortho 1 16:37 16:47 3/2/2018 

 NS Ortho 1 16:48 17:00 3/2/2018 

 EW Oblique 1 17:01 17:10 3/2/2018 

 NS Oblique 1 17:11 17:21 3/2/2018 

      

Lower Tabor EW Ortho 1 of 2 9:33 9:52 3/3/2018 

  2 of 2 9:54 10:04 3/3/2018 

 NS Ortho 1 10:09 10:29 3/3/2018 

 EW Oblique 1 of 2 10:30 10:49 3/3/2018 

  2 of 2 10:53 10:57 3/3/2018 

 NS Oblique 1 of 2 10:58 11:12 3/3/2018 

  2 of 2 11:16 11:22 3/3/2018 

      

Indian Creek NS Ortho 1 13:00 13:09 3/4/2018 

 NS Oblique 1 of 2 13:10 13:18 3/4/2018 

  2 of 2 13:21 13:32 3/4/2018 

 EW Ortho 1 12:55 13:05 3/4/2018 

 EW Oblique 1 of 2 13:06 13:16 3/4/2018 

    2 of 2 13:33 13:41 3/4/2018 
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Table 3: Information on the size of each field site and the number of GCPs and CPs used at each. 

  
Field Site Size 

(Hectares) 
GCPs Used CPs Used 

Spring Creek 5.3 6 5 

Indian Creek 5.7 6 5 

Lower Tabor 16.2 10 10 

Upper Tabor 4.8 6 6 

Lick Branch 1.0 5 3 

Dry Creek 2.6 6 3 

 

enough markers due to view obstruction and heavy shadows. The error values within these points 

was very high and reflected that the predicted point location was most likely in the tree canopy 

rather than on the ground. GCPs were used to provide accurate 3D positional data to enhance the 

accuracy of the resulting DEMs and orthophotos and the 3D positional data from CPs were used 

to check the accuracy of those resulting products. Using the CPs, rather than the GCPs, provides 

a better estimation of point cloud accuracy. Geometric camera model optimization through the 

bundle adjustment attempts to obtain a best fit of the GCP data used. This creates a bias where 

the used GCPs have a higher accuracy than may actually be present in the rest of the DEM. the 

GCPs that influence the bundle adjustment to assess accuracy gives a false estimation to the 

accuracy of the dataset (Sanz-Albanedo et al., 2018).  

 

SfM Processing 

 All imagery acquired by the sUAS was processed using the SfM software Agisoft PhotoScan. 

Processing methods were consistent across all sites and were based on the workflow developed 

by the USGS (2017). The imagery collected during each of the four base missions yields a base 

mission imagery set that was processed with photos from a single base mission. This allows the 

resulting products (DEMs and orthophotos) to be compared and evaluated according to the 
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original base mission design. Additionally, combinations of two or more of these four base 

missions (i.e., combined imagery sets) were also processed in order to further assess if additional 

images, camera angles, and image overlap improved the quality of the resulting products. The 

various base mission imagery sets, and combined imagery sets used in the analysis are 

summarized in Figure 5. Photos from each of the four base missions were used in their respective 

base mission imagery set: NS Orthogonal (i.e., NS Ortho), EW Orthogonal (i.e., EW Ortho), NS 

Oblique, EW Oblique. The remaining five imagery sets contained photos from various 

combinations of multiple base missions resulting in combined imagery sets: NS Missions, EW 

Missions, Orthogonal Missions (i.e., Ortho Missions), Oblique Missions, and All Missions. The 

All Missions imagery set contained the photos from all four of the base missions.  

 

 

Figure 5: Visual showing the base mission combinations making up each of the nine imagery 

sets. The black boxes in the top row represent the base mission imagery sets. Each one was 

processed with one of the four base missions flown at each site. The colored boxes below 

represent various combined imagery sets made up of combinations of the four base missions.   
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Image Alignment. Our PhotoScan processing methods are based on the workflow 

developed by the USGS (2017) for post-processing digital imagery acquired from sUAS. For 

each field site, the collected imagery was added to PhotoScan and separated into nine separate 

chunks. This resulted in six separate PhotoScan workspaces consisting of nine chunks 

representing each imagery set. Chunks are the term given to individual files or bundles of 

imagery that can be processed separately within the same PhotoScan workspace. After images 

were added and separated into the nine imagery sets described above, an image alignment was 

run to generate a sparse point cloud with PhotoScan’s accuracy setting of “Highest”. A keypoint 

limit of 60,000 and a tie point limit of 0 was used during photo alignment. The tie point limit of 0 

keeps all matched points found during alignment (USGS, 2017). After alignment of each chunk, 

PhotoScan’s “Optimize Cameras” was run. Camera optimization in PhotoScan is accomplished 

through a photogrammetric least squares bundle adjustment to correct for camera lens distortions 

(Agisoft, 2018; USGS, 2017). Various camera alignment parameters can be selected for 

optimization during the bundle adjustment as described in Table 4. The parameters f, cx, cy, k1, 

k2, k3, p1 and p2 used for this bundle adjustment. 

 

Table 4: From USGS (2017), value options that can be optimized during the bundle adjustment 

in PhotoScan. 

 

Camera Alignment Parameter Definitions 

f Camera focal length (x,y) 

cx, cy Center of camera sensor of principal point (x,y) 

k values Distortions from center of the lens (radial distortions) 

p values Lens misalignments (tangential distortions) 

b values values that compensate for non-square pixels 

                 

Ground Control. After image alignment, the GNSS data for the ground control was 

loaded into PhotoScan. All GCPs and CPs were located, marked, and labeled accordingly on all 
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imagery. The marker data for the GCPs/CPs was exported and added to all imagery sets being 

processed. As such, all the imagery sets were processed with consistent marker data. Though 

CPs were identified with markers in PhotoScan they are not used to georeference the data or 

generate the SfM products. All CPs are left unchecked within the reference workspace window 

of PhotoScan so that they are not used. In PhotoScan, the unchecked markers are not used in the 

bundle adjustment, however, the accuracy of each marker is still given. This yields a known 

three-dimensional point in space that did not influence the bundle adjustment solution so can be 

used to assess product accuracy. PhotoScan reports a projected 3D coordinate position and error 

for each CP. These reported errors are used to obtain root mean square error (RMSE) and mean 

absolute error (MAE) values. Figure 6 displays the equations for the RMSE and MAE error 

metrics. 

 

Figure 6: RMSE and MAE equations. 

 

The GCPs are checked and used in the following steps to conduct the bundle adjustment and 

generate the results. The errors for all 32 CPs were considered for the overall RMSE and MAE 

values. This allowed for the assessment of each imagery sets accuracy across multiple field sites. 
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Gradual Selection. A Python script was written to perform error reduction through a 

process known as “Gradual Selection”. Gradual selection is a point filtering and point reduction 

process that is used to remove points in the sparse cloud that have unsatisfactory error values.  

These errors are due to poor geometry, pixel matching errors, and high pixel residual errors. A 

bundle adjustment occurs after point removal during each step of gradual selection to ensure the 

proper points are removed in each iteration of the process. Gradual selection can be a time 

intensive task to accomplish manually, especially for larger sites. Automation of the Gradual 

Selection process with the Python based script ensures the error-reduction thresholds are applied 

consistently, saves the user time, and reduces the chances of user error. 

Generating Results. After gradual selection, a dense point cloud is generated from the 

improved camera position estimates. A quality setting of “Very High” and a depth filtering 

setting of “Aggressive” was used. The dense point cloud generation is a computationally-

intensive processing task. This step will require the most time in terms of computational 

overhead than any other step in the SfM processing workflow. Computer hardware, the size of 

the site, and the number of photos will all influence the time required to generate the dense point 

cloud. Choices made during mission planning and design, such as the amount of photo overlap 

and the desired resolution of the final products significantly affect the amount of computational 

time this step will require.  By removing noisy points for the sparse cloud, the gradual selection 

process has the additional benefit of reducing the time required to process the dense cloud.  The 

dense point cloud is then used to create the DEMs and orthophotos. An automatically generated 

report for each base mission imagery set and combined imagery set is exported to examine 

processing and result details such as the sparse point cloud size, and the dense point cloud size, 

density, and processing time.  
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CHAPTER 3 – MISSION DESIGN 

 

Introduction 

Using sUAS platforms for SfM photogrammetry is becoming an increasingly common 

practice in a wide range of applications such as geomorphology (Eltner et al., 2016; Fonstad et 

al., 2013; Javernick et al., 2014; Wheaton et al., 2010; Woodget et al., 2015), forestry (Siebert 

and Teizer, 2014; Tang and Shao, 2015), agriculture (Zecha et al., 2013), land management 

(Rango et al., 2009), and geology (Bemis et al., 2014; James and Robson, 2012; James and 

Varley., 2012). The growth of sUAS SfM photogrammetry can be attributed to the affordability 

of sUAS hardware and SfM software, the development of mission planning software that 

optimizes field-based data acquisition, and the ability for SfM methods to generate 3D spatial 

data with comparable accuracies and densities to that of modern terrestrial laser scanners (TLS) 

(Carrivick et al., 2016). SfM photogrammetry also benefits from the ability to be used at a wide 

range of scales. Studies have applied this method to cm-scale rock hand sample analysis (James 

and Robson, 2012) up to multiple kilometers for fluvial studies (Dietrich, 2016) and active lava 

dome analysis (James and Varley, 2012). With the use of sUAS SfM photogrammetry being 

available for a wide range of applications and scales, it is important to understand how mission 

design and image acquisition decisions can affect the survey results. 

Achieving an accurate result from a sUAS photogrammetric survey is dependent upon a 

wide range of variables. For some of those such as image overlap, flight path, camera angle, 

flying height, GCP number and placement, the user of the sUAS has control. Other factors such 

as the terrain, vegetation, and weather conditions, are typically out of user control. There have 

been a variety of studies conducted to elucidate best practices regarding each of the variables 
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describe above, as well as, studies looking at how the processing methodologies and various SfM 

software algorithms influence the quality of the results.  

