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ABSTRACT 

The development of compact sensors in recent years has inspired the use of UAS-based 

hyperspectral and aerial imaging techniques for small-scale remote sensing applications. With 

increasing concerns about climate change, spectrally-derived vegetation indices (VIs) have 

proven useful for quantifying stress-induced vegetation response. The goal of this study was to 

develop predictive models and assess methodology for modeling the biological response of a 

black walnut -dominant mixed hardwood stand to seasonal climate events using UAV-based 

hyperspectral remote-sensing. The derived VIs were evaluated against the means of four 

seasonal measures of climate calculated for a two-week period prior to the flight date. A best 

subsets regression was used to create best fitting linear regression models according to Bayesian 

Information Criterion (BIC). The highest-ranked model for total precipitation had an AdjR² of 

0.0839 and RMSE of 0.0827 inches. The highest-ranked model for maximum air temperature 

had an AdjR² of 0.9922 and RMSE of 0.5485 °F. The highest-ranked model for average air 

temperature had an AdjR² of 0.9987 and RMSE of 0.2256 °F. The highest-ranked model for total 

solar radiation had an AdjR² of 0.9961 and RMSE of 0.06405 MJ/M². The results indicate that 

select VIs measured at the canopy level may be useful in estimating the response to at least some 

measures seasonal climate. The proposed regression models could help local researchers and 

landowners in making short-term management decisions, as well as further our understanding of 

climate-induced tree stress for maintaining sustainable forests in Missouri. 

 

KEYWORDS:  tree health, forestry, UAV, UAS, black walnut, land management, seasonal 

effects, plant stress, hyperspectral, photogrammetry, vegetation indices, remote sensing  
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INTRODUCTION 

 

Literature Review 

 Within the last couple of decades, remote sensing has been substantiated as a relatively 

accurate and time-efficient approach to forest inventories and the investigation of forest variables 

(Bohlin et al., 2012; Gobakken et al., 2015; Magnussen, 2016; Puliti et al., 2015). Both 

spaceborne and airborne remote sensing have been important elements to vegetation spatial 

modeling in several innovative studies (Breidenbach & Astrup, 2012; Goerndt et al., 2010, 2011; 

Latifi et al., 2012), and airborne photogrammetry has proven to be a viable alternative to airborne 

laser scanning (ALS) for modeling forest biophysical properties (Bohlin et al., 2012; Gobakken 

et al., 2015). The use of unmanned aerial systems (UAS) for forest inventories with a multi-

temporal aspect has also been explored (Wallace et al., 2014).  

 Line scanners using area array sensors have been flown on traditional fixed-wing aircraft 

for vegetation studies (Berni et al., 2009; Hruska et al., 2012), but it is their use with multi-rotor 

UAV (Lucieer et al., 2014) that has generated interest in exploring the practicality of this type of 

research. Hyperspectral imaging has gained attention in recent years due to increased spectral 

resolution (Latifi et al., 2012), and the development of compact sensors for unmanned aerial 

vehicles (UAV) has made gathering spectral information in the field more practical (Burkart et 

al. 2014; Nackaerts et al. 2010).  

 As pointed out in the literature, the accuracy of data produced by aerial remote sensing 

techniques is affected greatly by both flight altitude and the degree of image overlap between 

flight lines (Dandois et al., 2015). It has been suggested that the acquisition of aerial data at 

specific times during the vegetative season may increase the predictive power of forest inventory 
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models. Based on the recommendations of such work, flight dates for this study were chosen 

strategically. With regard to developing forest inventory models using biophysical and spectral 

variables, it was found that the accuracy of models including a spectral component was slightly 

higher than the accuracy of those that did not. However, several reasonable drawbacks of UAS-

based spectral remote sensing have been identified, including: (1) the cost of equipment, (2) the 

limitations to coverage area resulting from battery capacity, and (3) the need for technical 

expertise to effectively process the data. (Puliti, et al., 2015) 

 With increasing concern for climate change, stress-related VIs are of growing interest in 

plant science. Concerns about drought, disease, and other biotic and abiotic factors have greatly 

contributed to their use. Past studies have reported a variety of visual indicators of plant stress, 

and it has been established that plant stress alters the reflectance of light on foliage (Nilsson, 

1995; Weber & Jorg, 1991). It is this relationship that makes it possible for researchers to 

monitor and model vegetation response to stress. Several studies have explored the use of 

spaceborne multispectral remote sensing in the calculation of structural and stress-related VIs 

(Ishimura et al., 2011; Marx and Kleinschmit, 2017; Mohd Razali et al., 2016; Moon and Choi, 

2015; Peng et al., 2016; Zhou et al., 2014), and more still have explored the use of UAS-based 

spectral imagery for precision forestry applications (Dash et al., 2018; DeWitt et al., 2017; Gini 

et al., 2012; Tao et al., 2011). Yet few have investigated the use of UAS-based spectral remote 

sensing for deriving stress or nutrient -related VIs (Goodwin et al., 2018; Sripada, 2005; Zarco-

Tejada et al., 2012).  
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Research Objectives 

 The objective of this study was to develop useful models and assess methodology for 

modeling the response of a black walnut -dominant mixed hardwood stand to seasonal 

fluctuations in climate by the successful completion of four critical phases: (1) Conduct UAS 

flights to gather raw high-resolution hyperspectral and RGB aerial data at regular intervals for 

critical phenological shifts during the growing season; (2) develop a high-resolution orthomosaic 

from the aerial images; (3) perform corrections on the raw hyperspectral imagery; and (4) 

develop a spatial-temporal model to examine the relationship between derived vegetation stress 

metrics and select seasonal climate variables. 

This study offers insight related to current methodologies for monitoring the health of 

hardwood forests using spectral remote sensing. The resulting model will be used to help local 

landowners predict the response of black walnut -dominant mixed hardwoods to seasonal climate 

stress and make informed management decisions. The model is not only useful to local 

landowners and landscape managers, but to local and regional researchers as well, for monitoring 

vegetation stress and response to the seasonal climate events and for ultimately maintaining 

sustainable forests in southern Missouri.  

 

Study Site 

 The study area is located at Journagan Ranch, a Missouri State University-managed 

property approximately 10 miles south Mountain Grove, MO (Figure 1). The site was chosen for 

its high abundance of black walnut (Juglans nigra). Although black walnut is rarely found in the 

natural forest landscape, its sensitivity to drought stemming from its evolutionary adaptation to 

humid conditions and semi-moist soils makes it a good biological indicator of climate-induced 
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stress. Furthermore, its status as an economic staple species of agroforestry operations in the 

Midwest makes it an especially suitable candidate for study.  

 The study site consists primarily of mature, dominant black walnut; yet contains a few 

codominant, and several intermediate or suppressed, hardwood species. The black walnut were 

deliberately planted along the fence line of an open field approximately 60 years prior, and due 

to lack of management, several dominant hardwood species found in the stand canopy have 

become established in the sub-canopy of the study site. 

 Ground data was collected for a single fixed-area rectangular plot encompassing the 

study site. Since the site is relatively confined, ground data was collected for tenth-acre round 

plots evenly distributed across the adjacent stand as well. Diameter at breast height (DBH) was 

measured for each tree within the field plot(s) and stand-level statistics were calculated from the 

data for both stands (Table 1). 

 

 
 

Figure 1. Study site at Journagan Ranch. 
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Table 1. Stand-level means and stand density index (SDI) for the study site and adjacent stand. 

 n DBHμ QMD SDI 

Study Site 35 11.03  12.90  93  

Adjacent Stand 157 9.48  10.80  181  

*n, number of observations; DBHμ, mean diameter for trees; QMD, quadratic mean diameter for 

trees; SDI, stand density index. 

 

Equipment 

 Assembled with a compact diffraction grating and concave mirror, this study utilizes a 

Headwall Nano-Hyperspec push-broom sensor that offers 270 spectral bands from 400-1000nm 

and 640 spatial bands across the track. The sensor was mounted to a DJI Matrice 600 Pro 

airframe. Flight plans were constructed in DJI Flight Planner, and DJI Ultimate Flight version 3 

was used to execute the plans. The position of the UAV was measured by the XSens MTi-G-710 

onboard IMU. With high precision, the IMU recorded the GPS location, roll, pitch, and yaw of 

the aircraft for the duration of the flight, and exported the information to a file for use in the geo- 

and ortho-rectification process. 

