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ABSTRACT 

The anisotropic nanostructures of noble metals are of great interest for plasmonic 
applications due to the possibility of tuning the localized surface plasmon resonance 
(LSPR) across the UV-VIS-NIR without sacrificing the linewidth as well as to achieve 
larger local field enhancement. Here, we report a simple and promising fabrication 
method of anisotropic gold nanostructures film using polystyrene-b-2vinylpyridine (PS-
b-P2VP) block copolymers (BCP) as a template. In this approach, PS-b-P2VP spherical 
micelles were first synthesized as a template followed by selective deposition of Au 
precursor inside P2VP core of the micelles using ethanol solution of Au salt. 
Subsequently, heat treatment of the precursor deposited BCP films followed by removal 
of the BCP template produced anisotropic gold nanostructures of various shapes, such as 
octahedron, icosahedron, tetrahedron, and triangular prism. A temperature- and time-
dependent annealing of the fabricated nanostructures led to the formation of clusters at 
higher temperatures. Furthermore, measurement of ensemble extinction spectra of the 
anisotropic Au nanoparticle films showed two broad distinct LSPR peaks; one in the 
visible range (~ 660 nm), and the other in the NIR range (~ 875 nm). The electrodynamic 
simulation showed that octahedron and icosahedron nanoparticles are responsible for the 
LSPR response in the visible; whereas the triangular shapes are responsible for the LSPR 
response in the NIR. Our work is expected to open up a new direction of synthesis of 
anisotropic nanostructures of noble metals that can be utilized to tune the LSPR response 
across the UV-VIS-NIR range using a simple BCP template-based method. 
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INTRODUCTION 

 

Block copolymers (BCPs) have generated a lot of interest over the last several 

years for their ability to be used in nano-patterning. They can form a variety of 

microdomains including spherical, cylindrical, lamellar and gyroid. The formation of 

these microdomains are dependent on the volume fraction of components within the bulk. 

This can be seen in Figure 1.1 after the phase separation of these different block 

components has occurred [1].  

 

 

 

 

Phase separation of the BCP blocks can be influenced with additional parameters 

such as the film preparation method [3-4], film thickness [5-6] and interfacial interactions 

[7-8] which can directly affect the morphology. BCPs can be used as templates to 

fabricate various inorganic nanostructured materials such as spherical nanoparticles, 

nanotubes, nanodisks, nanowires, nanorings, and nanodots [9-11]. The size and shape of 

Figure 1.1: Microphase separation of BCPs and formation 
of different microdomains [2]. 
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these inorganic nanostructures can be tuned by changing the BCP domain size. There are 

many applications that depend on the ability to tune these specific properties, some of 

which include chemical sensors, catalysis, information storage, electronics, 

optoelectronics, and photonics [9-14]. 

Currently there are several techniques for fabricating inorganic nanostructures 

which include photolithography, electron beam lithography and capillary lithography [14-

16]. These methods have been very useful but are limited by several factors. For 

example, conventional lithography is limited by low throughput due to the number of 

steps required to generate a particular nanostructure and by its high cost [18]. Often, these 

different lithography techniques can create locally ordered arrays in small areas but 

struggle with patterning over larger regions due to the difficulty involved in ordering 

colloid particles in a monolayer [19]. 

Block-copolymer self-assembly has shown itself to be a simple, flexible and 

powerful method that is capable of addressing several problems with existing fabrication 

techniques [20]. Block-copolymers allow the ability to control both the size and shape of 

microdomains over large areas while also proving to be a low-cost method for developing 

scaffolds for the fabrication of well-ordered inorganic nanostructures [20-22]. This 

procedure of inorganic nanostructure fabrication is usually termed as BCP lithography. 

Among different morphologies of BCP, spherical micelles have captured significant 

attention for the formation of inorganic nanoparticles of uniform shapes. These types of 

nanoparticles are of interest for plasmonic, photonics and biomedical applications [23, 

24]. BCP fabrication of spherical nanoparticles usually takes the form of a micelle 

formation. A micelle forms by the separation of both blocks in a diblock-copolymer chain 
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through their hydrophobic and hydrophilic nature by which one block will form the 

interior of the sphere and the other its surface as seen in Figure 1.2. Blocks can often be 

reversed by selecting a proper solvent to make the interior of micelles of the hydrophilic 

portion; this is termed as an inverse micelle morphology [25]. The fabrication of an 

inverse micelle morphology is usually used in cases by which the hydrophilic block is the 

interactive segment for the inorganic material deposition. 

 

 

  

 

Fabrication and Thermal effects on Anisotropic Plasmoic Nanostrucures 

The patterning of a micelle mophology can be used to great effect in materials 

research. With the addition of both thermodynamic and kinetic aspects we believe that 

the growth and nucleation of crystalline nanoparticles can be done within block-

copolymer micelles.  

Chapter 2 of this thesis will go over the fabrication of anisotropic plasmonic 

nanostructures along with their localized surface plasmon resonance extinictions. This 

work has been submitted in Nanotechnology and presently under review. In Chapter 3 we 

Figure 1.2 A schematic of a spherical micelle by separation of hydrophobic vs 
hydrophilic ends of diblock-copolymer chains in a solvent [26]. 
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take a more in depth look at the analytical effects of both annealing temperature and time 

on the fabrication of anisotropic nanoparticles. The results presented in Chapter 3 are 

presently is in preparation for journal submittion. 
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CHAPTER 2: BLOCK-COPOLYMER ASSISTED FABRICATION OF 

ANISOTROPIC PLASMONIC NANOSTRUCTURES 

 

Abstract        

The anisotropic nanostructures of noble metals are of great interest for plasmonic 

applications due to the possibility of tuning the localized surface plasmon resonance 

(LSPR) across the UV-VIS-NIR without sacrificing the linewidth as well as to achieve 

larger local field enhancement. Here, we report a simple and promising fabrication 

method of anisotropic gold nanostructures film using polystyrene-b-2vinylpyridine (PS-

b-P2VP) block copolymers (BCP) as a template. In this approach, PS-b-P2VP spherical 

micelles were first synthesized as a template followed by selective deposition of Au 

precursor inside P2VP core of the micelles using ethanol solution of Au salt. 