Micheletti et al. (2015a) found that additional photos and overlap do not linearly increase 

the accuracy of the results. The additional photos and overlap can increase the density of the 

sparse point cloud; however, this does not guarantee an increase in the quality of generated 

results (Carrivick et al., 2016; Fonstad et al., 2013; James and Robson, 2012; Micheletti et al., 

2015b; Westoby et al., 2012). A surplus of imagery may only lead to unnecessary additional 

processing time without noticeable benefits. Overall accuracy and precision of a SfM project is 

partially controlled by the scale of the survey (Carrivick et al., 2016).  The resolution of sUAS-

acquired imagery is a function of imaging sensor resolution (e.g., as measured in megapixels) 

and flight altitude. The same imaging sensor will yield lower resolution imagery when it is flown 

at a higher altitude above the ground level. Thus, as the area of a field site increases it is often 

necessary to decrease the target resolution of the acquired imagery and derived products in order 

to keep acquisition and processing times feasible. Choosing an appropriate resolution for a 

sUAS-based SfM project often involves a cost and benefit analysis that optimizes the balance 

between targeted project resolution and field site size. As such, larger areas are often surveyed at 

lower imaging resolutions with a linear degradation of precision with a similar effect on the 

RMSE (Carrivick et al., 2016; James and Robson, 2012; Sans-Ablanedo et al., 2018; Michelletti 

et al., 2015b). Several studies have found that convergent image geometry can increase the 

accuracy of the overall image perspective geometry and reduce the erroneous radial error present 

in missions utilizing parallel image perspectives (James and Robson, 2012, 2014; Wackrow and 

Chandler, 2008, 2011). Imagery that has sufficient coverage and angular change between camera 

positions will produce a strong image network geometry (Carrivick et al., 2016). SfM techniques 
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require features to be recognizable in at least three images for effective feature tracking and 

surface reconstruction (Carrivick et al., 2016). A strong image network geometry will increase 

the quality and accuracy of the results, however, the use of GCPs is still necessary to achieve the 

highest accuracy (Sanz-Ablanedo et al., 2018).  

Lower accuracies have been found in studies where no GCPs or an individual GCP was 

used compared to those where sufficient ground control was established (Mian et al., 2016; Mian 

et al., 2015). Deploying a sufficient number of GCPs and CPs is a time-consuming process and 

while more GCPs do aid in higher accuracies, the return on investment diminishes as the optimal 

amount of GCPs is surpassed (Carrivick et al., 2016; Sanz-Ablanedo et al., 2018). Optimizing 

the number of GCPs and CPs used in a project is critical to efficiency in both the field and in 

data processing. Sanz-Ablanedo et al. (2018) demonstrated that in large projects greater than 3 

GCP per 100 photos achieved a high level of accuracy. Additionally, GCPs should be evenly 

distributed across the entire field site. Gaps in GCP coverage, localized concentrations of GCPs, 

and peripheral focused distribution strategies produce unfavorable accuracies (Sanz-Albanedo et 

al., 2018). 

Variables outside of the user’s control require mission design decisions that counteract 

the negative effects of those variables as much as possible. Complex terrain with steep or sub-

vertical surfaces can be difficult to reconstruct, but Rossi et al. (2017) has demonstrated that the 

use of oblique imagery can increase the consistency of the reconstructed surfaces. Vegetation is 

problematic due to the complexity involved in feature detection of trees and plants from various 

viewing angles. The motion of vegetation due to wind is another variable that can cause image 

matching errors. Also, large vegetation, such as trees, can hinder the view of the ground surface 

and cause shadows that hinder the ability of the SfM software to accurately reconstruct the field 
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site. The effect of shadows on the accuracy of results has been demonstrated in studies such as 

by Wackrow and Chandler (2008; 2011). The presence of shadows can be reduced by acquiring 

imagery during overcast or diffuse light conditions.  

An important aspect of deciding ideal mission design practices is understanding the effect 

of those design decisions on the accuracy of the products as well as the repercussions those 

decisions have on the required time investment to gather and process the data. Efficient mission 

designs will yield products, such as DEMs and orthophotos, with high accuracy without any 

unnecessary time invested in the collection of excess imagery or ground control. The imagery 

collected during each of the four base missions yields an imagery set that was processed 

separately. Additionally, five combinations of these four base missions were also processed to 

obtain nine total imagery sets. Refer to Chapter 2 for the mission details regarding each 

base/combined imagery set. The first objective for this research was to evaluate the accuracy 

obtained from each of the nine imagery sets to assess which of the imagery sets consistently 

produced the highest accuracies. Evaluating the accuracy of the products derived from each 

imagery set involves a comparison between the RMSE and MAE values of the CPs. 

Additionally, profile line comparisons from one of the sites was used to compare the results of 

all of the imagery sets. The second objective was to assess how product accuracy responds to a 

surplus of imagery caused by processing multiple imagery sets together. Again, the RMSE and 

MAE values of CPs were compared. The third objective was to compare the dense cloud 

processing times for each imagery set to assess how design decisions and amount of imagery 

affect processing times. These assessments allow conclusions to be developed on the optimal 

mission design decisions which consistently produce the best results for the optimal amount of 

processing time.  
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Methods 

The methods utilized in this portion of the study are largely similar to those described in 

Chapter 2. To avoid repetition, the following methodological description will focus on aspects 

that are unique to Chapter 3. 

 To assess the effect of various mission design strategies on product accuracy, four 

separate missions with various flight path orientations and camera angles were flown at each of 

the six field sites. Missions were processed in Agisoft PhotoScan following the USGS workflow 

(USGS, 2017) and using a script to complete the gradual selection process, as described in the 

Chapter 2. In addition, the imagery from each of the four base missions were processed 

individually, and in various combinations, to create nine different processed imagery sets. Refer 

to Chapter 2 for the specific combinations used. This was done to assess the effect of additional 

imagery and various flight plan combinations on the accuracy of resulting products. CPs at each 

site were used to compare the accuracy between each imagery set. The dGPS data collected from 

the ground control give precise points in 3D space that can compared with the predicted 

locations within SfM results. This is a common method of validating the SfM derived products 

(Carrivick et al., 2016; Dietrich, 2015; Eltner et al., 2016; Javernick et al., 2014; Sanz-Ablanedo 

et al., 2018). Error values for the CPs reported by PhotoScan were used to obtain the RMSE and 

MAE for each of the imagery sets. When finding the overall RMSE and MAE values, CPs from 

all field sites were used together. A total of 32 CPs were used in the RMSE and MAE 

calculations for each imagery set. Most studies involving SfM practices utilize the RMSE to 

report error in models (Carrivick et al., 2016). While RMSE does represent the error magnitude 

within a dataset it is not without some limitations. The RMSE characterizes the magnitude of 

errors with higher priority due to the nature of finding the squared difference of errors in the 
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calculation. Due to this, the MAE is used as a compliment to the RMSE by displaying the more 

consistent average error within our data as suggested by Willmott and Matsuura (2005). Some 

GCPs/CPs were located near trees along stream banks and their accuracy was influenced by 

factors such as the presence of shadows, obscuration by vegetation and topographic barriers 

which affected GPS accuracy.  Vegetation obscuring the view of some GCPs/CPs limited the 

number of photos in which markers could be effectively placed in PhotoScan which affected the 

accuracy. Any GCPs that demonstrated high error values inconsistent with the rest of the GCPs 

and CPs were removed from use. Two points were removed from consideration at the Dry Creek 

site and one point was removed at the Lick Branch site. The error values within these points was 

very high and reflected that the predicted point location was most likely in the tree canopy rather 

than on the ground. Profile line data from the Spring Creek site was used to compare the results 

of each imagery set and to assess the models for radial distortion in the form of systematic 

doming. It is important to note that a survey across the site was not performed during the 

fieldwork, so in place of a ground-truthed profile, a profile extracted from the image set with the 

lowest overall error values was used as the baseline for comparison between the image sets. 

Reports exported from PhotoScan were used to compare dense point cloud processing times and 

dense point cloud density for each imagery set. The dense point cloud processing times include 

both the depth map and dense cloud generation times. All imagery sets were processed using a 

batch process to automate and standardize the product generation. For each field site, all nine 

imagery sets were processed on the same computer under similar conditions to ensure an 

effective comparison of the required dense cloud processing times for each imagery set. 

Naturally, the required processing times will differ from results reproduced on a different 

computer, but the differences would presumably be relatively proportional.   
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Results 

Mission Design and Product Accuracy.  The RMSE and MAE results are visually 

shown in Figure 7. Tables 5 and 6 display the RMSE and MAE results in order of ascending total 

error. The imagery set with the lowest overall total RMSE and total MAE values when 

considering the error values of all CPs for the six sites was the NS Oblique imagery set. Two 

imagery sets had slightly lower RMSE and MAE planimetric values than the NS Oblique 

imagery set. They were the All Missions imagery set and the Ortho Missions imagery set. The 

EW Ortho imagery set had slightly higher planimetric RMSE values than the NS Oblique design 

but a lower MAE planimetric value. The NS Oblique imagery set had the lowest Z RMSE and 

MAE values of all imagery sets by a good margin. The closest in Z accuracy in both cases was 

the NS Ortho imagery set. Combining flights to create paired combinations or using all photosets 

in the case of the All Missions imagery set, did not improve the overall total RMSE or MAE 

values in relation to the individual base missions on their own. Base mission imagery sets 

consistently performed better than, or similar to, their combined mission counterparts. Among 

the combinations, the Oblique Missions imagery set appears to handle Z errors better than the 

Ortho Missions, however, this relationship is not as consistent among the individual mission 

imagery sets. The NS Oblique had the lowest Z RMSE and MAE values compared to all other 

imagery sets. The EW Oblique had the second highest RMSE Z error value and the highest MAE 

Z error value among the base mission imagery sets but was comparable to and better than most 

RMSE and MAE results for combined imagery sets. Mixed camera angle imagery sets such as 

the EW Missions and the NS Missions imagery sets did not consistently produce improved 

planimetric or Z accuracy.  
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Figure 7: Overall RMSE values of CPs from all sites for each imagery set (top). And overall 

MAE values of CPs from all sites for each imagery set (bottom). All values are in meters. 
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Table 5: RMSE values, sorted by ascending total error, for all imagery sets. All values are in 

meters. 

 

      RMSE     

  Total Error XY Error X Error Y Error Z Error 

NS Oblique 0.581 0.462 0.466 0.458 0.766 

NS Ortho 0.637 0.514 0.499 0.528 0.830 

EW Oblique 0.667 0.482 0.479 0.485 0.933 

EW Ortho 0.717 0.467 0.477 0.457 1.052 

Oblique Missions 0.744 0.537 0.505 0.568 1.041 

All Missions 0.749 0.444 0.405 0.480 1.136 

NS Missions 0.770 0.722 0.787 0.650 0.857 

EW Missions 1.146 0.719 0.555 0.851 1.705 

Ortho Missions 1.153 0.445 0.394 0.491 1.896 

 

Table 6: MAE values, sorted by ascending total error, for all imagery sets. All values are in 

meters. 