 A second UAS was mounted with a Sony a7R II camera and followed a similar flight 

path to collect aerial images of the forest canopy. The sensor was mounted to a DJI Spreading 

Wings S1000+ airframe using a Pixhawk autopilot board. The latest release of Mission Planner 

by Michael Oborne was used for loading flight plans to the Pixhawk autopilot board. Designed 

for various UAV, Mission Planner is a Windows-compatible feature-rich ground station software 

developed for the ArduPilot open source autopilot project (Mission Planner, 2017). Flight plans 

were developed with 80 percent overlap between neighboring photos for the ground control 

points (GCPs) to be witnessed in multiple images, improving the image matching process.  
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 Both UAS were remotely controlled using DJI Ground Station Pro, a feature-rich ground 

station application for DJI aircraft, which defined a flying altitude of 120m and speed of 10m/s 

for both UAS. Both UAS are used in this study are considered portable, safe, and stable: They 

possess retractable landing gear, vibration dampers, angled arms, and a gimbal mount that offers 

a 360-degree view from camera or sensor. By assuring these conditions for high-resolution 

imagery, select vegetation metrics were successfully derived from the data. 

 The position of GCPs for each flight were collected using a handheld Trimble Nomad 

unit, running TerraSync v5.81, in tandem with a Trimble Pro 6H receiver, model 98850. Using 

four local ground stations of known position, a differential correction was performed in GPS 

Pathfinder Office 5.81 to produce submeter accuracy for GCPs. The G12BUS geoid model, 

which contains spatial information for WGS 1984 (UTM Zone 15N), was used in this process. 
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METHODS 

 

UAS Data Collection 

 Both UAS were flown over the study site for three different flight dates in 2017: June 

6th, July 31st, and September 12th. Dates were strategically chosen based on the beginning, 

middle, and end of the growing season, respectively. Each flight was scheduled approximately a 

month apart and were rescheduled accordingly in the event of inclement weather. Flights were 

conducted between approximately 10:00AM and 2:00PM, when the solar elevation angle was 

greater than 45 degrees, to reduce the effects of shadow. The hyperspectral sensor was calibrated 

using a standard white reference plate prior to each flight. 

 

Development of an Orthomosaic 

 A digital surface model (DSM) was developed with the aerial imagery for each flight 

using AgiSoft PhotoScan Professional 1.3.4 (64-bit). The photogrammetry software uses feature 

matching techniques across the images, solves for intrinsic and extrinsic camera orientation 

parameters, performs a dense surface reconstruction using a combination of user-imported GCPs 

and software-generated tie points, and maps the texture to the resulting 3D surface (AgiSoft, 

2017). 

 Next, an orthomosaic of the study site was created using the DSM and the image was 

exported in TIFF format. The image was then imported into the working project directory of 

ESRI’s ArcGIS Desktop ArcMap 10.5.1. The processing parameters used for the development of 

an orthomosaic are outlined in the following list: 
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Align Photos 

Accuracy: Medium 

Generic Preselection: Yes 

Key point limit: 40,000 

Tie point limit: 2,000 

 

Build Dense Cloud 

Quality: Medium 

Depth filtering: Aggressive 

 

Build Mesh 

Surface type: Height field 

Source data: Dense cloud 

Face count: Medium 

Interpolation: Enabled 

 

Build Orthomosaic 

Surface: Mesh 

Blending mode: Mosaic 

Enable color correction: No 

Enable hole filling: Yes 

 

The default setting/value was used for all parameters not mentioned above. 

 

Image Rectification and Sampling Design 

 The hyperspectral data was initially processed using Headwall SpectralView 5.5.1 (64-

bit), a proprietary software designed for the sensor used. Due to the limitations of the software, it 

was used only to initially convert the raw image digital number values to at-sensor radiance 

values, as well as perform a crude geo- and ortho-rectification of the images before mosaicking 

them together using the multi-ortho tool. The hyperspectral mosaic for each of the three flights 

was then imported into ENVI 5.4.1 (64-bit), and a white reference calibration was performed. 

(Headwall Photonics, 2018) 

 Due to insufficiencies in the geo- and ortho-rectification of the mosaicked scene, ENVI 

was used to prepare the hyperspectral data for further image registration. This was done by first 
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visually identifying several features notable in both the uncorrected hyperspectral image, as well 

as the RGB orthomosaic created by PhotoScan. Secondly, a single pixel region of interest (ROI) 

was created for each of the identifying features, or tie points, in the hyperspectral image. Twenty 

features around the study site were identified and marked for each set of images. Next, a raster 

mask was built using the ROIs and a combination of 30 broadband and narrowband VIs were 

calculated from the spectral imagery using the inverse mask. This was done so that the resulting 

30 VI band layers displayed a visual marker pixel at each notable feature; in effect, highlighting 

the location of 20 tie points per flight for rectification of the image. The resulting multiband 

raster image was exported in IMG format. This process was repeated for each flight. (EVIS, 

2018) 

 In ESRI’s ArcGIS Desktop ArcMap 10.5.1., the multiband raster image was imported, 

and a point feature class was created for both the multiband raster and RGB orthomosaic. A 

point was created for each blank pixel representing a tie point in the multiband raster. Similarly, 

a point was also created at the location each of the corresponding tie features in the RGB 

orthomosaic. Next, the Warp tool was used to better geo- and ortho-rectify the multiband raster 

image using the coordinates of the tie points from the hyperspectral image as source points and 

coordinates of the same tie features in the RGB orthomosaic as target points. The best results 

using the 20 selected tie points in the Warp tool were achieved with transformation type set to 

POLYORDER2 and sampling type set to BILINEAR. This process was repeated for each flight. 

(ESRI, 2018) 

 Once a sufficiently geo- and ortho- rectified multiband raster product was achieved for 

each flight, VI means were derived for several uniformly distributed sample units defined by a 

systematic centric sampling approach. In ArcMap, the Create Fishnet tool was used to construct 
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a north-to-south oriented grid over the study area. Using the Buffer tool, circular sample units 

were generated at the centers of grid squares so that all sample units were 2 meters in diameter. 

Sample units existing just outside the study area were removed. During the June flight, an 

anomaly in data collection resulted in a small sliver of missing data for the study area. Therefore, 

sample units having greater than fifty percent overlap with the small tract of missing data were 

removed from the sampling population for all flights. This resulted in a total of 105 sample units 

for each sample groupor flight (Figure 2). 

 

 
Figure 2. Sampling Layout for the Study Site. 
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 Next, ModelBuilder for ArcMap was used to create a processing workflow that computes 

descriptive statistics for the bands of each sample unit within the multi-band raster image and 

outputs them to a text file (Figure 3). 

 

Figure 3. ModelBuilder workflow for extracting descriptive statistics for bands of the sample 

units. 

  

The ModelBuilder workflow implements Iterate Feature Selection to move through the 105 

sample units, and integrates two tools, Extract by Mask and Band Collection Statistics, to focus 

on a particular sample unit and to export descriptive statistics for each band to a file, 

respectively. This workflow was used for each of the flights. 

 

Multiple Linear Regression for Climate Metrics  

 Changes in the derived metrics and corresponding changes in temperature and 

precipitation were integrated in a spatial-temporal model using a script written in R 3.5.1 (64-

bit). First, the read.table function was used to import sample observation statistics from 

individual text files. Using a loop and the rbind function, the VI means for each sample unit were 

merged into a single table sorted by plot number. Subsequently, tables for each flight were 
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appended using the rbind function so that repeated measures were sorted by flight (1-3) and 

observation number (1-105). Column names were added manually to the combined table using 

the colnames function (See Appendix). 