Subsequently, heat treatment of the precursor deposited BCP films followed by 

removal of the BCP template produced anisotropic gold nanostructures of various shapes, 

such as octahedron, icosahedron, tetrahedron, triangles, and triangular prism. A 

temperature and time dependent annealing of the fabricated nanostructures led to the 

formation of clusters at higher temperature. Furthermore, measurement of ensemble 

extinction spectra of the anisotropic Au nanoparticle films showed two broad distinct 

LSPR peaks; one in the visible range (~ 660 nm), and the other in the NIR range (~ 875 

nm). The electrodynamic simulation showed that octahedron and icosahedron 

nanoparticles are responsible for the LSPR response in the visible; whereas the triangular 

shapes are responsible for the LSPR response in the NIR. Our work is expected to open 

up a new direction of synthesis of anisotropic nanostructures of noble metals that can be 
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utilized to tune the LSPR response across the UV-VIS-NIR range using a simple BCP 

template-based method. 

 

Introduction 

 Plasmonic excitations in nanoparticles provide a means for manipulating light-

matter interactions beyond the diffraction limit. This property is being developed into 

applications such as miniaturized optical [1] and electronic [2] devices, surface enhanced 

Raman scattering and localized surface plasmon resonance based chemical and biological 

sensing [3-4], and medical diagnostics and therapeutics [5-6]. Moreover, anisotropic 

features in nonspherical nanoparticles make them ideal candidates for enhanced chemical 

[7-9], catalytic [9-10], and local field related applications [9, 11]. 

The plasmonic excitations in nanoparticles in the UV–VIS–NIR spectral range are 

mainly determined by oscillation of conduction electrons that give rise to so-called 

localized surface plasmon resonance (LSPRs) observable in their extinction, i.e. 

absorption and scattering, spectra [12-13]. It is well-known that the optical properties of 

metal nanostructures (e.g., peak position, linewidth) are strongly sensitive to the size, 

shape, and dielectric properties of the surrounding medium [14-15]. An uneven 

distribution of electromagnetic fields around anisotropic metal nanoparticles can give rise 

to shape dependent LSPR spectra. In the case of spherical nanoparticles, the LSPR 

spectra can be tuned by changing the size of the nanoparticles; however, the dipolar 

response becomes significantly broadened due to radiation damping [16]. On the other 

hand, the LSPR can be elegantly tuned across the UV-VIS-NIR without sacrificing the 

linewidth of the resonance through changing the nanoparticle geometry [17-18]. 
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Moreover, it has been shown that the local field enhancement factor depends on the 

particle eccentricity, and the local field enhancement at the tip of a spheroid is larger than 

the one created by a resonant sphere [19-21]. For example, it has been shown that gold 

nanorods have higher local field enhancement factors than nanoshells and nanospheres 

[22].  

The ability of anisotropic metal nanoparticles, in particular gold (Au) 

nanoparticles to tune LSPR across the UV-VIS-NIR without sacrificing the linewidth, 

and large local field enhancements have been shown to be useful for biomolecular 

manipulation, labeling, and detection [4, 23] as well as other applications [24-26]. In this 

regard, synthesis of metal nanostructures with controlled dimension and shapes, 

adaptability with different deposition methods, substrate flexibility and large area 

adaptability to achieve greater sensitivity and specificity is critical. In last several years, 

anisotropic Au nanostructures have been synthesized using various synthesis strategies, 

such as by reducing Au precursors using various strategies like seed mediated synthesis 

[27-29], polyol synthesis [30-32], photochemistry [33-34], electrochemical synthesis [35] 

and biochemistry [36-39]. Using these synthesis methods anisotropic Au nanostructures 

of different geometries (cubes [28, 35], triangle [38], prism [34], tetrahedra [40-41], 

octahedra [42], decahedra [43], icosahedra [44] and bipyramids [45]) were obtained. 

Alternately, templated synthesis of nanostructures has some evident advantages 

over other methods such as controllable dimension and shapes, adaptability with different 

deposition methods, substrate flexibility and large area adaptability [46-47]. In this 

regard, block copolymer (BCP) templated lithography of various inorganic materials 

have received significant attraction due to its ability to be self-assembled into a variety of 
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different nanostructure patterns along with the ease of removing the polymeric template 

[48-49]. The BCP templated method has been previously used to fabricate anisotropic 

metal nanoparticles [42, 50-51]. However, in these methods, the metal precursor loaded 

BCP micelles were vigorously stirred [52] or annealed in air [42] to produce anisotropic 

metal nanoparticles (octahedral, tetrahedral and icosahedral) with LSPR response only in 

the visible range. 