 

      MAE     

  Total Error XY Error X Error Y Error Z Error 

NS Oblique 0.495 0.367 0.393 0.342 0.750 

EW Ortho 0.528 0.364 0.401 0.327 0.856 

NS Ortho 0.530 0.398 0.405 0.392 0.792 

EW Oblique 0.549 0.384 0.418 0.351 0.880 

All Missions 0.565 0.340 0.337 0.342 1.017 

Oblique Missions 0.602 0.432 0.445 0.419 0.943 

NS Missions 0.653 0.540 0.597 0.484 0.878 

Ortho Missions 0.663 0.329 0.301 0.356 1.332 

EW Missions 0.780 0.528 0.439 0.617 1.285 

 

 Figure 8 shows the location of the profile line used to extract profile elevation data from each of 

the imagery sets. The location was chosen to display the profile view of the creek while avoiding 

trees and vegetation. Complex tree canopies could cause extreme differences in profile line 

elevations as each imagery set may reflect the location of a single branch in a slightly different 

location. Figure 9 compares the profile lines created for each imagery set and Figure 10 displays 

the residual difference relative to the NS Oblique imagery set. The residual error was determined 
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by finding the difference between the profile line elevations of each imagery set from the profile 

line elevations of the NS Oblique imagery set. The NS Oblique is shown as the thick bright green 

line in the profile line comparison. Table 7 shows the RMSE and MAE values for the residuals 

of each imagery set.   

Amount of Imagery and Product Accuracy.  Figure 11 and Figure 12 display the 

RMSE and MAE values of the CPs in relation to the various imagery sets. Both the RMSE and 

MAE show similar trends. There is a subtle increase in error values as number of photos per 

imagery set increases. This appears to reflect a correspondence between the total number of 

photos in the imagery set, as a function of how many individual base images sets were combined, 

and the overall error in the vertical dimension (z).  

 Dense Cloud Processing Result Comparisons. Dense point cloud processing is one of 

the most computationally demanding parts of SfM photogrammetry. Figure 13 shows the effect 

that increasing the amount of photos, by combining the photos from the base missions, has on the 

average processing time for the imagery sets used in this study. There is a non-linear trend which 

shows that increasing the number of photos can quickly increase processing times to over double 

the processing time that were necessary for the base mission imagery sets. In the previous section 

it was shown that the increase in the number of photos had little effect on the accuracy of the 

models and in some cases may reduce the accuracy. On average, combined imagery sets 

consisting of photos from two base missions increased processing times by around 3.5 times that 

of the base mission imagery sets alone. And combined imagery consisting of the imagery from 

all four base missions increased the processing time by over 20 times what was required to 

process the base mission imagery sets. 
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Table 7: RMSE and MAE values for the residual errors found from the comparison between each 

imagery set and the best case imagery set in this study, the NS Oblique. All values are in meters. 

 

  RMSE  MAE 

NS Ortho 0.065 0.028 

EW Ortho 0.108 0.076 

NS Oblique - - 

EW Oblique 0.069 0.034 

Ortho Missions 0.092 0.064 

Oblique Missions 0.052 0.020 

NS Missions 0.237 0.189 

EW Missions 0.085 0.053 

All Missions 0.216 0.177 

 

 Increasing the number of photos in the imagery set, through combinations of base 

mission photosets, had no noticeable effect on the dense point cloud density as shown in Figure 

14. What appears to have a greater affect is the type of camera angle in the imagery set. 

Orthogonal camera angles led to larger dense point densities than oblique camera angles. Table 8 

shows the average dense point cloud density and average dense point cloud processing time for 

each imagery set. Figure 15 compares the dense point cloud densities between the various 

imagery sets. Imagery sets with orthogonal cameras angles consistently produced point clouds 

with higher density than those with oblique camera angles. The dense point cloud density for 

combined imagery sets with both oblique and orthogonal camera angles were typically between 

the range in densities of the oblique only and orthogonal only combined imagery sets.  
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Figure 8: Orthophoto of the Spring Creek site showing the location of the profile line (green line) used for profile elevation extraction 

for each imagery set.
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Figure 9: Profile line derived from the DEM of each imagery set. Note the vertical exaggeration of X. 
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Figure 10: Residual difference of each imagery set from the NS Oblique imagery set. Note the vertical exaggeration of 
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Figure 11: RMSE total (top), XY (middle), and Z (bottom) values of all CPs for each imagery set 

separated by number of base missions combined into the imagery set.  

R² = 0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

X
Y

 R
M

S
E

 (
m

)
R² = 0.0904

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

T
o
ta

l 
R

M
S

E
 (

m
)

R² = 0.0967

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4

Z
 R

M
S

E
 (

m
)

Number of Base Missions in the Imagery Set



 

44 

 

 

 

Figure 12: MAE total (top), XY (middle), and Z (bottom) values of all CPs for each imagery set 

separated by number of base missions combined into the imagery set. 
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Figure 13: Comparison of the average processing time required to create dense point clouds for 

each imagery set separated by the number of base missions used in the imagery set.  

 

 

 

Figure 14: Average dense point cloud density for each imagery set separated by the amount of 

base mission photosets used in the imagery set. Dense point cloud density is in thousands of 

points/m2. 
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Table 8: Average dense point cloud density (in points/m2) and required processing time (in 

hours) obtained from an average of the imagery set results for each of the six sites. 

 

  Average Dense Point Cloud Data   

  Density  Processing Time 

NS Ortho 71,433 0.90 

EW Ortho 70,595 0.91 

NS Oblique 59,058 0.85 

EW Oblique 59,712 1.41 

Ortho Missions 71,261 4.13 

Oblique Missions 59,553 3.21 

NS Missions 65,247 3.68 

EW Missions 64,574 3.86 

All Missions 65,412 20.68 

 

 

Figure 15: Average dense point cloud density (in thousands of points/m2) for each imagery set.  
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accuracies of 2.5-4 cm flying at 50 m, 10-15 cm flying at 150 m and 15-20 cm flying at 275 m, 

reflecting that there are inherent variations in accuracy with increasing flying height (Harwin and 

Lucieer, 2012; Vallet et al., 2011; Vericat et al., 2016). Eltner et al. (2016) found that the 

absolute error values of SfM photogrammetry are generally low at close ranges and the relative 

error becomes larger at greater distances. Given the flying height used in our missions of 108 m, 

the presence of shadows influencing GCP accuracy, and considering the sub-optimal GPS data 

for some of the GCPs and CPs, some degree of variation between imagery set accuracies is 

expected. Due to this, imagery set RMSE and MAE values with minor variations will be 

considered similar. More emphasis will be placed on the overall trend in accuracies for the 

imagery sets. 

The base mission imagery sets performed with accuracy levels similar to, or better than, 

combined imagery sets in most cases. The dense point cloud processing times were also 

significantly less for base mission imagery sets. These results are consistent with other research 

that has suggested that excessive numbers of images have little effect on the accuracy and may 

simply increase processing times (Fonstad et al., 2013; James and Robson, 2012; Micheletti et 

al., 2015a ; Micheletti et al., 2015b; Westoby et al., 2012). An 80% front and side image overlap 

of was used for each of the four base mission flight paths and seems to be a suitable amount even 

for projects dealing with complex environments. Complex environments for SfM 

photogrammetry possess challenging site characteristics such as heavy tree canopy, the presence 

of shadows, or poor visual texture, as was the case for the field sites in this research. Surplus 

overlap obtained through combinations of imagery sets introduce additional camera locations 

and keypoints into the photogrammetric processing. The additional camera locations and 

keypoints may have played a role in the higher average error in some combined imagery sets 
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compared to the base imagery sets. Conflicting estimates for point and camera locations from a 

surplus of photos may lead to improper estimations of those point and camera locations which 

propagate into the generated result. This is because when camera positions are optimized for 

photographs with poor orientations and high tie point residuals these errors may cause improper 

parameter adjustments that contribute to surface error (James et al., 2017). Gradual selection 

should help to reduce instances of high tie point residual error; however, in imagery sets with a 

surplus of photos there is a higher likelihood for poor photo orientations to contribute to model 

errors. The systematic error shown by the All Missions and NS Missions imagery sets in the 

profile line comparison is a potential example of this. The base mission imagery sets did not 

individually display significant systematic error in the profile, yet, when that imagery was 

combined in the NS Missions and All Missions imagery sets they did. Most of the higher relative 

RMSE and MAE total error values in the combined imagery sets seem to be due to higher Z error 

relative to the base mission imagery sets. In some cases, it would seem the surplus of imagery in 

combined imagery sets was causing photo orientation errors that propagated into the products as 

systematic error. The systematic error resulted in elevation inaccuracies while the planimetric 

accuracy was generally less affected. Another potential reason for the higher error values in the 

combined imagery sets could be due to the combination of imagery from separate flights. 

Though the base mission flights were flown in sequence for each field site under relatively 

similar conditions, there is still some ambiguity between the flights. Changing orientations could 

have caused wind to have a greater effect on the sUAS in flight thus affecting the imagery. Each 

of the base missions was not flown at exactly the same time, therefore any changes in the 

position of shadows could affect model accuracy. Slight changes in the position of shadows 

could have led to improper estimations of keypoints which would translate into tie point and 
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camera orientation errors. It is unclear in this research whether the combination of imagery from 

separate base mission flights or simply the excessive amount of imagery was the cause of the 

higher relative error values in combined imagery sets. Testing this would require obtaining a 

surplus of photos within a single flight and then generating SfM results by varying the amount of 

photos used each time.  

 To reiterate, a survey across the site was not performed during the fieldwork, so in place 

of a ground-truthed profile, a profile extracted from the image set with the lowest overall error 

values was used as the baseline for comparison between the image sets. When comparing the 

profiles, they each display a similar shape, that is capturing the location of vertical variations, but 

there are differences in the magnitude of the elevation changes across the profile. The Ortho 

Missions and EW Ortho imagery sets had consistently higher residual differences in elevation 

compared to the other designs that did not suffer from a systematic shift. The imagery sets with 

the highest residuals were the NS Missions and All Missions imagery sets. The reason for the 

high variation was due to systematic error which can be seen by looking at the residuals plot in 

Figure 10. What is shown is a continuous increase in the residual values, from left to right, which 

indicates the presence of some systematic error resulting in a shift from vertical alignment with 

the other designs.  Pronounced fluctuations in the residual values, of all imagery sets, are 

predominantly found where the profile line crossed woody debris alongside the channel. A minor 

amount of variation can be seen in the stream bed where some shallow water was present (<6 in).  