 Next, four climate metrics were chosen from a series of climate variables measured by 

the Wright county weather station at Mountain Grove, MO. The daily weather data was 

downloaded from the historical agriculture weather database for a span of two weeks prior to 

each flight (MHAWD, 2018). The mean values of the four chosen metrics were calculated in 

Microsoft Office Excel 2013 for each of the three flights and transferred to a tab-delimited text 

file for use as response variables for multiple linear regression. Summary statistics for the chosen 

climate metrics, as measured daily for fourteen consecutive days prior to each flight, are 

displayed in Table 2. 

 In the R script, the spectable function was used to select a single climate metric, and the 

regsubsets( ) function from the leaps package was used to perform a best subsets regression. 

Since stepwise regressions only investigate a fraction of the possible models in highly 

dimensional data, exhaustive regression was used instead (R Development Core Team, 2018; 

Goerndt et al., 2010, 2011; McGaughey, 2008; see Appendix). Furthermore, an exhaustive 

approach isn’t biased by the order of predictor variables when performing multiple linear 

regression. This is important since the data is arranged in such a way that neighboring columns 

(VIs) in the R data frame used for regression are not intentionally related. That is, the VIs 

selected for analysis may or may not rely on rely on the same spectral region for their 

calculation; therefore, any covariance between their values is circumstantial with the alphabetical 

ordering of VI names.  
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Table 2. Summary statistics for select climate metrics used in linear modeling. 

Flight 1 

 

Mean Median StDev s2 SE Min Max 

Total Precipitation (in) 0.2 0.01 0.44 0.19 0.12 0 1.3 

Maximum Air Temperature (°F) 77.16 78.85 5.83 34.02 1.56 61.6 84 

Average Temperature (°F) 66.04 67.6 5.28 27.88 1.41 52.8 71.4 

Total Solar Radiation (MJ/M²) 18.76 18.14 3.9 15.21 1.04 13.8 25.8 

Flight 2 

 

Mean Median StDev s2 SE Min Max 

Total Precipitation (in) 0.05 0 0.17 0.03 0.05 0 0.6 

Maximum Air Temperature (°F) 91.05 92.15 4.56 20.76 1.22 83.2 96.9 

Average Temperature (°F) 79.41 79.6 4.11 16.87 1.1 70.8 85 

Total Solar Radiation (MJ/M²) 21.02 23.36 4.82 23.23 1.29 9.5 26 

Flight 3 

 

Mean Median StDev s2 SE Min Max 

Total Precipitation (in) 0 0 0 0 0 0 0 

Maximum Air Temperature (°F) 78.39 78.5 5.19 26.95 1.39 69 88.4 

Average Temperature (°F) 66.12 65.75 5.25 27.53 1.4 56 77 

Total Solar Radiation (MJ/M²) 18.89 19.56 3.39 11.49 0.91 10.73 22.76 

*StDev, standard deviation; s2, sample variance; SE, standard error 

 

 The 30 VIs selected for analysis are a list of both broadband and narrowband indices 

(Table 3). Broadband VIs are the most standardized measures of the overall amount and quality 

of photosynthetic material in vegetation. The simplest type of index, broadband VIs compare 
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reflectance measurements from red and near-infrared (NIR) regions. Even with sensors of lower 

spectral resolution, broadband VIs are effective for many remote sensing applications. Similar to 

the broadband VIs, narrowband VIs are also formulated to measure the amount and quality of 

photosynthetic material in vegetation. However, most narrowband VIs are calculated with 

greater resolution and focus on reflectance measurements for the red edge portion of the spectral 

reflectance curve. Used to describe the sloped region of the vegetation reflectance curve from 

690nm to 740nm, the red edge is the result of the shift from chlorophyll absorption in the high 

red wavelengths to the lower wavelengths of NIR region. Since changes in this region are 

directly linked to changes in chlorophyll absorption in the plant, the red edge is a particularly 

suitable region for monitoring changes in overall plant health. Furthermore, narrowband VIs are 

more sensitive to slight deviations in plant health than broadband VIs, especially for areas of 

dense vegetation where broadband measures may saturate (Narrowband Greenness, 2018). 

 With 30 VIs, or predictor variables p, there are 2p possible models. More complex models 

will often fit better and produce a smaller residual sum of squares (RSS) at the expense of using 

several predictor variables. Thus, the best model balances fit with size. Bayesian Information 

Criterion (BIC) penalizes larger models more heavily compared to other criterion, such as 

Akaike Information Criterion (AIC). Since BIC fluctuates only in the comparison of differently-

sized models, the results are independent of the choice of complexity. BIC was used to choose 

the top three models for regression with each of four climate variables, response variables y1, y2, 

y3, and y4. BIC is defined as 

BIC = n log 
𝑅𝑆𝑆

𝑛
 + p log (n), 

where and n number of observations. AIC may choose too complex a model, despite n (Akaike, 

1973). While BIC does not have this problem if n is sufficient, it still may choose too simple a 
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Table 3. Derived vegetation indices of the multi-band hyperspectral scene. 

  Index Type 

Band Index Name Broadband Narrowband 

B1 Anthocyanin Reflectance Index 1 (ARI1)  * 

B2 Anthocyanin Reflectance Index 2 (ARI2)  * 

B3 Carotenoid Reflectance Index 1 (CRI1)  * 

B4 Carotenoid Reflectance Index 2 (CRI2)  * 

B5 Green Atmospherically Resistant Index (GARI) *  

B6 Green Difference Vegetation Index (GDVI) *  

B7 Green Normalized Difference Vegetation Index (GNDVI) *  

B8 Green Ratio Vegetation Index (GRVI) *  

B9 Leaf Area Index (LAI) *  

B10 Modified Chlorophyll Absorption Ratio Index (MCARI)  * 

B11 Modified Chlorophyll Absorption Ratio Index 2 (MCARI2)  * 

B12 Modified Red Edge Normalized Difference Vegetation Index 

(MRENDVI) 

 * 

B13 Modified Red Edge Simple Ratio (MRESR)  * 

B14 Modified Simple Ratio (MSR) *  

B15 Modified Triangular Vegetation Index (MTVI)  * 

B16 Modified Triangular Vegetation Index - Improved (MTVI2)  * 

B17 Normalized Difference Vegetation Index (NDVI) *  

B18 Photochemical Reflectance Index (PRI)  * 

B19 Plant Senescence Reflectance Index (PSRI)  * 

B20 Red Edge Normalized Difference Vegetation Index (RENDVI)  * 

B21 Red Edge Position Index (REPI)  * 

B22 Red Green Ratio Index (RGRI)  * 

B23 Simple Ratio (SR) *  

B24 Soil Adjusted Vegetation Index (SAVI) *  

B25 Structure Insensitive Pigment Index (SIPI)  * 

B26 Transformed Chlorophyll Absorption Reflectance Index (TCARI)  * 

B27 Transformed Difference Vegetation Index (TDVI) *  

B28 Vogelmann Red Edge Index 1 (VREI1)  * 

B29 Vogelmann Red Edge Index 1 (VREI2)  * 

B30 Water Band Index (WBI)  * 
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model for any given n. BIC closely resembles K-fold cross-validation and AIC closely resembles 

leave-one-out cross-validation. AIC is defined as 

AIC = n log 
𝑅𝑆𝑆

𝑛
 + 2p. 

The equation for BIC is simply the equation for AIC whose penalty term has been multiplied by 

the factor 
1

2
 log (n) in preference of less complex models (Schwarz, 1978). Another popular 

criterion is Mallow’s Cp (Mallows, 1973). Mallow’s Cp has been shown to be equivalent to AIC 

in the case of Gaussian linear regression (Boisbunon, 2013) and was used as proxy to AIC for 

plotting purposes. Even so, AIC values were reported alongside BIC values for a comparison of 

ranking. Mallow’s Cp is defined as 

Cp = 
𝑅𝑆𝑆

𝜎2  + 2p - n, 

where σ is the variance for the model using all predictors. 

The regression models can be represented by the following equation: 

Ŷi = 𝛽0 + 𝛽1𝑥𝐵 + ... + 𝛽𝑝𝑥𝑏, 

where i = 1, 2, 3, 4 for the climate variables total precipitation (i = 1), maximum air temperature 

(i = 2), average temperature (i = 3), and total solar radiation (i = 4); 𝛽0 is the intercept of the 

regression equation; and b = 1, 2, 3, …30 for each of 30 VIs. 