In this work, we have used a simple BCP templated method to fabricate Au 

nanoparticles of different shapes with LSPR response in the visible (VIS) – near infrared 

(NIR) range. More specifically, we have used a disorderly aggregated polystyrene-block-

poly(2vinylpyridine) (PS-b-P2VP) BCP spherical micelles as template, and heat treated 

the Au precursor tetrachroloauric acid (HAuCl4) loaded disordered BCP micelles in inert 

atmosphere to fabricate Au nanoparticle films of various shapes (octahedron, 

icosahedron, triangles, and triangular prism) at a relatively low temperature. Moreover, 

our results also show that one can change the spacing between individual nanoparticles 

by varying the annealing time and temperature to produce nanoparticle clusters. It is 

believed that the disorderly aggregated Au salt loaded micelles produce anisotropic Au 

nanoparticles while going through rapid crystallization during heat treatment in inert 

atmosphere; subsequently, at higher temperature, the Au particles assemble in the 

coalesced P2VP polymer-melt to produce nanoparticle clusters in the inert atmosphere. 

Measurement of extinction spectra of the anisotropic Au nanoparticle films showed 

distinct peaks in the visible (~660 nm) and near infra-red (~875 nm) range. The 

electrodynamic simulation performed by Finite Difference Time Domain (FDTD) 



9 
 

method showed that the visible peak arises due to octahedron and icosahedron Au 

nanoparticles, whereas the near infra-red peak arises due to triangles and triangular prism. 

 

Experimental 

Materials: Polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP) diblock 

copolymer (Mn
PS: 440 kg mol-1, Mn

P2VP: 353kg mol-1, Mw/Mn: 1.19) used for making 

BCP spherical micelles were purchased from Polymer Sources Inc. O-xylene solvent was 

used in making the solution of PS-b-P2VP copolymer. Tetrachloroauric acid (HAuCl4) 

and ethanol was used for Au deposition. All chemicals mentioned above and the cleaning 

solution of Si (Hydrogen Peroxide (H2O2) and Ammonium Hydroxide (NH4OH)) were 

purchased from Sigma Aldrich. 

Block co-polymer spherical micelles deposition: The BCP films were deposited 

on Si substrates with native oxide for all the experiments in this paper. The Si substrates 

were cleaned using H2O2, NH4OH and Distilled water, in the ratio of 1:1:5 at 65◦C for 2.5 

hrs to eliminate residual organic traces from the Si surface. Predetermined amount of PS-

b-P2VP BCP powder was dissolved in o-xylene solvent at room temperature to make a 

5wt% BCP solution. This solution is allowed to stir for 24 hours before being spin-coated 

onto the cleaned Si substrates. 

Fabrication of Au Nanoparticles: The PS-b-P2VP micelles deposited samples 

were dipped at room temperature in an Au precursor solution of 0.3wt% HAuCl4 in 

ethanol for 20 minutes. This Au salt is expected to bind only with the pyridine groups of 

P2VP polymer in the PS-b-P2VP BCPs [18, 28]. After gold deposition the samples were 

rinsed with deionized water multiple times in order to remove excess Au salts. Annealing 
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of these Au precursor infiltrated BCP micelle samples were done using a hot plate inside 

a nitrogen filled glove box and in air (depending on the experiment) at different 

temperatures. In some of the experiments, the samples were etched using oxygen plasma 

(March plasma etcher) for removing all the polymers from the samples to obtain Au 

nanoparticle films on Si. 

Characterizations: The BCP nanostructures and the Au nanostructures were 

imaged using a Field Emission Scanning Electron Microscope (FESEM) by FEI Quanta 

200 FEG instrument. The extinction spectra were measured by using a bright-field optical 

microscopy set-up. The set-up used a bright-field condenser (Olympus, NA = 0.5) and a 

60 water immersion objective (NA ≤ 1.2, Olympus UPLSAPO). An incoherent 

(tungsten- halogen) white light sources were used to illuminate the nanoparticle films and 

measure the spectra over the 450-1000 nm wavelength range. The extinction spectra were 

recorded by an CCD array detector (Andor, Newton) connected to a 303 mm Czerny-

Turner imaging spectrometer (Andor, Shamrock 303i) coupled to the side port of the 

microscope via a home-built achromatic 4f relay system. 

 

Results and Discussion 

Fig. 1 (a) shows the PS-b-P2VP micelles deposited on Si without any treatment. 

PS-b-P2VP was dissolved in PS selective solvent o-xylene which forms inverse micelles 

with P2VP spherical core and PS corona. The size distribution of the spherical micelles is 

in the range of ~ 60-80 nm as observed from Fig. 1 (a). This PS-b-P2VP micelles dipped 

in the solution of Au precursor HAuCl4 and ethanol serves two purposes: (i) selectively 

swallow the P2VP cores using ethanol which is a selective solvent of P2VP [53] and (ii) 



11 
 

infiltrate HAuCl4 inside the swollen and aggregated P2VP cores where HAuCl4 interacts 

with the pyridine group of P2VP. The micelle cores aggregate disorderly and some also 

migrate to the surface while soaking in HAuCl4 ethanol solution as seen from Fig. 1 (b). 

Subsequently, a heat treatment of HAuCl4 loaded disorderly aggregated PS-b-P2VP 

micelles in inert atmosphere promotes the formation of various geometrical shapes of Au 

nanoparticles at relatively low temperatures as shown in Figure 2.1 (d), which otherwise 

form disorderly aggregated Au spherical nanoparticles after polymer etching as shown in 

Figure 2.1 (c).  