 Camera angles seemed only have a small effect on the accuracy of the base imagery sets. When 

looking at both the north-south and east-west flight orientations, neither the orthogonal or 

oblique base mission imagery sets consistently performed better. Among the combined imagery 

sets the Oblique Missions imagery set yielded lower total RMSE and MAE values than the Ortho 
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Missions, NS Missions, and EW Missions imagery sets, on average. The All Missions imagery set 

achieved total RMSE and MAE values similar to the Oblique Missions imagery set, however, it 

required significantly longer processing times. The orientation of the flight in the mission design 

resulting in a different image-to-field site orientation seemed to have a minor effect on model 

accuracy. However, given the accuracy of the data, many of these variations in error are too 

small to draw a strong conclusion on. 

 There appears to be no significant difference in dense point cloud density or processing 

time based on flight path orientation. Camera angle appears to have an effect on the dense point 

cloud density. Orthogonal camera angle imagery sets produced dense point clouds with higher 

point densities than mixed and oblique angle imagery sets. Oblique imagery sets produced dense 

point clouds with the lowest point densities. Increasing the amount of photos in the imagery set 

had no effect on the dense point cloud density. A slight relationship may exist between the 

processing time required and the camera angle used in the imagery set. This is most likely a 

product of the extra time required to produce the higher density dense point clouds for the 

orthogonal camera angle imagery sets compared to their oblique counterparts.  
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CHAPTER 4 – POINT CLOUD FILTERING THROUGH GRADUAL SELECTION 

 

Introduction 

The affordability and wide variety of applications for the use of sUAS SfM 

photogrammetry has led to widespread adoption in the geosciences. Applications include 

geomorphology (Eltner et al., 2016; Fonstad et al., 2013; Javernick et al., 2014; Wheaton et al., 

2010; Woodget et al., 2015), forestry (Siebert and Teizer, 2014; Tang and Shao, 2015), 

agriculture (Zecha et al., 2013), land management (Rango et al., 2009), and geology (Bemis et 

al., 2014; James and Robson, 2012; James and Varley., 2012). Many photogrammetric software 

packages allow for creating DEMs and orthophotos with minimal technical knowledge or 

experience. However, improper processing methodologies can lead to the carry-over of errors in 

the resulting models that are easily avoidable. Unfortunately, there are few resources available 

with information regarding the specific processing methods used. When the information is 

available there is little explanation as to why those processing decisions were made.  

For this research, the commercial SfM software program Agisoft PhotoScan was used to 

process sUAS imagery to generate DEMs and orthophotos. Processing methodologies for 

creating three-dimensional models in Agisoft PhotoScan tend to vary slightly between research 

projects (Roder et al., 2017; Mayer et al., 2018; USGS, 2017). A common step within most 

PhotoScan processing workflows is the use of gradual selection to remove tie points with error 

values higher than a specified threshold. Gradual selection is a three-step point filtering process 

consisting of point reduction for reconstruction uncertainty, projection accuracy, and reprojection 

error. The main purpose of point cloud filtering is to remove outliers or points with high error 

values that, if kept, could lead to incorrect calculations which produce inaccuracies in the model 

(Carrivick et al., 2016).  
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This investigation is composed of three objectives. The first objective is to test the 

viability of using a Python-based script to automate the gradual selection process. The script was 

created based on the gradual selection process detailed in the USGS (2017) PhotoScan workflow. 

Many of the suggested settings and workflow components were unchanged with the exception of 

a couple things related to GCPs, and the monitoring of projection numbers. GCPs were added 

directly after image alignment rather than after the reconstruction uncertainty and projection 

accuracy steps in the gradual selection process. According to the USGS (2017) workflow, 

keeping the projections (i.e., the number of points matched to other photos) above 100 is 

beneficial for maintaining accuracy. Disregarding this threshold did not appear to negatively 

affect the results of the gradual selection process or of the final products.  This was monitored 

manually during the data processing but the photos that ended up with fewer than 100 

projections tended to be the forested areas at the periphery of the areas of interest. The results of 

the script-based gradual selection were compared with the manual gradual selection results. CP 

error values reported by PhotoScan were used to find the RMSE and MAE for each imagery set. 

Profile lines were used to assess the degree of similarity between the imagery sets processed with 

each method of gradual selection. The second objective was to compare the accuracy between 

models created with and without using gradual selection. Again, RMSE and MAE values were 

used to compare the accuracy. Profile lines and residual data were used to assess the degree of 

similarity between the imagery sets processed with and without gradual selection. The residuals 

were found by finding the difference in the interpolated elevations along the profile lines. The 

final objective of this study was to investigate the effect of gradual selection on the size of the 

sparse point cloud, the density of the generated dense point cloud, and the amount of processing 

time required for generating the dense point cloud compared to results obtained without the use 
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of the script for gradual selection. Effective processing strategies will consist of decision making 

to reduce error in products and prevent unnecessary additional processing time. These results 

will help to improve efficiency when processing SfM photogrammetric datasets. 

 

Methods 

 This methods section discusses the specific workflow and decisions made to accomplish 

the objectives of this chapter and focuses on the specific processing steps used to generate the 

results presented below. For a description of the study area and a discussion of the broader data 

acquisition and processing methodology see Chapter 2. 

 Agisoft PhotoScan Processing. Agisoft PhotoScan was used to process the imagery 

from all six field sites. The methods used to process the data are based on USGS (2017), which 

was followed to ensure consistency between processing methods for all sites and imagery sets. 

The following sections detail the processing steps performed using PhotoScan.  

Add Imagery. For each of the six field sites, the collected imagery was added to 

PhotoScan.  Each base mission imagery set and combined imagery set was added as a separate 

PhotoScan “chunk”. Chunks are the term given to individual imagery sets that can be processed 

separately within the same PhotoScan workspace. This resulted in six PhotoScan workspaces, or 

files, each with nine chunks representing the various imagery sets. Photos from each of the four 

base missions were used in the respective base mission imagery set: NS Orthogonal (i.e., NS 

Ortho), EW Orthogonal (i.e., EW Ortho), NS Oblique, EW Oblique. The remaining five imagery 

sets contained photos from various combinations of base missions resulting in five combined 

imagery sets: NS Missions, EW Missions, Orthogonal Missions (i.e., Ortho Missions), Oblique 

Missions, and All Missions. The All Missions imagery set contained the photos from all four base 
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missions. Each base mission covered the entirety of the respective field site. Imagery sets 

consisting of imagery from multiple base missions significantly increased the number of photos 

available for processing.   

Photo Alignment. For each imagery set, a photo alignment process was run. Photo 

alignment matches the overlapping imagery based on common features and generates a sparse 

point cloud. The alignment was run with PhotoScan’s highest accuracy setting, which uses the 

full resolution of each photo in the imagery set. PhotoScan uses the geotags as a starting point for 

identifying which photos can possibly overlap, which significantly reduces the time required for 

photo alignment.  

Add Ground Control Points. Although the photo geotags were initially used to facilitate 

the alignment process, the GPS data embedded in the photos is less accurate than the differential 

GPS data collected for the GCP locations. Further processing was conducted without the use of 

the photo geotags, instead, the GCPs were used to georectify and increase accuracy within the 

results. After alignment, the GPS data for the GCPs were imported into PhotoScan. This higher 

quality GPS data is used in the final georeferencing and rectification of the sparse and dense 

point clouds and any resulting products such as DEMs and orthophotos (USGS, 2017). The 

USGS (2017) workflow suggests adding the GCPs after the reconstruction uncertainty and 

projection error steps within the gradual selection process. To automate the gradual selection 

process, the GCPs must be added and marked before, instead of during, the gradual selection 

process. The location of GCPs in individual photos were identified manually by placing 

“markers” that PhotoScan then assumes as common points in the photos.  

Approximately half of the GCPs at each site were chosen for use in georeferencing and 

rectification during processing of the imagery. The remaining GCPs were marked but were 
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excluded from the georeferencing and rectification process. These points will serve as CPs and 

will be used to assess the accuracy of the resulting DEMs and orthophotos. A bundle adjustment, 

termed a camera optimization in PhotoScan, is performed after the placement of the markers.  

The camera optimization recalculates the errors associated with each photo’s alignment. Placing 

and refining the position of GCP markers in PhotoScan and then running camera optimization 

was performed iteratively to minimize the alignment errors.    

Gradual Selection. All nine imagery sets at each of the six sites were processed using a 

Python script to automate the gradual selection process. Each of the nine imagery sets was also 

processed without using gradual selection. This was done to evaluate if various flight plan and 

mission design techniques had an effect on the differences between results produced with and 

without gradual selection. To test the Python script, gradual selection was also performed 

manually, once with the GCPs added prior to the gradual selection (manual script method), and 

once following the USGS workflow with regard to adding the GCPs during the gradual selection 

process (i.e. USGS manual method). This provides the opportunity to compare the automated 

gradual selection results with those of the manual gradual selection. Specifically, the ability of 

the script to follow the workflow logic in terms of gradual selection thresholds and the effect of 

marking the GCPs prior to gradual selection was evaluated. This analysis was performed using 

five of the imagery sets from the Spring Creek site. Only five imagery sets were used because the 

goal of this analysis was to ensure consistently similar results between automated and manual 

gradual selection methods. Only five imagery sets were necessary to demonstrate this.  

Script Description. Automation of the gradual selection process with the Python script 

ensures the error-reduction thresholds are applied consistently, saves the user time, and reduces 

the chances of user error. For this project, many processing iterations were required for imagery 
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sets of varying sizes. Consistency across each of these is possible through manual completion of 

the workflow for the gradual selection step, however, the tedious nature of the gradual selection 

step increases the chances of user error and inconsistency during the process. The gradual 

selection process is iterative and requires that the user make selections and manually set 

thresholds in between each iteration until a certain threshold of error reduction is achieved.  As 

the datasets become larger the user spends increasing amounts of time waiting for the gradual 

selection processing to occur.  This can easily equate to a few seconds of the user making the 

necessary adjustments punctuated by several minutes waiting for the processing to occur so that 

one can move to the next step and do it all over again. This is compounded by the time required 

for repeated camera optimizations that are necessary after each gradual selection step.  Even with 

smaller datasets repeating these steps can be tedious lending to an incentive to automate the 

process.  