 In the R script, the number of subsets of each size to record, nbest, was set to 5. The 

maximum size of the subsets allowed for examination, nvmax, was also set to 5. In effect, the 

regsubset function returned the best models with up to five allowed predictor variables. BIC and 

Mallow’s Cp values for each model were plotted. AIC, BIC, and Mallow’s Cp, were used to 

collectively rank the regression models for each seasonal climate metric. The highest ranked 

model for each metric was selected for further analysis. Summary statistics were calculated and 

the residual values were plotted against the predicted values for each of the selected models. 
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 Finally, a bootstrap analysis of the three multivariate regression models was performed to 

discern the relative importances of individual predictors and their contribution to R-squared 

using the boot.relimp( ) and booteval.relimp( ) functions of the relaimpo package for R. This 

helps prevent the over-interpretation of differences. The parameter for the number of bootstrap 

resamples was left at its default value of 1000 (R Development Core Team, 2018; see 

Appendix). Six relative importance metrics were chosen for the bootstrapping procedure. The 

name, brief description, and advantages and disadvantages of each metric are in Table 4. 

 The difficulty in decomposing R-squared for regression models with correlated predictors 

stems from the fact that each arrangement of predictors leads to a different decomposition of the 

model sum of squares. Although the use of individual metrics may be ineffective in determining 

relative importance, combinations of several metrics can provide insights regarding the 

contributions of predictors (Groemping, 2006). For this reason, the ranking of predictor 

contributions by all six relative importance metrics were considered.  
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Table 4. Relative importance metrics for bootstrap analysis. 

Metric Description Advantages and Disadvantages 

first Calculates R-squared when the predictor 

is the only predictor in the model 

Only uses direct effect of predictor 

Does not decompose R-squared into 

predictor contributions 

last Calculates the increase in R-squared when 

the predictor is added to the model with 

all other predictors 

Does not use direct effect of predictor 

Does not decompose R-squared into 

predictor contributions 

betasq Calculates the squared standardized 

coefficient using the empirical variances 

of the predictor and response 

Marginal use of direct effect of 

predictor 

Does not provide a natural 

decomposition of R-squared 

pratt Calculates the product of the standardized 

coefficient and marginal correlation 

Use is greatly limited by nature of the 

data 

Provides a semi-natural decomposition 

of R-squared 

lmg Calculates sequential R-squared values, 

but accounts for dependence on ordering 

by averaging over orderings using 

unweighted averages 

Successfully decomposes R-squared 

into contributions that sum to the total 

R-squared 

Contribution may be overestimated for 

a predictor if correlated with other 

highly-contributing predictor(s) 

pmvd Calculates sequential R-squared values, 

but accounts for dependence on ordering 

by averaging over orderings using 

weighted averages with data-dependent 

weights  

Successfully decomposes R-squared 

into contributions that sum to the total 

R-squared 

Variability in estimated contributions 

of predictors dependent upon the 

nature of the data. 

*For more details related to relative importance metrics, see Groemping (2006). 
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RESULTS 

 

Criterion-based Model Selection 

 The highest ranked regression model for total precipitation was (Figures 4, 5):  

Ŷ1 = 𝛽0 + 𝛽1𝑥𝐵7, 

The highest ranked regression model for maximum air temperature, average temperature, and 

total solar radiation based on AIC, BIC, and Cp were (Table 5; Figures 4, 5):  

Ŷ2 = 𝛽0 + 𝛽1𝑥𝐵6 + 𝛽2𝑥𝐵16 + 𝛽3𝑥𝐵20 + 𝛽4𝑥𝐵24 + 𝛽5𝑥𝐵27, 

Ŷ3 = 𝛽0 + 𝛽1𝑥𝐵6 + 𝛽2𝑥𝐵16 + 𝛽3𝑥𝐵20 + 𝛽4𝑥𝐵24 + 𝛽5𝑥𝐵27, and 

Ŷ4 = 𝛽0 + 𝛽1𝑥𝐵6 + 𝛽2𝑥𝐵16 + 𝛽3𝑥𝐵20 + 𝛽4𝑥𝐵24 + 𝛽5𝑥𝐵27, respectively. 

For each climate metric, the ranking results using different criteria were equivalent. Regardless 

of the models ranked highest by AIC, BIC, and Mallow’s Cp, GDVI, MTVI, NDVI, and VREI2 

appeared as predictors in several middle-ranked regression models for all climate metrics. 

(Figures 4, 5) 

 

Table 5. Criterion values for highest ranked regression models. 

Model df AIC BIC 

y1 3 -670.29 -659.03 

y2 7 529.53 555.80 

y3 7 -30.120 -3.8519 

y4 7 -823.31 -797.04 

*df, degrees of freedom
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Figure 4. BIC ranking of regression models for (a) total precipitation, (b) maximum air temperature, (c) average temperature, and (d) 

total solar radiation. 
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Figure 5. Mallow’s Cp ranking of regression models for (a) total precipitation, (b) maximum air temperature, (c) average temperature, 

and (d) total solar radiation. 
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Model Statistics 

 The highest ranked model for total precipitation as identified by criterion-based model 

selection was with the predictor variable GNDVI (Table 6). While the model yielded a p value of 

9.959e-08 and RMSE value of 0.083 inches, the adjusted R-squared value for the model was 

only 0.087, indicating poor fit of the data to the regression line (Table 7). 

 The highest ranked model for maximum air temperature as identified by criterion-based 

model selection was with the predictor variables GDVI, MTVI2, RENDVI, SAVI, and TDVI 

(Table 8). The model yielded a p value of less than 2.2e-16, RMSE value of 0.55°F, and adjusted 

R-squared value of 0.99, indicating good fit of the data to the regression line (Table 9). 

 The highest ranked model for average temperature as identified by criterion-based model 

selection was with the predictor variables GDVI, MTVI2, RENDVI, SAVI, and TDVI (Table 

10). The model yielded a p value of less than 2.2e-16, RMSE value of 0.23°F, and adjusted R-

squared value very close to one, indicating good fit of the data to the regression line (Table 11). 

 The highest ranked model for total solar radiation as identified by criterion-based model 

selection was with the predictor variables GDVI, MTVI2, RENDVI, SAVI, and TDVI (Table 

12). The model yielded a p value of less than 2.2e-16, RMSE value of 0.064°F, and adjusted R-

squared value very close to one, indicating good fit of the data to the regression line (Table 13). 

 The residuals were plotted against the predicted values for the highest ranked model of 

each climate metric. With only three flights, or sample groups, the residuals values for each of 

the models are clearly aggregated into discrete clusters at the three predicted means (Figure 6). It 

is clear, for the highest ranked regression model for maximum air temperature (Figure 6b), 

average air temperature (Figure 6c), and total solar radiation (Figure 6d), that the models are 

relatively unbiased. That is, variation for these models can be attributed primarily to the random 
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variation in the residual values between sample units (i.e., within-group variance). In contrast, 

the highest ranked model for total precipitation exhibits significantly greater relative variation in 

the predicted values for each sample group (i.e., between-group variance; Figure 6a), indicating 

relatively low model strength. Due to the discrete nature of the data resulting from a low number 

of sample groups, patterns in the distribution of error terms cannot be inferred from the results 

with confidence. However, it should be noted that the distribution of error for the highest ranked 

model for average temperature (Figure 6c) appears slightly more homoscedastic in comparison 

with all other models (Figure 6, a, b, and d), based on the distribution of residual groupings 

around the zero line. 

 

Table 6. Regression model for Green Normalized Difference Vegetation Index (GNDVI) and 

total precipitation. 

Predictors Estimate SE T value Pr(>|t|) 

Intercept 0.11 < 0.01 16.57 < 2e-16 

GNDVI -0.09 0.02 -5.46 9.96e-08 

*SE, standard error 

 

 

Table 7. Summary statistics for regression of Green Normalized Difference Vegetation Index 

(GNDVI) and total precipitation. 

df Residual SE RMSE Multiple R2 Adj R2 F statistic P value 

313 0.083 0.083 0.087 0.084 29.76 9.959e-08 

*df, degrees of freedom; RMSE, root mean squared error (in degrees Fahrenheit) 

 

 

 

 

 

 

 

 



 

24 

Table 8. Regression model for GDVI × MTVI2 × RENDVI × SAVI × TDVI and maximum air 

temperature. 