Figure 2.2 shows the Au nanoparticles of different shapes that are formed from 

HAuCl4 loaded PS-b-P2VP micelle film due to the treatment at different temperatures 

and times in inert atmosphere. We used three different temperatures 100 oC, 200 oC and 

350 oC to treat the HAuCl4 loaded BCPs. From Figure 2.2 (a) and (b), one can see that at 

100 oC, the polymer removed Au nanoparticle films show a resemblance of films formed 

without any heat treatment as shown in Figure 2.1 (b). Figure 2.2 (c) and (d) show the 

200 oC treated samples for 2 hrs and 4 hrs, respectively. At these experimental 

conditions, we observe the formation of anisotropic Au nanoparticles with different 

shapes. The samples heat treated at 350 oC for 2 hrs and 4 hrs also exhibit anisotropic Au 

nanoparticles with different shapes as shown in Figure 2.2 (e) and (f), respectively. Note 

that for samples heat treated at 350 oC for 2 hrs and 4 hrs, the separations amongst the 

nanoparticles are somewhat reduced leading to the formation of nanoparticle clusters 

(discussed in more details in subsequent sections). 
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It has been shown previously that disordered aggregation of micelles as a template 

can lead to the formation of metal anisotropic nanostructures in the presence of proper 

reducing agents [52]; whereas an ordered micelles template upon heat treatment at a 

relatively high temperature can lead to the formation of metal anisotropic structures as 

well at relatively high temperature [42]. The mechanism of nucleation and growth of 

anisotropic Au nanoparticles formation is a complicated process with possibility of both 

kinetically and thermodynamically controlled growth; moreover, the presence of a 

spherical capping materials which is polymer in this case makes it a rather complex 

process. In our work, we show that the disorderly aggregation of Au salt loaded micelles 

when subject to rapid crystallization upon heating can form anisotropic nanostructures of 

definitive shapes even at a relatively low temperature of 200 oC to relieve the stress. We 

believe that the growth and nucleation of these particles have both kinetic as well as 

Figure 2.1: SEM images of (a) as-grown PS-b-P2VP spherical micelle film, (b) 
PS-b-P2VP micelle film shown in (a) dipped in HAuCl4 and ethanol solution and 
formed disorderly aggregated micelles, (c) disorderly aggregated Au spherical 
nanoparticle film after polymer etching the sample shown in (b), and (d) Au 
anisotropic nanoparticle film after annealing (at 200 oC) and polymer etching the 
sample shown in (b). 
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thermodynamic aspects that allow the Au nanoparticles to transform into three 

dimensional anisotropic shapes of higher surface to volume ratios which consequently 

leads to more energy per atom. The kinetic aspect is the aggregation and displacement of 

P2VP micellar core loaded with Au precursor due to the use of P2VP selective solvent 

ethanol; this played an important role in the formation of different shapes of Au particles 

which would have been otherwise spherical in shape due to the protective spherical BCP 

micelles. In the thermodynamic aspect, these randomly aggregated particles took the 

shape of different geometrical structures after heat treatment. What this shows is that 

these anisotropic shapes are the most thermodynamically stable forms of Au crystals 

while minimizing the surface energy of the particles to reach equilibrium [52, 54-55].  

 

 

 

Figure 2.2: (a-d) SEM images of different shapes of Au nanoparticles formed due to 
annealing at 200 oC and 350 oC for 2 hrs and 4 hrs. The anisotropic shapes are 
Octahedral (a), icosahedral (b), triangular (c) and beveled triangular prism (d). (e) & 
(f) show the histograms showing the percentage of the different shape of particles 
formed at 200 oC & 350 oC, respectively. (g) & (h) Histogram plots of the Au 
nanoparticle size calculated from the SEM images of Au nanoparticle films shown in 
Fig. 2 at 200 oC for 2 hrs (g), and 350 oC for 2 hrs (h). 
 

0

10

20

30

40

50

60

70

80

U
n

id
e

n
ti

fi
e

d

T
ri

a
n

g
u

la
r 

p
ri

s
m

T
ri

a
n

g
leIc
o

s
e

h
e

d
ra

l

O
c

ta
h

e
d

ra
l

 

 

C
o

u
n

ts
 (

%
)

200
o
C 2 hrs annealed(e)

0

10

20

30

40

50

60

70

80

U
n

id
e

n
ti

fi
e

d

T
ri

a
n

g
le

T
ri

a
n

g
u

la
r 

p
ri

s
m

Ic
o

s
e

h
e

d
ra

l  

 

C
o

u
n

ts
 (

%
)

350
o
C 2 hrs annealed

O
c

ta
h

e
d

ra
l

(f)

30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

55

60

 

 

C
o

u
n

ts

Au Nanoparticle size (nm)

350
o
C 2 hrs Annealed

Mean - 55nm

(g)

30 40 50 60 70 80 90 100 110

0

5

10

15

20

25

30

35

40

45

  

 

 Au Nanoparticle size (nm)

C
o

u
n

ts

200
o
C 2 hrs Annealed

Mean - 68 nm

(h)

(a)

(b)

(c)

(d)

10 nm

10 nm

10 nm

10 nm



14 
 

As mentioned earlier, by increasing annealing time and temperature the separation 

among nanoparticles are reduced. This led to the formation of nanoparticle clusters at 350 

oC as shown in Figures 2.2 (e) and (f). To further elucidate that the clusters are indeed 

formed during annealing and not during the removal of polymers: SEM images were 

recorded directly after the annealing of Au loaded polymers but before the removal of the 

polymer. From the SEM images in Figure. 2.4 (a) and (b), the assembly of particles at 

350 oC, 2 hrs treated film and cluster formation for 350 oC, 4 hrs film is clearly visible 

even before the polymer removal. 

The formation of a cluster can be attributed to the movement of the Au 

nanoparticles within the polymer matrix in the inert atmosphere. Note that in our 

experiment, the annealing temperature is higher than the glass transition temperatures of 

both PS and P2VP [56] (Tg ~ 100 oC). At T >> Tg, the polymer chains are kinetically 

more active leading to the formation of polymer melts. At this point, the polymers 

maintain the molten form due to the presence of the inert atmosphere, which protects the 

molten polymers from oxidative etching that would otherwise occur in air. During the 

heating process groups of disordered P2VP micelles which are the host of Au 

nanoparticles coalesces lead to the formation of localized droplets of minority P2VP 

within the majority matrix of molten PS. The anisotropic Au particles seem to form 

closely packed clusters inside the coalesced P2VP regions as can be seen in Figure 2.4. 