The default threshold goals for the script are the same as those specified in USGS (2017). 

The reconstruction uncertainty step will run to achieve a value of ten, the projection accuracy 

will run to achieve a value of two and the reprojection error will run until a value of 0.3 is 

reached. The script will reach these values for each step if none of the limiting conditions are 

met. The limiting conditions, specified in USGS (2017), are meant to prevent excessive removal 

of tie points. All images should be selected when the script is started. The images are unchecked 

by the script following the projection accuracy step. The tie point accuracy setting is initially 

specified at 1 when the script is initiated and will be adjusted to 0.1 after the projection accuracy 

step and before the reprojection error step. The tie point accuracy value reflects what the user 

considers the accuracy of the manually placed markers.  A tie point accuracy of 0.1 is suggested 
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when imagery is crisp and clear. A setting of 0.3-1.0 should be used for unclear or blurred 

imagery (USGS, 2017).  

As the script is running, updates on what is currently happening will show in the console 

window. Information such as the number of points selected, number of points removed, 

adjustments to the threshold value, current step in the gradual selection process, and current 

actions being run will be visible. At the end of the script, the console will read “Gradual 

Selection Process Complete!” and list some stats from the gradual selection process. This will 

tell the user the threshold value reached in each step, and the number of points removed in each 

step. If the specified threshold values are not reached, then one of the limiting conditions 

described in the next sections was met and prevented the value from being lowered any further. 

The conditions are meant to prevent the loss of accuracy from excessive removal of tie points. 

The conditions and automatic adjustment of the threshold modifiers within the script are meant 

to get the dataset as close as possible to the specified threshold without removing too many 

points in any given step. 

Reconstruction Uncertainty. Points with high reconstruction uncertainty generally 

represent the noise within a point cloud. These points deviate from the surface of the field site 

and their removal usually has negligible effects on accuracy (Agisoft, 2018). Removal of these 

points will improve the visual appearance of the point cloud. This selection step is conducted 

twice with a maximum of 50% of the points selected and deleted in each of the two iterations. 

The goal is to reach a threshold level of 10. Figure 16 displays the general workflow and logic 

used by the script to accomplish the reconstruction uncertainty step. The general workflows for 

each step do not include all aspects of the script used to track and manage the number of points 
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removed. For information on the specific methods used to manage point removal in the script see 

the notes within the script in the Appendix.  

 

Figure 16: Basic workflow depicting the logic used by the script when conducting the 

reconstruction uncertainty step of the gradual selection process  

  

Projection Accuracy. After completion of point removal for reconstruction uncertainty 

the cameras are optimized again and then the gradual selection process continues with the 

removal of points with pixel matching errors to improve projection accuracy. The projection 

accuracy is brought to a level of two, which is the best acceptable level that may be possible 

from basic sUAS cameras (USGS, 2017).Then all cameras are unselected from the reference 
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toolbar and camera optimization occurs again. Figure 17 displays the general workflow and logic 

used by the script to complete the point removal to improve projection accuracy. 

 

Figure 17: Basic workflow depicting the logic used by the script when conducting the projection 

accuracy step of the gradual selection process. 

 

 

Reprojection Error. When the 3D position of a tie point is found, the point is 

reprojected back onto all of the photos the point appears in. Reprojection error refers to the 

distance between the observed and reprojected point on a photo (Carrivick et al., 2016). Points 

with high reprojection error can also represent potential false matches (Agisoft, 2018). The final 

gradual selection step removes the points with high pixel residual errors to decrease the 
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reprojection error. The goal of this step is to reach a threshold level of 0.3 with no more points 

selected at that threshold level. To reduce the number of iterations at this step, when less than 

five points are selected and the threshold is equal to 0.3, the reprojection error is considered 

complete. No more than 10% of the points are removed in each iteration. Whenever points are 

removed, a camera optimization is run to optimize for all camera parameters. Figure 18 shows 

the general workflow and logic used by the script to decrease reprojection error. 

 

Figure 18: Basic workflow depicting the logic used by the script when conducting the 

reprojection error step of the gradual selection process. 
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Generating Results. Next, a dense point cloud is generated for each imagery set at all six 

sites. A PhotoScan quality setting of “Very High” and depth filter setting of “Aggressive” is used 

to generate the dense point clouds. Depth map creation and subsequent dense point cloud 

generation is a very computationally time-consuming process. For the comparison of dense cloud 

processing times, imagery sets were processed on a single machine to ensure that processing 

times could be equitably compared. The generated dense point clouds were used to export the 

DEM and orthophoto products. Reports were generated for all sites and imagery sets to 

document processing details such as sparse point cloud size, and dense point cloud size, density, 

and processing times. 

Conducted Tests. There are three main objectives for this study into processing methods. 

One was to test the ability of a Python-based script to accomplish the gradual selection step 

autonomously. The second objective was to compare the accuracy of results produced with and 

without gradual selection. The third was to investigate the effect of gradual selection on the size 

of the sparse point cloud, the density of the generated dense point cloud and the amount of 

processing time required for generating the dense point clouds compared to results obtained 

without the use of gradual selection. To achieve the first objective,  gradual selection was 

performed with an automated method, a manual script method, and a USGS manual method. 

Accuracies of the result for each gradual selection method was derived from the CPs. PhotoScan 

reports a projected 3D coordinate position and error for each CP. These reported errors are used 

to obtain RMSE and MAE values. This is a common method of validating the SfM derived 

products (Carrivick et al., 2016; Dietrich, 2015; Eltner et al., 2016; Javernick et al., 2014; Sanz-

Ablanedo et al., 2018). When finding the overall RMSE and MAE values, CPs from all field 

sites were used together. A total of 32 CPs were used in the RMSE and MAE calculations for 
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each imagery set. Use of the RMSE to describe error is typical for studies involving SfM 

practices (Carrivick et al., 2016). RMSE and MAE values provide complimentary information 

regarding the accuracy of the datasets. The RMSE displays error values with higher priority 

given to larger error values due to the nature of finding the square of the difference between the 

measured and observed values. The MAE provides an improved expression of the overall 

average error within our data as suggested by Willmott and Matsuura (2005). Some GCPs/CPs 

were located near trees along stream banks and their accuracy was influenced by factors such as 

the presence of shadows, obscuration by vegetation and topographic barriers which affected GPS 

accuracy. Any GCPs that demonstrated high error values inconsistent with the rest of the GCPs 

and CPs were removed from use. Two points were removed from consideration at the Dry Creek 

site and one point was removed at the Lick Branch site. The error values within these points were 

very high and reflected that the predicted point location was most likely in the tree canopy rather 

than on the ground. Extracted profiles from the DEMs were used to assess differences between 

results with and without gradual selection. RMSE and MAE values were obtained from the 

residual differences in the profiles to compare the magnitude of difference between results 

generated with and without gradual selection. Figure 19 shows the location of the profile line 

obtained from the DEM at the Spring Creek site for each imagery set. Processing details from the 

reports generated through PhotoScan were used to compare spare point cloud sizes, dense point 

cloud density, and dense point cloud processing times for the results created with and without 

gradual selection. The dense cloud processing times consist of the total time for PhotoScan to 

create the depth maps and generate the dense point cloud.
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Figure 19: Orthophoto from the Spring Creek site displaying the location of the line (green line) used to generate the profile lines for 

comparison between imagery sets
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Results 

Comparison Between Methods of Gradual Selection.  Figure 20 displays the RMSE 

and MAE total error values for the five imagery sets processed using the automated, manual 

script, and USGS manual gradual selection methods. Each produced a similar result for most of 

the tested imagery sets. In the EW Ortho imagery set, the USGS manual method observed a 

significantly higher error value in one of the CPs resulting in a much higher RMSE than the 

other methods. The MAE helps to balance out this outlier and shows a total error much closer to 

the values found with the other methods though the difference is still evident. The profile lines in 

Figures 21 and 22 show a high degree of similarity between many of the processing results. 

Similar results were found even in presence of large woody debris structures found between the 

35-40 m section of the profile lines. The higher error in the USGS manual method EW Ortho 

imagery set is also evident in the USGS manual method EW Ortho profile line seen in Figure 22. 

The error appears to be due to systematic error given the increasing degree of difference between 

the profile lines from left to right.  

Accuracy Comparison with and without Gradual Selection.  The profile line 

comparisons shown in Figures 23, 24, and 25 display similar results for most of the imagery sets. 

The NS Missions and All Missions profile lines display some systematic error shown as a gradual 

increase in the difference between the lines as those lines progress from left to right. Some other 

differences are noticeable in the NS Ortho and EW Ortho profile lines. These differences do not 

appear to be systematic but simply variations in elevation interpolation within the DEM. 
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Figure 20: RMSE (top) and MAE (bottom) Total Error comparison of five imagery sets from the 

Spring Creek site each processed using a different method to accomplish gradual selection. 
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 Figure 21: Profile line comparisons for three gradual selection methods: automated gradual 

selection, manual gradual selection following the script, and manual gradual selection following 

the USGS workflow. (1 of 2) 
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Figure 22: Profile line comparisons for three gradual selection methods: automated gradual 

selection, manual gradual selection following the script, and manual gradual selection following 

the USGS workflow. (2 of 2) 
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Figure 23: Profile line comparisons for imagery sets generated with and without gradual 

selection. All values are in meters. (1 of 3)  
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Figure 24: Profile line comparisons for imagery sets generated with and without gradual 

selection. All values are in meters. (2 of 3) 
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Figure 25: Profile line comparisons for imagery sets generated with and without gradual 

selection. All values are in meters. (3 of 3) 
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Overall statistics for the profile line comparisons are shown in Table 9. For each of the 

gradual selection methods, many of the imagery sets resulted in profile lines with a high level of 

agreement, as shown by the R2 value and low RMSE and MAE values. The average R2 value 

was 0.997. The Oblique Missions imagery set generated profile lines that were nearly identical 

with a rounded R2 value of 1.000. MAE values were consistently below 0.02 m for each of the 

oblique base mission imagery sets as well as for the Oblique Missions imagery set. Imagery sets 

consisting of ortho-only photos were less consistent with a MAE value of 0.0274 m for the Ortho 

Missions imagery set and 0.059 m and 0.096 m, respectively, for the NS Ortho and EW Ortho 

base mission imagery sets. The mixed camera angle imagery sets yielded results with a range of 

MAE values from a low of 0.030 m in the EW Missions imagery set to a high of 0.096 m in the 

NS Missions imagery set with the All Missions imagery set ending up in the middle with a 0.056 

m MAE value. 