Predictors Estimate SE T value Pr(>|t|) 

Intercept 39.82 1.37 29.11 < 2e-16 

GDVI -2.70 0.10 -26.57 < 2e-16 

MTVI2 -13.41 0.44 -30.57 < 2e-16 

RENDVI -13.29 1.32 -10.10 < 2e-16 

SAVI 14.79 0.65 22.76 < 2e-16 

TDVI 52.83 1.89 27.92 < 2e-16 

*SE, standard error 

 

 

Table 9. Summary statistics for regression of GDVI × MTVI2 × RENDVI × SAVI × TDVI and 

maximum air temperature. 

df Residual SE RMSE Multiple R2 Adj R2 F statistic P value 

309 0.554 0.549 0.992 0.992 8031 < 2.2e-16 

*df, degrees of freedom; RMSE, root mean squared error (in degrees Fahrenheit) 

 

 

Table 10. Regression model for GDVI × MTVI2 × RENDVI × SAVI × TDVI and average 

temperature. 

Predictors Estimate SE T value Pr(>|t|) 

Intercept 27.95 0.56 49.69 < 2e-16 

GDVI -2.71 0.04 -64.88 < 2e-16 

MTVI2 -13.47 0.18 -74.64 < 2e-16 

RENDVI -13.35 0.54 -24.67 < 2e-16 

SAVI 14.85 0.27 55.57 < 2e-16 

TDVI 53.06 0.78 68.17 < 2e-16 

*SE, standard error 
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Table 11. Summary statistics for regression of GDVI × MTVI2 × RENDVI × SAVI × TDVI and 

average temperature. 

df Residual SE RMSE Multiple R2 Adj R2 F statistic P value 

309 0.228 0.226 0.999 0.999 4.787e04 < 2.2e-16 

*df, degrees of freedom; RMSE, root mean squared error (in degrees Fahrenheit) 

 

 

Table 12. Regression model for GDVI × MTVI2 × RENDVI × SAVI × TDVI and total solar 

radiation. 

Predictors Estimate SE T value Pr(>|t|) 

Intercept 12.54 0.16 78.51 < 2e-16 

GDVI -0.45 0.01 -37.64 < 2e-16 

MTVI2 -2.22 0.05 -43.31 < 2e-16 

RENDVI -2.20 0.15 -14.31 < 2e-16 

SAVI 2.45 0.08 32.24 < 2e-16 

TDVI 8.74 0.22 39.55 < 2e-16 

*SE, standard error 

 

 

Table 13. Summary statistics for regression of GDVI × MTVI2 × RENDVI × SAVI × TDVI and 

total solar radiation. 

df Residual SE RMSE Multiple R2 Adj R2 F statistic P value 

309 0.065 0.064 0.996 0.996 1.61e+04 < 2.2e-16 

*df, degrees of freedom; RMSE, root mean squared error (in degrees Fahrenheit) 
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Figure 6. Residual plots for highest ranked models for (a) total precipitation against GDVI, (b) 

maximum air temperature against GDVI × MTVI2 × RENDVI × SAVI × TDVI, (c) average 

temperature against GDVI × MTVI2 × RENDVI × SAVI × TDVI, and (d) total solar radiation 

against GDVI × MTVI2 × RENDVI × SAVI × TDVI. 

 

Ranking Predictors for Select Models 

 The contribution of predictors to the highest ranked model for maximum air temperature 

(Figure 7), average air temperature (Figure 8), and total solar radiation (Figure 9) was 

determined using six relative importance metrics (Table 4). TDVI (B27), appears to have the 

greatest contribution to R-squared for the highest ranked model for maximum air temperature 

according to all relative importance metrics except last and first (Figure 7, c and d). The 
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contribution of predictors to the highest ranked model for average temperature (Figure 8) and 

total solar radiation (Figure 9) produced identical ordering results for all relative importance 

metrics. 

 

 
Figure 7. Contribution of predictors to the highest ranked model for maximum air temperature 

using relative importance metrics (a) lmg, (b) pmvd, (c) last, (d) first, (e) betasq, and (f) pratt. 

Performed using a 95% bootstrap confidence interval. Metrics normalized to sum 100%. 
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Figure 8. Contribution of predictors to the highest ranked model for average temperature using 

relative importance metrics (a) lmg, (b) pmvd, (c) last, (d) first, (e) betasq, and (f) pratt. 

Performed using a 95% bootstrap confidence interval. Metrics normalized to sum 100%. 
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Figure 9. Contribution of predictors to the highest ranked model for total solar radiation using 

relative importance metrics (a) lmg, (b) pmvd, (c) last, (d) first, (e) betasq, and (f) pratt. 

Performed using a 95% bootstrap confidence interval. Metrics normalized to sum 100%. 
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DISCUSSION 

 

Limitations 

 The two most notable limitations that shaped the methodology of this study were (1) the 

difficulties in geo- and ortho-rectifying the hyperspectral data and (2) the small number of 

sample groups for linear modeling. The complications in geo- and ortho-rectifying the 

hyperspectral data stemmed directly from the inability of the proprietary software to properly 

remove the distorting effects of tilt and terrain relief. For this reason, a manual transformation of 

the imagery using image features was necessary before sampling was possible. While the number 

of sample units was reasonably sufficient, the number of sample groups was rather low. 

Originally, there was intent to use the hyperspectral data collected for the previous year, 

effectively doubling the number of sample groups and increasing the predictive power of the 

linear models. However, disabilities of the sensor software led to workarounds which were 

impractical given the time constraints of the study, ultimately leading to the exclusion of this 

data from the analysis.  

 Due to the proprietary nature of the sensor data, correction of the imagery using the 

manufacturer’s software was the only practical option, despite its limitations. The proprietary 

nature stems largely from the use of a nonstandard unit of time for image timestamps. By using 

nonstandard time units, the software failed to account for data gaps (i.e., periodic instances of 

data not being written to the camera storage) resulting in the alignment of collected data with 

incorrect timestamps. This required the construction of surrogate data for gaps so that the 

software could process the images. The use of standard GPS time units and incorporation of a 

simple detection algorithm for these gaps would serve well toward resolving this issue.  
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 Another key inadequacy of the software that ultimately affected the end product was 

failure to support the orthorectification process with genuine elevation data. SpectralView uses 

height above the reference ellipsoid (GRS80, in this case) to approximate the earth’s surface, 

rather than orthometric height. Orthometric height is the height above the reference geoid, which 

is determined by the earth’s gravity and approximated by mean sea level. Geoid models provide 

an irregular, yet arguably more precise estimation of elevation than ellipsoid models, which 

assume that earth’s surface is smooth. Geoid models would provide a better representation of 

actual elevation and likely counter many failings of the software’s orthorectification process. The 

effect of this inadequacy resulted in an improper scaling of images in the lateral direction and 

required the orthorectification of cubes on an individual basis. 

 Aside from the time inconvenience, individually orthorectifying cubes using the software 

revealed other faults. For each image, the value of a software parameter labeled altitude offset 

had to be roughly approximated until the scaling of the orthorectified image was sufficient for 

mosaicking. While the range of values for this adjustment factor closely resembled the difference 

between the ellipsoid and geoid height, the fact that this parameter must be approximated by the 

user demonstrates the inefficiency of the software’s orthorectification protocol. Once 

orthorectified, the multi-ortho tool was used to mosaic the images. 

 Misleading in its name, the multi-ortho tool does not orthorectify multiple images. 

Instead it attempts to join already orthorectified images for the purpose of creating a spatially 

correct hyperspectral scene. Previously orthorectified images are displayed in a window and the 

position of each must be adjusted manually so that an adequate product may be achieved. 