The coalesced P2VP regions become more discrete and localized within PS domain as 

the applied heating energy increases. However, due to the random movement of the 

polymer chains; the separation amongst nanoparticles in clusters are also somewhat 

random. 
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To verify this hypothesis of cluster formation, we have performed annealing 

experiments on the same Au precursor loaded PS-b-P2VP micelles in an air atmosphere. 

The SEM images of air annealed films at 200 oC for 2 hrs, 200 oC for 4 hrs, 350 oC for 2 

hrs, and 350 oC for 4 hrs are shown in Figure 2.S2 (a)-(d) and Figure 2.S3 (e)-(h) in SI, 

respectively. From the SEM images of air annealed samples; we observed Au 

nanoparticles of different geometrical shapes. This correlates well with N2 annealed 

films, but the distribution is very uniform for air annealing without any cluster formation 

at a higher temperature of 350 oC. This can be attributed to the well-known fact of 

evaporation of polymers during annealing in air at 350 oC due to oxidative etching. Our 

observation is in agreement with the results reported by Fenniri et. al. [42] during similar 

annealing experiment of HAuCl4 loaded BCPs in air. The distribution of the anisotropic 

Au particles in the films annealed at different temperatures and times in air and N2 

environments are shown in the low magnification SEM images in Figure 2.S3 for 

comparison. 

Figure 2.3: SEM images of Au nanoparticles in the polymer matrix after annealing, 
before removal of the polymers in inert atmosphere, at (a) 350 oC for 2 hrs and (b) 350 
oC for 4 hrs. 



16 
 

It is well known that the optical, physical and chemical properties are different in 

different directions for an anisotropic metal structure compared to its isotropic 

counterpart due to the confinement of electrons and consequent changes in electronic 

energy levels [12]. As a result, the optical properties of anisotropic nanostructures deviate 

from their spherical counterpart. For example, anisotropic metal nanoparticles, such as 

rods, disks, and triangular prisms, the LSPRs are typically split into distinctive dipole and 

quadrupole plasmon modes [57-58]. Furthermore, for prolate spheroidal particles, the 

dipole resonance splits into two absorption bands, longitudinal and transverse modes [59] 

with the longitudinal resonance band shifting towards longer and increasing absorption 

cross-section as the aspect ratio of the spheroid increases [59-60]. 

 

 

 

Figure 2.4: (a) Measured ensemble extinction spectra of Au nanoparticle film 
fabricated by annealing the sample at 350 oC for 4 hours. (b) Calculated the 
extinction spectra of the individual octahedron, icosahedron, triangles, and 
triangular prism nanoparticles using FDTD method. The presence of a large number 
of heterogeneous anisotropic structures with the LSPR response in the visible and 
NIR range, and their associated orientation average response produce broad peaks 
in the visible and NIR range.  
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To find out the collective LSPR of the fabricated anisotropic Au nanoparticle 

film, we have measured the ensemble averaged extinction spectra in the vis-NIR range as 

shown in Figure 2.4 (a) for the sample fabricated by 350 oC annealing for 4 hours. The 

extinction spectra show two broad distinct peaks; one in the visible range (center ~ 660 

nm, FWHM ~ 200 nm), and the other in the NIR range (center ~ 875 nm, FWHM ~ 80 

nm).  To find out the origin of these two peaks, we have calculated the extinction spectra 

of the individual octahedron, icosahedron, triangles, and triangular prism nanoparticles 

using FDTD method. As shown in Figure 2.4 (b-e), the extinction spectra of the 

octahedron and icosahedron nanoparticles show LSPR response in the visible range 

(center ~ 600 – 660 nm); whereas the extinction spectra of the triangular, and triangular 

prism nanoparticles are dominated by the LSPR response in the NIR range (center ~ 900 

nm) accompanied by very weak LSPR response in the in the visible range. Note that the 

peak positions are highly sensitive to the size parameters of the anisotropic nanoparticles 

(not shown here); and for the sake of consistency we have chosen the size parameters of 

the representative nanoparticles of Figure 2.3 (also shown in inset of Figure 2.4 (b-e)). 

Since the particle size is relatively small (average size ~ 55 – 60 nm) with a dimension 

much less than the wavelength of the light, all the conduction electrons are excited in-

phase with the incident excitation; hence the LSPR peaks that appear in the extinction 

spectra are due to the dipolar excitation. For the triangular, and triangular prism 

nanoparticles, the dominant peak in the NIR range can be attributed to the LSPR response 

along the long-axis, and the weaker peaks in the visible range can be attributed to the 

shorter axis [15].  Our calculated results are consistent with the morphology dependent 

LSPR spectra of polyhedral (cube, octahedra, cuboctahedra, icosahedra, decahedra) 
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nanoparticles that the main LSPR peak position is blue-shifted as the number of faces 

increase or the nanoparticles become more symmetric as calculated by Noguez and co-

workers for silver nanoparticles [17-18]. 

In addition to dependence on the heterogeneity of the shape and size, unlike 

nanosphere, the LSPR wavelength of the anisotropic nanoparticles depends on the 

orientation of the of the incident light relative to the particle. Hence, the ensemble 

average spectra represent a heterogeneity dependent as well as the orientation average 

response. In our experiment, due to of the presence of a large number of heterogeneous 

anisotropic structures with the LSPR response in the visible as well as NIR range, and 

their associated orientation average response, we observe broad peaks in the visible and 

NIR range. Nevertheless, our results show that LSPR wavelength can be tuned across the 

VIS-NIR resonance through changing the nanoparticle geometry. We are currently 

looking into the possibility of producing anisotropic nanoparticles with less heterogeneity 

in shape and size which correlate their optical properties with particle morphology. 