 

Table 9: Coefficient of determination (R2) was determined from the interpolated elevation data 

for the imagery sets with and without gradual selection. RMSE, and MAE values were derived 

from the residual difference between the imagery sets with and without gradual selection.  

 

  R2 RMSE (m) MAE (m) 

NS Ortho 0.998 0.073 0.059 

EW Ortho 0.997 0.113 0.096 

NS Oblique 0.994 0.056 0.020 

EW Oblique 0.998 0.036 0.019 

Ortho Missions 0.998 0.037 0.027 

Oblique Missions 1.000 0.019 0.012 

NS Missions 0.989 0.117 0.096 

EW Missions 0.999 0.039 0.030 

All Missions 0.996 0.066 0.056 

 

 Figures 26 and 27 show the overall RMSE and MAE accuracy values obtained for each 

imagery set processed with and without gradual selection. Looking at the total error values, many 
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of the imagery sets resulted in similar accuracy values with the exception for the Ortho Missions 

and the NS Missions imagery sets. The NS Missions imagery set generated without gradual 

selection resulted in a high overall XY error while the Ortho Missions imagery set processed 

with gradual selection suffered from a high overall Z error. Tables 10 and 11 display the overall 

RMSE and MAE error values for the results with gradual selection. Tables 12 and 13 display the 

overall RMSE and MAE error values for the results without gradual selection. They are all sorted 

by ascending total error.  

Point Cloud Processing Results with and without Gradual Selection.  Point cloud 

filtering through gradual selection significantly reduces the size of the sparse point cloud. Figure 

28 shows the difference between the size of the sparse point clouds before and after gradual 

selection. Despite the significant reduction in the sparse point cloud size, the dense point clouds 

generated without gradual selection were generally similar densities (Figure 29).  

The size of the sparse point cloud has a significant effect on the processing time 

necessary for generation of the dense point cloud (Figure 30). For the two sites (Spring Creek, 

Indian Creek), there was an average reduction in processing time of around 37% for all imagery 

sets (Table 14). The lowest reduction in processing time was around 26% for the NS Ortho 

design, and the highest reduction was around 47% for the All Missions imagery set. 
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Figure 26: RMSE value comparisons for results of each imagery set processed with and without 

the use of gradual selection.  
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Figure 27: MAE value comparisons for results of each imagery set processed with and without 

the use of gradual selection.  
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Table 10: RMSE results when gradual selection was used to process the imagery sets. Sorted by 

ascending total error. All values are in meters. 

 

 

 

Table 11: MAE results when gradual selection was used to process the imagery sets. Sorted by 

ascending total error. All values are in meters. 

 

  

    RMSE Results with Gradual Selection   

  Total Error XY Error X Error Y Error Z Error 

NS Oblique 0.581 0.462 0.466 0.458 0.766 

NS Ortho 0.637 0.514 0.499 0.528 0.830 

EW Oblique 0.667 0.482 0.479 0.485 0.933 

EW Ortho 0.717 0.467 0.477 0.457 1.052 

Oblique Missions 0.744 0.537 0.505 0.568 1.041 

All Missions 0.749 0.444 0.405 0.480 1.136 

NS Missions 0.770 0.722 0.787 0.650 0.857 

EW Missions 1.146 0.719 0.555 0.851 1.705 

Ortho Missions 1.153 0.445 0.394 0.491 1.896 

    MAE Results with Gradual Selection   

  Total Error XY Error X Error Y Error Z Error 

NS Oblique 0.495 0.367 0.393 0.342 0.750 

EW Ortho 0.528 0.364 0.401 0.327 0.856 

NS Ortho 0.530 0.398 0.405 0.392 0.792 

EW Oblique 0.549 0.384 0.418 0.351 0.880 

All Missions 0.565 0.340 0.337 0.342 1.017 

Oblique Missions 0.602 0.432 0.445 0.419 0.943 

NS Missions 0.653 0.540 0.597 0.484 0.878 

Ortho Missions 0.663 0.329 0.301 0.356 1.332 

EW Missions 0.780 0.528 0.439 0.617 1.285 
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Table 12: RMSE results when gradual selection was not used to process the imagery sets. Sorted 

by ascending total error. All values are in meters. 

 

    RMSE Results Without Gradual Selection   

  Total Error XY Error X Error Y Error Z Error 

EW Ortho 0.575 0.439 0.427 0.451 0.778 

NS Oblique 0.625 0.459 0.457 0.462 0.865 

NS Ortho 0.632 0.534 0.515 0.551 0.793 

EW Oblique 0.672 0.445 0.446 0.444 0.980 

Oblique Missions 0.700 0.484 0.451 0.514 1.002 

Ortho Missions 0.760 0.438 0.392 0.480 1.161 

All Missions 0.901 0.440 0.399 0.477 1.431 

EW Missions 1.057 0.669 0.534 0.781 1.567 

NS Missions 1.168 1.269 1.412 1.109 0.933 

 

 

Table 13: MAE results when gradual selection was not used to process the imagery sets. Sorted 

by ascending total error. All values are in meters. 

 

    MAE Results Without Gradual Selection   

  Total Error XY Error X Error Y Error Z Error 

EW Ortho 0.483 0.333 0.339 0.327 0.782 

NS Oblique 0.510 0.358 0.398 0.318 0.813 

EW Oblique 0.516 0.345 0.378 0.313 0.857 

NS Ortho 0.534 0.412 0.415 0.409 0.778 

Ortho Missions 0.546 0.322 0.298 0.347 0.994 

Oblique Missions 0.563 0.376 0.398 0.354 0.936 

All Missions 0.612 0.326 0.307 0.346 1.182 

EW Missions 0.743 0.501 0.426 0.577 1.226 

NS Missions 0.876 0.862 0.930 0.794 0.904 
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Figure 28: Comparison between the average sparse point cloud size (in thousands of points) of 

each of the imagery sets with and without the use of gradual selection.  

 

 

Figure 29: Comparison between the average dense point cloud density in thousands of points/m2 

of each of the imagery sets with and without gradual selection. The average is obtained from the 

densities of the dense point cloud from imagery sets from all six field sites. 
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Figure 30: Comparison of average processing time (in hours) for each imagery set with and 

without gradual selection. Average was between two sites, Spring Creek and Indian Creek.  

 

 

 

Table 14: Average dense point cloud processing time in hours for imagery sets processed with 

and without gradual selection. Average was between two sites, Spring Creek and Indian Creek. 

 

  

Average Dense Cloud 

Processing Time   

  

Gradual 

Selection 

No Gradual 

Selection 

NS Ortho 0.48 0.63 

EW Ortho 0.48 0.68 

NSObl70 0.49 0.69 

EWObl70 0.54 0.80 

Ortho Missions 1.88 2.99 

Oblique Missions 2.32 3.59 

NS Missions 2.40 3.35 

EW Missions 2.40 3.35 

All Missions 11.99 19.33 
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Discussion 

Some studies have reported sUAS survey accuracies of 2.5-4 cm flying at 50 m, 10-15 

cm flying at 150 m and 15-20 cm flying at 275 m, reflecting that there are inherent variations in 

accuracy with increasing flying height (Harwin and Lucieer, 2012; Vallet et al., 2011; Vericat et 

al., 2016). Eltner et al. (2016) found that the absolute error values of SfM photogrammetry are 

generally low at close ranges and the relative error becomes larger at greater distances. Given the 

108 m flying height used in our missions, the presence of shadows influencing GCP accuracy, 

and considering the sub-optimal GPS data for some of the GCPs and CPs, some degree of 

variation between imagery set accuracies is expected. Due to this, imagery set RMSE and MAE 

values with minor variations will be considered similar. More emphasis will be placed on the 

overall trend in accuracies for the imagery sets. 

The Python based script, used to automate the gradual selection process, performed very 

well when compared to the manual gradual selection methods. For all five imagery sets the 

automated gradual selection method achieved accuracies similar to, if not better than, the USGS 

manual method, which followed the exact workflow outlined in USGS (2017). All profile line 

comparisons for each of the gradual selection methods produced very similar results with the 

exception of the profile line comparison for the EW Ortho imagery set. In this profile line 

comparison, the USGS manual method profile line suffered from some systematic error 

displaying some slight variation. This difference was reflected in USGS manual method’s poor 

relative RMSE and MAE accuracy for the EW Ortho imagery set as well. The script was able to 

consistently perform gradual selection with results similar to and better than all manual methods 

tested. 
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The profile line comparisons for the results produced with and without gradual selection 

were similar in all cases. Some minor systematic error was present in the case of the All Missions 

imagery set and the NS Missions imagery set but was still similar overall. The high degree of 

similarity may be due to the location of the profile line. Many of the points with high error 

values were located outside the edges of the stream channel within and beneath the tree canopy. 

It would appear that maintaining those points with high error values does not always cause 

systematic error propagation throughout the rest of the model. Oblique camera angle imagery 

sets consistently generated a profile line with very high similarity between the results with and 

without gradual selection. The profile line comparisons for the NS Ortho and EW Ortho imagery 

sets displayed some subtle variations in elevation that do not appear to be due to systematic 

error. One explanation for the variations in elevation could be that the ortho base mission 

imagery sets were more susceptible to error from poorly estimated points in certain areas in the 

site due to the camera angle. This could lead to systematic error or minor local variations in 

elevation. The oblique angle imagery sets were very consistent between results with and without 

graduation selection. This is consistent with the results of Rossi et al., (2017) which 

demonstrated that oblique imagery resulted in increased consistency of reconstructed surfaces, 

especially in the presence of sub-vertical objects. 

 The accuracy achieved using gradual selection compared to results achieved without 

gradual selection were similar for most imagery sets across all six sites. This similarity was also 

displayed in the profile view comparisons shown for the Spring Creek site. No noticeable 

accuracy trends could be seen between products generated with and without gradual selection. 

The dense point cloud processing time requirements for results using gradual selection was 

significantly lower for all imagery sets compared to results that did not use gradual selection. 
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Gradual selection reduced dense cloud processing times by an average of around 37%. Gradual 

selection is a time-intensive process when completed manually. By using a Python-based script 

to accomplish gradual selection, the required amount of user and computational processing time 

to generate a product is significantly reduced. Dense point cloud densities produced with and 

without gradual selection were generally similar. 

 During gradual selection, the majority of points filtered out represent areas with trees and 

vegetation as well as ground points located in areas with higher densities of tree canopy cover. 