Despite the effects of user-error in guessing at orthorectification parameters, this is somewhat 

manageable for a very small number of sufficiently orthorectified images (5 or less). However, 
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the problem of mosaicking becomes evident when attempting to orthorectify moderate to large 

numbers of images for a usable hyperspectral scene. Resolving the issues with the geo- and 

ortho-rectification process would likely eliminate the need for user-guided alignment of images 

in the mosaicking phase and result in a better end product. This tool was removed entirely in 

later versions of the software. 

 Notwithstanding the problems faced using the sensor software, tools in ArcMap made it 

possible to remedy some of the negative effects of poor geo- and ortho-rectification in the 

hyperspectral scene. After calculating VIs for the poorly rectified scene in ENVI, ArcMap used 

user-defined tie points to warp and realign the hyperspectral scene to the spatially accurate RGB 

orthomosaic. Resolving some of the unfortunate effects of substandard image rectification using 

ArcMap is what made developing a sampling structure attainable for this study. 

 It is likely that the primary customer base for Headwall’s Nano-Hyperspec sensor value 

spectral resolution more than spatial resolution, rendering further development of geo- and ortho-

rectification processes in their software unnecessary. With many spatially small-scale research 

studies, the total number of images required for analysis and the amount of terrain relief for the 

study area is relatively low. This allows insufficiencies in rectification software to have a lesser 

effect on intermediate and end products. Those of Headwall’s customer base who are involved in 

this type of research are likely more accepting of a loosely integrated Global Navigation Satellite 

System (GNSS) and inertial measurement unit (IMU) due to a lack of necessity for larger-scale 

spatial accuracy. 

 

 

 



 

33 

Conclusions 

 Despite the independent variables included in the highest ranked models for climate 

metrics having low p values, the highest ranked model for total precipitation was not strong in 

terms of prediction and had an adjusted R-squared value that was close to zero, indicating a poor 

fit of the data to the regression line. In contrast, the other regression models with the other 

climate variables produced much higher adjusted R-squared values, indicating a better fit of the 

data to the regression line, and less biased residual plots. Moreover, the top ranked regression 

models for each of the other response variables were the same. This is likely due to the fact that 

maximum air temperature, average air temperature, and total solar radiation are highly 

correlated. Therefore, it is expected that changes in these variables would correspond to changes 

in many of the same VIs. 

 It should be noted that, for the two-week window by which the mean total precipitation 

value was calculated, there was very little rainfall. While causation cannot be established to 

explain this result, it may be that the effect of temperature or the combined effect of temperature 

and other climate metrics on stress for the trees within the study area (as measured by VI values) 

is greater than the effect of precipitation on stress. In all, models with the other climate metrics 

proved stronger than models with total precipitation. 

 The associations between these VIs and seasonal climate variable means are directly 

related to the way in which these VIs are calculated; that is, the equations used in their 

calculation may utilize many of the same spectral regions, some using the same wavelengths. 

GARI, MTVI2, RENDVI, SAVI, and TDVI appear in the top three ranked models for maximum 

air temperature, average temperature, and total solar radiation. The equations used to calculate 

these VIs are listed below: 
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GARI = 
𝑁𝐼𝑅 −[𝐺𝑟𝑒𝑒𝑛 − 𝛾(𝐵𝑙𝑢𝑒 −𝑅𝑒𝑑)]

𝑁𝐼𝑅 + [𝐺𝑟𝑒𝑒𝑛 − 𝛾(𝐵𝑙𝑢𝑒 −𝑅𝑒𝑑)]
 

MTVI2 = 
1.5[1.2(𝜌800− 𝜌550) − 2.5(𝜌670− 𝜌550)]

√(2 ⋅ 𝜌800 + 1)2− (6 ⋅ 𝜌800 − 5 ⋅ √𝜌670) − 0.5

 

RENDVI = 
𝜌750− 𝜌705

𝜌750+ 𝜌705
 

SAVI = 
1.5 ⋅ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
 

TDVI = √0.5 + 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 In order to understand how RENDVI and TDVI are calculated, we must first understand 

Difference Vegetation Index (DVI). DVI is the difference between the NIR and either the red or 

blue wavelength. It can provide a generalized depiction of vegetation health, as NIR wavelengths 

are reflected much more than visible wavelengths. DVI does well to differentiate vegetation from 

soil, but it does not consider the effects of atmosphere and shadow on spectral values (Tucker, 

1979).  NDVI is simply a normalized form of DVI. NDVI is the difference between the NIR and 

red wavelengths divided by the sum of the NIR and red wavelengths. This normalization permits 

comparison between collections and at different times. A modified form of NDVI is TDVI. Also 

a broadband VI, TDVI does not saturate like SAVI and NDVI and has proven useful when 

vegetation subjacent the canopy is sparse, as in urban landscapes (Bannari et al., 2002). Unlike 

NDVI, RENDVI uses bands along the red edge rather than reflectance peaks, exploiting 

senescence, as well as minor transformations in the canopy (Gitelson, 1994; Sims and Gamon, 

2002). The equation for calculating GARI shares many similarities to NDVI, except that GARI is 

less sensitive to atmospheric effects and more sensitive to a wide range of chlorophyll 

concentrations (Gitelson, 1996). 
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 SAVI is a broadband index similar to NDVI, yet it suppresses the effects of bare soil. 

SAVI uses an adjustment factor that serves as a proxy to vegetation density. The value of this 

factor changes with the abundance of vegetation for the study area. A value of 0.5 for the 

adjustment factor was suggested as suitable for first-order decay soil conditions. The 

recommended use of this index is in areas where soil is clearly visible through the canopy 

(Huete, 1988). 

 To understand MTVI2, we must first understand Triangular Vegetation Index (TVI). TVI 

is the calculated area of an imaginary triangle whose three vertices are defined by the spectral 

values of green peak reflectance, minimum chlorophyll absorption, and the NIR shoulder. As 

photosynthetic activity and the abundance of leaf matter increases, the area of the triangle 

increases, making TVI good for approximating green LAI, but sensitive to increased chlorophyll 

activity in conditions of dense canopy (Broge and Leblanc, 2000). The narrowband MTVI 

replaces the 750nm wavelength in the TVI equation with 800nm, whose reflectance is affected 

by more by variations in leaf and canopy structures than chlorophyll activity. However, MTVI2, 

credited as a better predictor of green LAI, accounts for the spectral effects of subjacent soil, 

preserves LAI sensitivity, and is resistant to fluctuations in chlorophyll activity (Haboudane et 

al., 2004). 

 Based on the calculation of six different relative importance metrics, it is evident that 

TDVI is the primary contributor to the highest ranked model for maximum air temperature, 

average temperature, and total solar radiation. Only the relative importance metrics first and last 

produced contrary results. Even though first ranks TDVI as the second-highest contributing 

predictor, both methods are limited in their inclusion of the direct effect of the predictor, in that 

first only uses the direct effect of the predictor and last does not consider the direct effect at all.  
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Future Recommendations 

In consideration of the limitations of the sensor software, it is recommended, at least for 

studies requiring spectral remote sensing of a moderate- to large- scaled area, that spatial 

accuracy be given priority over higher spectral resolution. While high-resolution hyperspectral 

sensor may be useful when the wavelengths of interest are numerous or not known, a 

multispectral sensor may be sufficiently effective for the purpose of modeling the relationship 

between seasonal climate variation and several broadband VIs.  

Furthermore, the cost of UAV-based multispectral remote sensing is more practical than 

hyperspectral remote sensing for the majority of researchers. That is not to say that hyperspectral 

data may not be useful on a large scale, as the high spectral resolution could potentially provide 

advantage in band selection testing and the differentiation of species, among other applications, 

but that careful analysis of the quality of the sensor and its software is recommended before 

choosing the appropriate system. The cohesiveness of all parts of the system is arguably more 

important than any individual component. However, preference may vary greatly depending on 

the nature of the study and its research objectives. 