 

Conclusions 

We report a simple fabrication method of Au anisotropic nanoparticles using PS-

b-P2VP micellar template. The Au precursor loaded P2VP micelles disorderly aggregate 

and displaced with the use of P2VP selective solvent ethanol with the Au precursor which 

forms Au nanoparticles of various geometrical shapes namely octahedral, icosahedral, 

triangle and triangular prism after heat treatment at relatively low temperature. We show 

that by simply annealing an Au deposited BCP film with different times and temperatures 

can lead to the formation of clusters. Extinction spectroscopy of the anisotropic Au 
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nanoparticle films showed two LSPR peaks in the visible range (center ~ 650 nm), and 

the other in the NIR range (center ~ 875 nm). The electrodynamic simulation showed that 

octahedron and icosahedron nanoparticles are responsible for the LSPR response in the 

visible range; whereas the triangular, and triangular prism are responsible for the LSPR 

response in the NIR range. This work will be attractive for the applications of anisotropic 

nanoparticles of noble metals that can be utilized to tune the LSPR response across the 

UV-VIS-NIR range without sacrificing the linewidth of the resonance. We are in the 

process of optimizing the presented BCP templated method for controlled synthesis of 

shapes and size distribution by controlling the micelle aggregation and heating process. 
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Supplementary Information 

 

 

 

Figure 2.S1: High magnification SEM images of Au anisotropic nanoparticles 
after polymer etching, at (a) 200 oC for 2 hrs, (b) 200 oC for 4 hrs, (c) 350 oC for 2 
hrs and (d) 350 oC for 4 hrs. 

Figure 2.S2: SEM images of Au anisotropic nanoparticle films after polymer etching 
where HAuCl4 loaded PS-b-P2VP micelles annealed in air instead of N2, at (a) 200 oC 
for 2 hrs, (b) 200 oC for 4 hrs, (c) 350 oC for 2 hrs and (d) 350 oC for 4 hrs. 
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Figure 2.S3: SEM images to compare Au anisotropic nanoparticle films after polymer 
etching where HAuCl4 loaded PS-b-P2VP micelles annealed at different temperatures 
and times in N2 (a)-(d) and (e)-(h) in air. 
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CHAPTER 3: SYNTHESIS EFFECTS OF ANNEALING TIME AND 

TEMPERATURE ON THE FABRICATION OF ANISOTROPIC 

NANOPARTICLES USING A PS-b-P2VP BLOCK-COPOLYMER TEMPLATE  

 

Abstract 

The ability to control and understand the growth of crystalline structures has long 

been of interest in the scientific community and even further with the age of technology 

in terms of patterning and synthesis of nanostructures for a variety of different 

applications. This study has been designed to perform an analysis of both the size and 

morphological dependence of anisotropic nanostructures in relation to annealing 

temperature and time of a loaded Au salt micelles film of PS-b-P2VP in order to show 

how these two parameters can be manipulated to fine tune the size of anisotropic 

nanostructures on a substrate.  

 

Introduction 

With the ever-increasing demand to control both plasmonic and photonic 

properties of materials more so is the need to fabricate materials or nanostructures that 

are capable of achieving these desired properties. One such method that can be used to 

achieve this is block-copolymer (BCP) lithography. This patterning method has generated 

a lot of interest for the variety of patterning templates that can achieved and for its ability 

of direct self-assembly [1-3]. For instance, a broad range of homogeneous nanostructures 

have been synthesized by self-assembly suing BCPs, such as horizontal cylinders, 

spherical, etc. [4-7] over extensive surfaces without much difficulty. This method makes 
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it more feasible to pattern large surfaces quickly in comparison to other lithography 

techniques such as photolithography, electron beam lithography, colloidal lithography 

and capillary lithography [8-11]. Great progress has been made toward the selective 

fabrication of noble metals into a variety of different shapes including rods [12], prisms 

[13], wires [14], cubes [15] by the use of block-copolymer templates; each with their own 

applicable purposes. For example, it has been shown that gold nanorods have a higher 

local field enhancement factor in relation to nanoshells or nanospheres [16]. This 

characteristic has been shown to be useful for labeling, biomolecular manipulation and 

detection [17-18] including other applications [19-21]. More specifically anisotropic 

nanoparticles can be useful for catalytic [22-23], enhanced chemical [23-25] and local 

field applications [22-26]. It has been shown that the shape and size of metal 

nanostructures affect optical properties in respect to their peak positions and even 

linewidth [27-28]. In this regard, it is important to investigate additional methods of 

manipulation such as the effects of annealing temperature and time; in order to determine 

how this can affect the patterning of anisotropic nanoparticles through the use of block-

copolymer templating. 

 

Experimental 

Materials. Polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP) diblock 

copolymer (Mn
PS: 440 kg mol-1, Mn

P2VP: 353kg mol-1, Mw/Mn: 1.19) were used for 

making BCP spherical micelles and was purchased from Polymer Sources Inc. O-xylene 

solvent was used in making both solutions of PS-b-P2VP copolymers. Tetrachloroauric 

acid (HAuCl4) and ethanol was used for Au deposition. All chemicals mentioned above 
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and the cleaning solution of Si (Hydrogen Peroxide (H2O2) and Ammonium Hydroxide 

(NH4OH)) were purchased from Sigma Aldrich. 