Many of the unfiltered points were located within the stream channels where many of the GCPs 

and CPs were located. This may explain the significant difference in sparse point cloud sizes of 

results with and without gradual selection despite similar accuracies and profile lines. Gradual 

selection filtered out tie points with unsatisfactory error values predominantly outside of the 

stream channels. Accuracy and similarity assessments were conducted from profile lines and CPs 

located mainly within the stream channels where there was a larger degree of tie points with 

acceptable error values. This may have been what caused results with and without gradual 

selection to be so similar. Differences between results with and without gradual selection most 

likely increase outside of the stream channels where the majority of the filtered points were 

located.  
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CHAPTER 5 – SUMMARY  

 When determining the most effective imagery set and processing methodology there are 

many factors that will vary with the objective of the mission and the location of the field site. 

Design decisions should be made to ensure the best results while reducing user and 

computational processing time as much as possible. This research investigated the results of nine 

different imagery sets as well as the effects of point cloud filtering through gradual selection on 

those nine imagery sets. An optimal mission design will consistently obtain accurate and 

efficient results, relative to other methods and mission designs, across several areas. In this 

investigation, the imagery set which yielded the lowest relative RMSE and MAE values and low 

relative processing times across multiple field sites was the NS Oblique imagery set utilizing 

automated gradual selection. Combined imagery sets produced results with accuracy levels 

similar to or worse than the results of the NS Oblique imagery set and other base mission 

imagery sets.  

Dense cloud processing times for imagery sets with multiple layers of imagery were on 

average about 350% longer for imagery sets with photos from two base missions and about 

2000% longer for the All Missions imagery set with photos from all four base missions. Dense 

cloud processing times for imagery sets that did not use gradual selection were on average 37% 

longer than those that did. The results generated from imagery sets that utilized gradual selection 

were generally similar to those that did not use gradual selection. By using a Python-based script 

to accomplish gradual selection, the required amount of user and computational processing time 

to generate a product is significantly reduced.  
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APPENDIX – GRADUAL SELECTION SCRIPT 

print ("Starting Gradual Selection...") 

print ("Gradual Selection: Reconstruction Uncertainty") 

 

chunk = PhotoScan.app.document.chunk 

points = chunk.point_cloud.points 

total_tie_points = len(points) 

starting_total_tie_points = len(points) 

nselected = len([p for p in points if p.selected]) 

print ("Total Points: " + str(total_tie_points)) 

print ("Selected Points: " + str(nselected)) 

 

# Establish variables for tracking the points removed in each step 

totalreconUncertaintyPointsRemoved = 0 

totalprojectionAccPointsRemoved = 0 

totalreprojectionErrRemoved = 0 

reconUncertaintyPointsRemoved = 0 

projectionAccPointsRemoved = 0 

reprojectionErrRemoved = 0 

 

# Optimize cameras for most of the parameters 

chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, fit_b2=False, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, fit_p3=False, 

fit_p4=False) 

 

# Set starting threshold for Reconstruction Uncertainty step 

threshold = float(50.0) 

x = 2 

 

# Set variables that will adjust the threshold value as needed 

threschangeInc = 0 

threschangeDec = 0 

increaseThreshold = float(10.0) 

decreaseThreshold = float(5.0) 

 

# Select points 

# I re-establish the select points variables below, this updates the selected points to the number 

currently selected 

# If the variables are not re-established throughout then an incorrect # of selected points is 

tracked 

points = chunk.point_cloud.points 

f = PhotoScan.PointCloud.Filter() 

f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

f.selectPoints(threshold) 

nselected = len([p for p in points if p.selected]) 
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print ("Total Points: " + str(total_tie_points)) 

print ("Selected Points: " + str(nselected)) 

 

# Will loop as long as points haven't been removed twice or the threshold level of 10 has not 

been reached 

while x > 0: 

 

    # Increase threshold if too many points are selected 

    while nselected > (float(0.5) * total_tie_points) and threshold > float(10.1): 

        threshold = threshold + increaseThreshold 

        threschangeInc = 1 

        print ("Points selected greater than 50%, increasing threshold...new threshold: " + 

str(threshold)) 

        f.resetSelection() 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Total Points: " + str(total_tie_points)) 

        print ("Selected Points: " + str(nselected)) 

 

    # Tracks threshold changes and adjusts threshold values to prevent infinite loops 

    if threschangeDec == 1 and threschangeInc == 1: 

        threschangeInc = 0 

        threschangeDec = 0 

        print ("Adjusting threshold modifiers...") 

        increaseThreshold = increaseThreshold/2 

        decreaseThreshold = decreaseThreshold/2 

        print ("New threshold modifiers...Increase interval: " + str(increaseThreshold) + " 

Decrease interval: " + str(decreaseThreshold)) 

 

    # Decrease threshold if not enough points are selected 

    while nselected < (float(0.45) * total_tie_points) and threshold > float(10.1): 

        threshold = threshold - decreaseThreshold 

        threschangeDec = 1 

        print ("Points selected less than 45%, decreasing threshold...new threshold: " + 

str(threshold)) 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Total Points: " + str(total_tie_points)) 

        print ("Selected Points: " + str(nselected)) 
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    # Tracks threshold changes and adjusts threshold values to prevent infinite loops 

    if threschangeDec == 1 and threschangeInc == 1: 

        threschangeInc = 0 

        threschangeDec = 0 

        print ("Adjusting threshold modifiers...") 

        increaseThreshold = increaseThreshold/2 

        decreaseThreshold = decreaseThreshold/2 

        print ("New threshold modifiers...Increase interval: " + str(increaseThreshold) + " 

Decrease interval: " + str(decreaseThreshold)) 

 

    # When the number of points selected is between 45%=50% of the total points the selected 

points are removed 

    while nselected <= (float(0.5) * total_tie_points) and nselected >= (float(0.45) * 

total_tie_points) and x > 0 and threshold > float(10.1): 

        reconUncertaintyPointsRemoved = totalreconUncertaintyPointsRemoved + nselected 

        totalreconUncertaintyPointsRemoved = reconUncertaintyPointsRemoved 

        f.removePoints(threshold) 

        threschangeInc = 0 

        threschangeDec = 0 

        total_tie_points = (total_tie_points - nselected) 

        print ("Total Points: " + str(total_tie_points)) 

        # Optimize cameras for most of the parameters 

        chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, fit_b2=False, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, fit_p3=False, 

fit_p4=False) 

        x = x - 1 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Selected Points: " + str(nselected)) 

        if x == 0: 

            break 

 

    # If threshold equals 10 and >50% pts are selected threshold will inc until pts are below 50% 

then removed 

    if nselected > (float(0.5) * total_tie_points) and threshold <= float(10.1) and x > 0: 

        while nselected > (float(0.5) * total_tie_points): 

            threshold = threshold + float(1.0) 

            print ("Points selected greater than 50% and threshold near 10, increasing 

threshold...new threshold: " + str(threshold)) 

            points = chunk.point_cloud.points 

            f = PhotoScan.PointCloud.Filter() 

            f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

            f.selectPoints(threshold) 
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            nselected = len([p for p in points if p.selected]) 

            print ("Total Points: " + str(total_tie_points)) 

            print ("Selected Points: " + str(nselected)) 

            if nselected < (float(0.5) * total_tie_points): 

                reconUncertaintyPointsRemoved = totalreconUncertaintyPointsRemoved + nselected 

                totalreconUncertaintyPointsRemoved = reconUncertaintyPointsRemoved 

                f.removePoints(threshold) 

                # Optimize cameras for most of the parameters 

                chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, 

fit_b2=False, fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, 

fit_p3=False, fit_p4=False) 

                x = x - 1 

                total_tie_points = (total_tie_points - nselected) 

                print ("Total Points: " + str(total_tie_points)) 

 

    # When the threshold is 10 and less than 50% of total points are selected they are removed 

    if nselected < (float(0.5) * total_tie_points) and threshold <= float(10.1) and x > 0: 

        reconUncertaintyPointsRemoved = totalreconUncertaintyPointsRemoved + nselected 

        totalreconUncertaintyPointsRemoved = reconUncertaintyPointsRemoved 

        f.removePoints(threshold) 

        total_tie_points = (total_tie_points - nselected) 

        print ("Total Points: " + str(total_tie_points)) 

        # Optimize cameras for most of the parameters 

        chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, fit_b2=False, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, fit_p3=False, 

fit_p4=False) 

        x = x - 1 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Selected Points: " + str(nselected)) 

    if threshold <= float(10.1): 

        break 

 

    # This forces the threshold down to 50 in the event of a poor dataset 

    if x == 0 and threshold > 50: 

        threshold = float(50.0) 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReconstructionUncertainty) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        if nselected < (float(0.5) * total_tie_points): 

            reconUncertaintyPointsRemoved = totalreconUncertaintyPointsRemoved + nselected 
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            totalreconUncertaintyPointsRemoved = reconUncertaintyPointsRemoved 

            f.removePoints(threshold) 

            total_tie_points = (total_tie_points - nselected) 

 

f.resetSelection() 

threschangeInc = 0 

threschangeDec = 0 

 

# End of Reconstruction Uncertainty step 

if x == 0 or threshold <= float(10.1): 

    print ("Gradual Selection: Reconstruction Uncertainty Complete.") 

    print ("Final Reconstruction Uncertainty Threshold: " + str(threshold)) 

    print ("Current total points: " + str(total_tie_points)) 

 

finalReconUncertaintyThreshold = str(threshold) 

print ("Gradual Selection: Projection Accuracy") 

 

chunk = PhotoScan.app.document.chunk 

points = chunk.point_cloud.points 

total_tie_points = len(points) 

nselected = len([p for p in points if p.selected]) 

print ("Total Points: " + str(total_tie_points)) 

print ("Selected Points: " + str(nselected)) 

 

# Optimize cameras for most of the parameters 

chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, fit_b2=False, 

fit_k1=True, 

fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, fit_p3=False, 

fit_p4=False) 

 

threshold = float(3.0) 

x = 2 

increaseThreshold = float(1.0) 

decreaseThreshold = float(1.0) 

 

# Select points for threshold in Projection Accuracy step 

points = chunk.point_cloud.points 

f = PhotoScan.PointCloud.Filter() 

f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ProjectionAccuracy) 

f.selectPoints(threshold) 

nselected = len([p for p in points if p.selected]) 

print ("Total Points: " + str(total_tie_points)) 

print ("Selected Points: " + str(nselected)) 