Future studies exploring the relationship between seasonal climate events and VIs should 

seek to improve statistical power by modifying the experimental design in several ways, 

including but not limited to: (1) increasing the temporal scale of the study, (2) increasing the size 

of the study area, (3) exploring various sampling structures and validation techniques, (4) 

incorporating other seasonal climate measures (e.g., total estimated evapotranspiration), and (5) 

incorporating custom or other stress-related VIs for inclusion in modeling (e.g., NDWI, TVDI, 

MSI, SRWI, PRI, EVI, etc.) It may also prove useful to develop mixed models, incorporating 
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both VIs and biophysical properties of the stand. It follows that more studies are required to 

discern the best VI for detecting a response to seasonal climate stress. 

 

Beneficiaries 

 The developed model will be used to predict the vegetation response of local hardwoods 

to water stress under seasonal changes in Southern Missouri. This type of modeling should be of 

particular interest to local landowners, researchers, and other natural resource organizations such 

as the Center for Agroforestry at the University of Missouri, the Missouri Department of 

Conservation (MDC), the United States Forestry Service (USFS), and the United States 

Department of Agriculture (USDA). While the methodology of processing spectral data for 

moderate- to large- scale operations has yet to be streamlined for all sensors and applications, the 

implications of such studies may reveal VIs, or combinations of VIs, that are highly correlated 

with seasonal climate metrics. In the short term, this type of research could aid relevant parties in 

detecting plant stress by exploring and using specific models. Even more, this type of research 

could aid in analyzing the effects of long-term climate change. 
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APPENDIX 

 

## START OF CODE------------------------------------------------------------- 

 

# FLIGHT 1------------------------------------------------------------------- 

 

# Prepare list of text files for flight 

setwd("E:/Data/Journagan/9_2017_Stats") 

filelist = list.files(pattern = ".*.txt") 

dat = lapply(filelist, FUN=read.table) 

 

# Define variables before loop, setting default dataset, column, and counter 

values 

time1dat = dat[[1]] 

time1dat = t(time1dat[,4]) 

count = 2 

 

# Loops through each text file, appending the data to a new, combined dataset 

for(i in 1:104){ 

newdat = dat[[count]] 

newdat = newdat[,4] 

newdat = t(newdat) 

time1dat = rbind(time1dat, newdat) 

count = count + 1 

} 

 

# Convert matrix created by the for loop back into a data frame 

time1dat = as.data.frame(time1dat) 

 

# Append Plot and Flight columns 

time1dat$V33=1 

 

# FLIGHT 2------------------------------------------------------------------- 

 

# Prepare list of text files for flight 

setwd("E:/Data/Journagan/7_2017_Stats") 

filelist = list.files(pattern = ".*.txt") 

dat = lapply(filelist, FUN=read.table) 

 

# Define variables before loop, setting default dataset, column, and counter 

values 

time2dat = dat[[1]] 

time2dat = t(time2dat[,4]) 

count = 2 

 

# Loops through each text file, appending the data to a new, combined dataset 

for(i in 1:104){ 

newdat = dat[[count]] 

newdat = newdat[,4] 

newdat = t(newdat) 

time2dat = rbind(time2dat, newdat) 

count = count + 1 

} 
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# Convert matrix created by the for loop back into a data frame 

time2dat = as.data.frame(time2dat) 

 

# Append Plot and Flight columns 

time2dat$V33=2 

 

# FLIGHT 3------------------------------------------------------------------- 

 

# Prepare list of text files for flight 

setwd("E:/Data/Journagan/9_2017_Stats") 

filelist = list.files(pattern = ".*.txt") 

dat = lapply(filelist, FUN=read.table) 

 

# Define variables before loop, setting default dataset, column, and counter 

values 

time3dat = dat[[1]] 

time3dat = t(time3dat[,4]) 

count = 2 

 

# Loops through each text file, appending the data to a new, combined dataset 

for(i in 1:104){ 

newdat = dat[[count]] 

newdat = newdat[,4] 

newdat = t(newdat) 

time3dat = rbind(time3dat, newdat) 

count = count + 1 

} 

 

# Convert matrix created by the for loop back into a data frame 

time3dat = as.data.frame(time3dat) 

 

# Append Plot and Flight columns 

time3dat$V33=3 

 

# APPEND FLIGHTS & DEFINE COLUMN NAMES--------------------------------------- 

 

flightdat = rbind(time1dat, time2dat, time3dat) 

colnames(flightdat) = 

c("B1","B2","B3","B4","B5","B6","B7","B8","B9","B10","B11","B12","B13","B14",

"B15","B16","B17","B18","B19","B20","B21","B22","B23","B24","B25","B26","B27"

,"B28","B29","B30","B31","B32","Flight") 

 

# MERGE FLIGHT CONDITIONS WITH DATA------------------------------------------ 

 

setwd("E:/Data/Journagan/R") 

fltcon = read.delim("Flight_Conditions.txt", header = TRUE, sep = "\t", dec = 

".") 

spectable = merge(flightdat, fltcon, by="Flight") 

 

# REDEFINE FUNCTION IN LEAPS PACKAGE----------------------------------------- 

 

library(leaps) 

 

plot.regsubsets2 =  

function(x, labels = obj$xnames, main = NULL, scale = c("bic", "Cp", "adjr2", 

"r2"), col = gray(seq(0, 0.9, length = 10)), mar = c(10, 5, 6, 3) + 0.1, ...) 

{ 
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    obj = x 

    lsum = summary(obj) 

    par(mar = mar) 

    nmodels = length(lsum$rsq) 

    np = obj$np 

    propscale = FALSE 

    sscale = pmatch(scale[1], c("bic", "Cp", "adjr2", "r2"), nomatch = 0) 

    if (sscale == 0)  

        stop(paste("Unrecognised scale=", scale)) 

    if (propscale)  

        stop(paste("Proportional scaling only for probabilities")) 

    yscale = switch(sscale, lsum$bic, lsum$cp, lsum$adjr2, lsum$rsq) 

    up = switch(sscale, -1, -1, 1, 1) 

    index = order(yscale * up) 

    colorscale = switch(sscale, yscale, yscale, -log(pmax(yscale,  

        1e-04)), -log(pmax(yscale, 1e-04))) 

    image(z = t(ifelse(lsum$which[index, ], colorscale[index],  

        NA + max(colorscale) * 1.5)), xaxt = "n", yaxt = "n",  

        x = (1:np), y = 1:nmodels, xlab = "", ylab = scale[1],  

        col = col) 

    laspar = par("las") 

    on.exit(par(las = laspar)) 

    par(las = 2) 

    axis(1, at = 1:np, labels = labels, ...) 

    axis(2, at = 1:nmodels, labels = signif(yscale[index], 2), ...) 

    if (!is.null(main))  

        title(main = main) 

    box() 

    invisible(NULL) 

} 

 

# TOTPRECIP CODE------------------------------------------------------------- 

 

# Perform Exhaustive Subsets Regression 

spectable_precip = spectable[,-c(1,32,33,35:37)] 

regsub_precip = regsubsets(TotPrecip~., data=spectable_precip, nbest=5, 

nvmax=5, method="exhaustive") 

summary = summary(regsub_precip) 

 

# MAXAIRTEMP CODE------------------------------------------------------------ 

 

# Perform Exhaustive Subsets Regression 

spectable_maxtemp = spectable[,-c(1,32:34,36,37)] 

regsub_maxtemp = regsubsets(MaxAirTemp~., data=spectable_maxtemp, nbest=5, 

nvmax=5, method="exhaustive") 

summary = summary(regsub_maxtemp) 

 

# AVGTEMP CODE--------------------------------------------------------------- 

 

# Perform Exhaustive Subsets Regression 

spectable_avgtemp = spectable[,-c(1,32:35,37)] 

regsub_avgtemp = regsubsets(AvgTemp~., data=spectable_avgtemp, nbest=5, 

nvmax=5, method="exhaustive") 

summary = summary(regsub_avgtemp) 

 

# TOTSOLARRAD CODE----------------------------------------------------------- 
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# Perform Exhaustive Subsets Regression 

spectable_solrad = spectable[,-c(1,32:36)] 

regsub_solrad = regsubsets(TotSolarRad~., data=spectable_solrad, nbest=5, 

nvmax=5, method="exhaustive") 

summary = summary(regsub_solrad) 

 