Block co-polymer spherical micelles deposition. The BCP films were deposited 

on Si substrates with native oxide for all the experiments in this paper. The Si substrates 

were cleaned using H2O2, NH4OH and Distilled water, in the ratio of 1:1:5 at 65◦C for 2.5 

hrs to eliminate residual organic traces from the Si surface. O-xylene solvent was used to 

dissolve a predetermined amount of PS (440,000)-b-P2VP (353,000) BCP powder at 

room temperature to make a solution of 5wt% BCP solution. The dissolved solution was 

stirred for 24 hours before being spin-coated onto cleaned Si substrates. 

Fabrication of Au Nanoparticles. PS-b-P2VP micelles deposited samples were 

dipped at room temperature in an Au precursor solution of 0.3wt% HAuCl4 in ethanol for 

20 minutes. This Au salt is expected to bind only with the pyridine groups of P2VP 

polymer in the PS-b-P2VP BCPs [18, 28]. After gold deposition the samples were rinsed 

with deionized water multiple times in order to remove excess Au salts. Annealing of 

these Au precursor infiltrated BCP micelle samples were done using a hot plate inside a 

nitrogen filled glove box at different temperatures. Once annealing had finished the 

samples were allowed to cool down to room temperature before being taken to be etched 

using oxygen plasma (March plasma etcher) for removing all the polymers from the 

samples to obtain only Au nanoparticles on the silicone substrate’s surface. 

Characterizations. Both the BCP nanostructures and Au nanoparticles were 

imaged using a Field Emission Scanning Electron Microscope (FESEM) by FEI Quanta 

200 FEG instrument and analyzed using ImageJ. 
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Results and Discussion 

PS (440,000)-b-P2VP (353,000) diblock copolymer templates were used to test 

the effects of annealing temperature and duration time on the fabrication of Au 

anisotropic nanoparticles. Figure 3.2 (a-e) shows that by varying the annealing time for 

200 oC we can directly affect both the size and concentration of anisotropic nanoparticles 

on a substrate. Figure 3.2 (f-j) also shows a very similar trend at 350 oC. For these 

experiments data was obtained from five different annealing times of 0.5 hrs, 1.0 hrs, 2.0 

hrs, 4.0 hrs and 8.0 hrs at 200 oC. The data shows a general decrease in average 

nanoparticle size from approximately 61.9 (2) nm at 0.5 hrs to 34.4 (4) nm for 8.0 hrs of 

annealing. The same sample set also shows a change between the total number of 

particles on the surface at x 50,000 magnification. Resulting in a count of 122 

nanoparticles at 0.5 hrs increasing to 467 nanoparticles for 8 hrs annealing duration time. 

The same general trend also holds true for an annealing temperature of 350 oC and the 

same annealing times ranging from 0.5 to 8 hrs. Figure 3.2 (f) shows an approximate 

mean nanoparticle size of 65.9 (2) nm for 0.5 hrs annealing time at 350 oC. The annealing 

times ranging from 1 to 8 hrs (i.e, 1.0 hr, 2.0 hrs, 4.0 hrs and 8.0 hrs) also show a 

downward trend decreasing to 39.5 (4) nm at 8.0 hrs annealing time. In addition, a steady 

increase in the total number of nanoparticles from 125 at 0.5 hrs to 351 particles for 8.0 

hrs annealing time, at 350 °C. All data has been placed in Table 3.1 for convenience and 

ease of viewability. 
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Table 3.1 has been plotted in Figure 3.1 to show the general trend of both the 

mean particle size and the total number of distinguishable particles at both 200 oC and 

350 oC for a varied time scale ranging from 0.5 to 8.0 hours. This data has also been 

plotted in Figure 3.1 for a visual representation of the rate of changes of both the mean 

particle size and the total number of distinguishable particles. From Figure 3.1 (a, c) we 

can see that the mean particle size decreases as the total number of distinguishable 

particles increase drastically. A possible explanation for this effect will be discussed in 

conjunction with Figure 3.2 to more easily show the related distribution transition of 

particles through time. 

  

200 
o
C 

Annealing 
temperature 

Annealing 
time (hrs) 

0.5 

Mean particle 
size (nm) 

Total number of 
distinguishable particles 

1.0 

2.0 

4.0 

8.0 

61.938 
nm 
61.876 
nm 
67.731 
nm 
57.713 
nm 
34.376 
nm 

122 

128 

120 

181 

467 

350 
o
C 0.5 

1.0 

2.0 

4.0 

8.0 

65.874 
nm 
60.456 
nm 
55.031 
nm 
51.517 
nm 
39.549 
nm 

125 

149 

180 

201 

351 

Table 3.1: Measured mean particle size and total number of particles counted of 
SEM images at a magnification of x 50,000. 
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Figure 3.1: (a-b) Data plots at 200 
o
C for both mean particle size and total number of 

distinguishable particles versus annealing time. (c-d) The same type of data is plotted 
but instead at 350 

o
C. 
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The data described above and shown in Figure 3.2 exhibit a consistent trend 

excluding for the case of annealing for 4.0 hrs at 200 oC. Figure 3.2 (c) shows a reduction 

of 8 nanoparticles and a 6.0 (10) nm increase in the mean nanoparticle size for this case. 