 

# This section will loop until the required conditions are met or points have been removed twice 

while x > 0: 
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    # Increases threshold if more than 50% of total points are selected 

    while nselected > (float(0.5) * total_tie_points): 

        threshold = threshold + increaseThreshold 

        threschangeInc = 1 

        print ("Points selected greater than 50%, increasing threshold...new threshold: " + 

str(threshold)) 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ProjectionAccuracy) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Total Points: " + str(total_tie_points)) 

        print ("Selected Points: " + str(nselected)) 

 

    # Tracks threshold changes and adjusts threshold values to prevent infinite loops 

    if threschangeDec == 1 and threschangeInc == 1: 

        threschangeInc = 0 

        threschangeDec = 0 

        print ("Adjusting threshold modifiers...") 

        increaseThreshold = increaseThreshold / 2 

        decreaseThreshold = decreaseThreshold / 2 

        print ("New threshold modifiers...Increase interval: " + str( 

            increaseThreshold) + " Decrease interval: " + str(decreaseThreshold)) 

 

    # Decreases threshold if less than 45% of total points are selected 

    while nselected < (float(0.45) * total_tie_points) and threshold >= 2.1: 

        threshold = threshold - decreaseThreshold 

        threschangeDec = 1 

        print ("Points selected less than 45%, decreasing threshold...new threshold: " + 

str(threshold)) 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ProjectionAccuracy) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Total Points: " + str(total_tie_points)) 

        print ("Selected Points: " + str(nselected)) 

        if threshold < 2.0: 

            threshold = float(2.0) 

 

    # Tracks threshold changes and adjusts threshold values to prevent infinite loops 

    if threschangeDec == 1 and threschangeInc == 1: 

        threschangeInc = 0 

        threschangeDec = 0 

        print ("Adjusting threshold modifiers...") 
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        increaseThreshold = increaseThreshold / 2 

        decreaseThreshold = decreaseThreshold / 2 

        print ("New threshold modifiers...Increase interval: " + str( 

            increaseThreshold) + " Decrease interval: " + str(decreaseThreshold)) 

 

    # Removes points if they are between 45%-50% of total points 

    while nselected <= (float(0.5) * total_tie_points) and nselected >= (float(0.45) * 

total_tie_points) and x > 0 or threshold < 2.1: 

        if threshold < 2.1 and nselected >= (float(0.5) * total_tie_points): 

            break 

        projectionAccPointsRemoved = totalprojectionAccPointsRemoved + nselected 

        totalprojectionAccPointsRemoved = projectionAccPointsRemoved 

        f.removePoints(threshold) 

        total_tie_points = (total_tie_points - nselected) 

        print ("Total Points: " + str(total_tie_points)) 

        # Optimize cameras for most of the parameters 

        chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, fit_b2=False, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, fit_p3=False, 

fit_p4=False) 

        x = x - 1 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ProjectionAccuracy) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

        print ("Selected Points: " + str(nselected)) 

        if x == 0: 

            break 

 

    # Breaks loop if conditions are met 

    if threshold < 2.1 and nselected < 1: 

        break 

 

# If threshold equals 2 but points are selected then they are removed 

if threshold < 2.1 and nselected <= (float(0.5) * total_tie_points): 

    threshold = float(2.0) 

    points = chunk.point_cloud.points 

    f = PhotoScan.PointCloud.Filter() 

    f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ProjectionAccuracy) 

    f.selectPoints(threshold) 

    nselected = len([p for p in points if p.selected]) 

    print ("Selected Points: " + str(nselected)) 

    projectionAccPointsRemoved = totalprojectionAccPointsRemoved + nselected 

    totalprojectionAccPointsRemoved = projectionAccPointsRemoved 

    f.removePoints(threshold) 

    total_tie_points = (total_tie_points - nselected) 
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    print ("Total Points: " + str(total_tie_points)) 

    # Optimize cameras for most of the parameters 

    chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=False, fit_b2=False, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=False, fit_p1=True, fit_p2=True, fit_p3=False, 

fit_p4=False) 

 

f.resetSelection() 

 

# End of Projection Accuracy step 

if x == 0 or threshold <= 2.05: 

    print ("Gradual Selection: Projection Accuracy Complete.") 

    print ("Final Projection Accuracy Threshold: " + str(threshold)) 

    print ("Current total points: " + str(total_tie_points)) 

 

finalProjectionAccThreshold = str(threshold) 

 

# Adjust the Tie Point accuracy from 1 to 0.1 

print ("Adjusting Tie Point Accuracy from 1 to 0.1.") 

x = float(0.1) 

chunk.tiepoint_accuracy = x 

 

# Unselect all photos 

print ("Disabling all cameras.") 

for camera in chunk.cameras: 

    camera.reference.enabled = False 

 

print ("Gradual Selection: Reprojection Error") 

 

# y = the number of iterations the Reprojection Error step will run 

# I don't think x does anything anymore but I am not going to remove it 

# Z limits the threshold reductions so that they stop at .3 

y = 50 

 

chunk = PhotoScan.app.document.chunk 

points = chunk.point_cloud.points 

total_tie_points = len(points) 

nselected = len([p for p in points if p.selected]) 

print ("Total Points: " + str(total_tie_points)) 

print ("Selected Points: " + str(nselected)) 

 

 

#Optimize cameras for all parameters 

chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=True, fit_b2=True, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=True, fit_p1=True, fit_p2=True, fit_p3=True, 

fit_p4=True) 
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threshold = float(1.0) 

points = chunk.point_cloud.points 

f = PhotoScan.PointCloud.Filter() 

f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReprojectionError) 

f.selectPoints(threshold) 

nselected = len([p for p in points if p.selected]) 

print ("Total Points: " + str(total_tie_points)) 

print ("Selected Points: " + str(nselected)) 

thresholdChange = float(0.1) 

 

while y > 0: 

    print ("Iterations remaining: " + str(y)) 

    y = (y -1) 

    points = chunk.point_cloud.points 

    f = PhotoScan.PointCloud.Filter() 

    f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReprojectionError) 

    f.selectPoints(threshold) 

    nselected = len([p for p in points if p.selected]) 

 

    # Reduces the threshold if less than 2% of total points are selected as long as the threshold is 

not already at 0.3 

    while nselected < (float(0.02) * total_tie_points) and threshold >= 0.31: 

        print ("Selected Points: " + str(nselected)) 

        print ("Less than 2% of total points selected...reducing threshold.") 

        threshold = threshold - thresholdChange 

        print ("Threshold updated: " + str(threshold)) 

 

        # If the threshold drops below 0.3 then it is raised to 0.3 

        if threshold < float(0.3): 

            threshold = 0.3 

 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReprojectionError) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 

 

        if nselected > (float(0.1) * total_tie_points): 

            print ("Greater than 10% of total points selected...Updating Threshold...") 

            print ("Greater than 10% of total points selected...Updating Threshold...") 

            thresholdChange = thresholdChange/2 

            threshold = threshold + thresholdChange 

            print ("Threshold updated: " + str(threshold)) 

            points = chunk.point_cloud.points 

            f = PhotoScan.PointCloud.Filter() 

            f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReprojectionError) 
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            f.selectPoints(threshold) 

            nselected = len([p for p in points if p.selected]) 

 

    print ("Selected Points: " + str(nselected)) 

 

    if nselected <= 5 and threshold <= 0.31: 

        print ("Gradual Selection Complete.") 

        break 

    reprojectionErrRemoved = totalreprojectionErrRemoved + nselected 

    totalreprojectionErrRemoved = reprojectionErrRemoved 

    f.removePoints(threshold) 

    total_tie_points = (total_tie_points - nselected) 

    # Optimize cameras for all parameters 

    chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=True, fit_b2=True, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=True, fit_p1=True, fit_p2=True, fit_p3=True, 

fit_p4=True) 

 

    print ("Selected points removed...") 

    print ("Total Points: " + str(total_tie_points)) 

 

    points = chunk.point_cloud.points 

    f = PhotoScan.PointCloud.Filter() 

    f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReprojectionError) 

    f.selectPoints(threshold) 

    nselected = len([p for p in points if p.selected]) 

    print ("Selected Points: " + str(nselected)) 

 

    while nselected > 5 and threshold <= float(.31) and nselected < (float(0.1) * total_tie_points): 

        reprojectionErrRemoved = totalreprojectionErrRemoved + nselected 

        totalreprojectionErrRemoved = reprojectionErrRemoved 

        f.removePoints(threshold) 

        print ("Iterations remaining: " + str(y)) 

        y = (y - 1) 

        total_tie_points = (total_tie_points - nselected) 

        print ("Selected points removed...") 

        print ("Total points: " + str(total_tie_points)) 

        # Optimize cameras for all parameters 

        chunk.optimizeCameras(fit_f=True, fit_cx=True, fit_cy=True, fit_b1=True, fit_b2=True, 

fit_k1=True, fit_k2=True, fit_k3=True, fit_k4=True, fit_p1=True, fit_p2=True, fit_p3=True, 

fit_p4=True) 

        #Reselect points 

        points = chunk.point_cloud.points 

        f = PhotoScan.PointCloud.Filter() 

        f.init(chunk, criterion=PhotoScan.PointCloud.Filter.ReprojectionError) 

        f.selectPoints(threshold) 

        nselected = len([p for p in points if p.selected]) 
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        print ("Selected Points: " + str(nselected)) 

 

print ("Gradual Selection: Reprojection Error Complete.") 

print ("Final Reprojection Error Threshold: " + str(threshold)) 

 

finalReprojectionErrThreshold = str(threshold) 

 

f.resetSelection() 

 

print ("Gradual Selection Process Complete!") 

print ("Initial total points: " + str(starting_total_tie_points)) 

print ("Current total points: " + str(total_tie_points)) 

print ("Final Reconstruction Uncertainty Threshold: " + 

str(finalReconUncertaintyThreshold)) 

print ("Total Points removed during Reconstruction Uncertainty adjustment: " + 

str(totalreconUncertaintyPointsRemoved)) 

print ("Final Projection Accuracy Threshold: " + str(finalProjectionAccThreshold)) 

print ("Total points removed during Projection Accuracy adjustment: " + 

str(totalprojectionAccPointsRemoved)) 

print ("Final Reprojection Error Threshold: " + str(finalReprojectionErrThreshold)) 

print ("Total points removed during Reprojection Error adjustment: " + 

str(totalreprojectionErrRemoved)) 
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