# CRITERION BASED MODEL SELECTION-------------------------------------------- 

 

#Plot BIC 

dev.new() 

par(mfrow=c(2,2)) 

plot.regsubsets2(regsub_precip, scale = "bic", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_maxtemp, scale = "bic", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_avgtemp, scale = "bic", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_solrad, scale = "bic", cex.axis=0.75, cex.lab=0.75) 

 

#Plot AdjR2 

dev.new() 

par(mfrow=c(2,2)) 

plot.regsubsets2(regsub_precip, scale = "adjr2", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_maxtemp, scale = "adjr2", cex.axis=0.75, 

cex.lab=0.75) 

plot.regsubsets2(regsub_avgtemp, scale = "adjr2", cex.axis=0.75, 

cex.lab=0.75) 

plot.regsubsets2(regsub_solrad, scale = "adjr2", cex.axis=0.75, cex.lab=0.75) 

 

#Plot Mallow CP as proxy to AIC 

dev.new() 

par(mfrow=c(2,2)) 

plot.regsubsets2(regsub_precip, scale = "Cp", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_maxtemp, scale = "Cp", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_avgtemp, scale = "Cp", cex.axis=0.75, cex.lab=0.75) 

plot.regsubsets2(regsub_solrad, scale = "Cp", cex.axis=0.75, cex.lab=0.75) 

 

# TOTPRECIP MODEL ANALYSIS--------------------------------------------------- 

 

# Report summary statistics for top 3 ranked models 

 

totprecip_mod1 = lm(TotPrecip ~ B7, data = spectable_precip) 

summary(totprecip_mod1) 

 

totprecip_mod2 = lm(TotPrecip ~ B3, data = spectable_precip) 

summary(totprecip_mod2) 

 

totprecip_mod3 = lm(TotPrecip ~ B14, data = spectable_precip) 

summary(totprecip_mod3) 

 

# MAXAIRTEMP MODEL ANALYSIS-------------------------------------------------- 

 

# Report summary statistics for top 3 ranked models 

 

maxairtemp_mod1 = lm(MaxAirTemp ~ B6+B16+B20+B24+B27, data = 

spectable_maxtemp) 

summary(maxairtemp_mod1) 

 

maxairtemp_mod2 = lm(MaxAirTemp ~ B6+B16+B24+B27+B28, data = 

spectable_maxtemp) 



 

47 

summary(maxairtemp_mod2) 

 

maxairtemp_mod3 = lm(MaxAirTemp ~ B6+B16+B24+B27+B29, data = 

spectable_maxtemp) 

summary(maxairtemp_mod3) 

 

# AVGAIRTEMP MODEL ANALYSIS-------------------------------------------------- 

 

# Report summary statistics for top 3 ranked models 

 

avgtemp_mod1 = lm(AvgTemp ~ B6+B16+B20+B24+B27, data = spectable_avgtemp) 

summary(avgtemp_mod1) 

 

avgtemp_mod2 = lm(AvgTemp ~ B6+B16+B24+B27+B28, data = spectable_avgtemp) 

summary(avgtemp_mod2) 

 

avgtemp_mod3 = lm(AvgTemp ~ B6+B16+B24+B27+B29, data = spectable_avgtemp) 

summary(avgtemp_mod3) 

 

# TOTSOLRAD MODEL ANALYSIS--------------------------------------------------- 

 

# Report summary statistics for top 3 ranked models 

 

solrad_mod1 = lm(TotSolarRad ~ B6+B16+B20+B24+B27, data = spectable_solrad) 

summary(solrad_mod1) 

 

solrad_mod2 = lm(TotSolarRad ~ B6+B16+B24+B27+B28, data = spectable_solrad) 

summary(solrad_mod2) 

 

solrad_mod3 = lm(TotSolarRad ~ B6+B16+B24+B27+B29, data = spectable_solrad) 

summary(solrad_mod3) 

 

# REPORT AIC AND BIC VALUES FOR TOP 3 RANKED MODELS-------------------------- 

 

AIC(totprecip_mod1, totprecip_mod2, totprecip_mod3) 

AIC(maxairtemp_mod1, maxairtemp_mod2, maxairtemp_mod3) 

AIC(avgtemp_mod1, avgtemp_mod2, avgtemp_mod3) 

AIC(solrad_mod1, solrad_mod2, solrad_mod3) 

 

BIC(totprecip_mod1, totprecip_mod2, totprecip_mod3) 

BIC(maxairtemp_mod1, maxairtemp_mod2, maxairtemp_mod3) 

BIC(avgtemp_mod1, avgtemp_mod2, avgtemp_mod3) 

BIC(solrad_mod1, solrad_mod2, solrad_mod3) 

 

# REPORT RMSE FOR TOP MODELS------------------------------------------------- 

 

paste("TotPrecip Mod1 RMSE: ", sqrt(mean(residuals(totprecip_mod1)^2))) 

paste("MaxAirTemp Mod1 RMSE:", sqrt(mean(residuals(maxairtemp_mod1)^2))) 

paste("AvgAirTemp Mod1 RMSE:", sqrt(mean(residuals(avgtemp_mod1)^2))) 

paste("TotSolRad Mod1 RMSE:", sqrt(mean(residuals(solrad_mod1)^2))) 

 

# PLOT REGRESSION AND RESIDUALS---------------------------------------------- 

 

dev.new() 

par(mfrow=c(2,2)) 

 

# --FOR TOTPRECIP-- 
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plot(predict(totprecip_mod1),residuals(totprecip_mod1),ylab="Residuals",xlab=

"Predicted Values") 

abline(0,0, lwd=1, lty=5) 

 

# --FOR MAXAIRTEMP-- 

plot(predict(maxairtemp_mod1),residuals(maxairtemp_mod1),ylab="Residuals",xla

b="Predicted Values") 

abline(0,0, lwd=1, lty=5) 

 

# --FOR AVGTEMP-- 

plot(predict(avgtemp_mod1),residuals(avgtemp_mod1),ylab="Residuals",xlab="Pre

dicted Values",ylim=c(-1,1)) 

abline(0,0, lwd=1, lty=5) 

 

# --FOR TOTSOLRAD-- 

plot(predict(solrad_mod1),residuals(solrad_mod1),ylab="Residuals",xlab="Predi

cted Values") 

abline(0,0, lwd=1, lty=5) 

 

# PLOT RELATIVE IMPORTANCE FOR MODELS WITH RELAIMPO PACKAGE------------------ 

 

library(relaimpo) 

# lmg - is the R2 contribution averaged over orderings among predictors 

# last - is each variables contribution when included last, also sometimes 

called usefulness 

# first - is each variables contribution when included first, which is just 

the squared covariance between y and the variable 

# pratt - is the product of the standardized coefficient and the correlation 

# betasq - is the squared standardized coefficient 

 

# --FOR MAXAIRTEMP-- 

maxtemp_bootstrap = boot.relimp(maxairtemp_mod1, b = 1000, type = 

c("lmg","last","first","pratt","betasq","pmvd"), rank = TRUE, diff = TRUE, 

rela = TRUE) 

dev.new() 

par(mfrow=c(3,3)) 

plot(booteval.relimp(maxtemp_bootstrap,sort=TRUE),mai=c(1,1,1,1)) 

 

# --FOR AVGTEMP-- 

avgtemp_bootstrap = boot.relimp(avgtemp_mod1, b = 1000, type = 

c("lmg","last","first","pratt","betasq","pmvd"), rank = TRUE, diff = TRUE, 

rela = TRUE) 

dev.new() 

par(mfrow=c(3,3)) 

plot(booteval.relimp(avgtemp_bootstrap,sort=TRUE)) 

 

# --FOR TOTSOLRAD-- 

solrad_bootstrap = boot.relimp(solrad_mod1, b = 1000, type = 

c("lmg","last","first","pratt","betasq","pmvd"), rank = TRUE, diff = TRUE, 

rela = TRUE) 

dev.new() 

par(mfrow=c(3,3)) 

plot(booteval.relimp(solrad_bootstrap,sort=TRUE)) 

 

# END OF CODE---------------------------------------------------------------- 
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