We suspect that this variance in the sample stems from the formation of larger than 

average P2VP micelles; this in effect allowed more gold to migrate into its core during 

gold deposition, resulting in slightly larger anisotropic nanoparticles after annealing. The 

histograms shown in Figure 3.2 (a-c) exhibit negligible change both in total count and 

mean particle size at 200 oC until annealing time surpasses 2 hours. This might be 

explained by the glass transition temperatures of both PS and P2VP56 (Tg ~ 100 oC). In 

both cases the polymer chains are more kinetically active resulting in the formation of 

polymer melts at both 200 oC and 350 oC. Through this process the polymer melt allows 

Figure 3.2: (a-j) Measured nanoparticle size of all individual Au nanoparticles at a 
magnification of x 50,000 of SEM images. (a-e) Histogram plots of samples that were 
annealed at 200 oC with varied annealing of 0.5 hr (a), 1.0 hr (b), 2.0 hrs (c), 4.0 hrs 
(d), and 8.0 hrs (e). (f-j) Histogram plots of samples annealed at 350 oC for 0.5 hr (f), 
1.0 hr (g), 2.0 hrs (h), 4.0 hrs (i) and 8.0hrs (j). 
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the migration of P2VP micelles containing Au nanoparticles into larger localized droplets 

of the minority P2VP within the majority matrix of molten PS. This would explain how 

smaller indiscernible particles are capable of coalescing, resulting in the formation of 

larger nanoparticles. In comparison with 350 oC the rate of migration is much slower at 

200 oC which would account for the increase in time required before smaller 

nanoparticles coalesced into a size viewable by SEM. 

In addition to what was previously discussed; Figure 3.2 also shows the start of a 

binomial distribution. If we take a look at the histograms associated with 350 oC in Figure 

3.2 (f-j) it is easier to see this binomial distribution which appears to be taking the form 

of competing processes between the reduction of mean particle size and the increase in 

total count of distinguishable nanoparticles. Initially this binomial distribution is not very 

apparent between .5 and the 2 hours mark but starts to show up between 4 and 8 hours by 

which time most of the small particulates have already formed larger distinguishable 

measurable particles and therefore resulting in a decrease in the of rate increase of the 

total nanoparticle count. In addition to this in Figure 3.2 (i-j) we can now see the point in 

which our starting particles of 50-70 nm’s are now coalescing into very large 

nanoparticles of 140-170 nm’s in size. So now, not only is this increasing the average 

size of these nanoparticles; but it is also decreasing the total number of particles on the 

substrate. So, in short this implies that at higher temperatures and longer annealing times 

this type of distribution will become prevalent. 
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As demonstrated by Figure 3.3 the presences of small Au particulates along the 

surface clearly shows that 200 oC for 2 hours was inefficient time for the particulates to 

coalesce into larger particles which coincides with data from Figure 3.2. 

Figure 3.4 depicts a majority morphology of octahedron nanoparticles with an 

increase of other geometric shapes (i.e. truncated pyramidal, hexagonal, etc.) through the 

Figure 3.3: (a) SEM image of plasma etched sample annealed at 200 oC for 2 
hrs. (b) Zoomed image of (a). 

Figure 3.4: (a-c) SEM images of samples annealed at 200 oC for .5 hr (a), 2 hrs (b) 
and 8 hrs (c). (d-f) SEM images taken of 350 oC samples at .5hr (d), 2 hrs (e) and 8 
hrs (f). All images measures with ImageJ at an SEM magnification of x 50,000. 
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transition over time by which these anisotropic particles coalesced and grew. This 

phenomenon is even more profound when both the annealing time and temperature are 

increased to 350 oC for 8 hours as illustrated by Figure 3.4 (f). Through this we were able 

to observe the nonoptimal conditions that lead to the formation of very large 

nanoparticles alongside their smaller aggregated counterparts. What this shows is by what 

means optimal conditions can be chosen to fine tune not only the nanoparticle size but 

also the total number of nanoparticles.  

 

Conclusions 

 In this study we report an analysis of analytical data that can be used in the 

control and growth of Au anisotropic nanostructures through the use of a PS-b-P2VP 

micellar template. We were able to show that by simply changing annealing parameters, 

namely annealing time or temperature, it is possible to affect the average size and total 

number of resultant nanoparticles grown on a substrate. I hypothesize that the mechanism 

responsible for this process is related to the glass temperature of both PS and P2VP by 

which a polymer melt is formed at annealing temperatures greater than (Tg ~ 100 oC). 

This in turn, allowed the migration of Au filled P2VP micelles into larger localized 

droplets. Subsequently, smaller indiscernible particles are now grouped in close 

proximity resulting in nucleation. This allows the size manipulation of nanoparticles 

through simple parameters such as annealing temperature and time. Through this research 

we can also extrapolate by what means to maximize the growth of nanoparticles between 

a given size distribution while also minimizing the nucleation of nanoparticles above this 

desired distribution. 
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CHAPTER 4: SUMMARY 
 

 In conclusion, a simple fabrication method by which Au anisotropic nanoparticles 

can be patterned with PS-b-P2VP micelles template has been described. Furthermore, it 

was shown that Au nanoparticles of various geometrical shapes, namely octahedral, 

icosahedral, and triangular prism can be formed at a relatively low temperature of heat 

treatment. This study also investigated the extinction spectroscopy of anisotropic Au 

nanoparticles which showed two LSPR peaks in the visible range (center ~ 650 nm), and 

the other in the NIR range (center ~ 875 nm). 

In the second part of my study, the focus has been geared toward the investigation 

of the effects of thermal annealing parameters (i.e. annealing time and temperature) in a 

nitrogen atmosphere for the fabrication of anisotropic nanoparticles. I was able to show 

that by changing annealing parameters it is possible to affect the average size of 

nanoparticles on a substrate by coalescing smaller sized Au nanoparticles. From these 

results, it should be possible to extrapolate by what means it may be possible to maximize 

the growth of particles between a given range and minimize the growth of nanoparticles 

above this range. 
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