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ABSTRACT 

Anatase TiO2 has been shown to be potential applications for photo-remediation of 

chemical waste as well as for photocatalytic splitting of water.  The catalytic properties of 

TiO2 materials can be modified by doping with lanthanide (Ln) ions. In order to minimize 

the distortion and/or change of the structure of TiO2 nanoparticles, surface doping of 

anatase TiO2 nanoparticles (~ 14 nm) with several Ln ions (Nd
3+

, Gd
3+

, Eu
3+

, Yb
3+

) has 

been successfully made. X-ray diffraction (XRD) and Raman characterization shows that 

the anatase phase of treated nanoparticles is well preserved. Scanning electron 

microscopy (SEM) shows that the majority of the nanoparticles exhibit nanocrystalline 

shape and transmission electron microscopy (TEM) shows TiO2 core and Ln-TiO2 shell 

structure having a uniform phase consistent with the anatase atomic-scale structure. 

Energy Dispersive X-ray (EDX) spectroscopy confirms the presence of Ln ions within 

the Ln-TiO2 nanoparticles. Temperature dependent in situ optical measurements show an 

increase in photoluminescence (PL) in forming gas (5% H2 + 95% Ar) at 520 °C which is 

attributed to nanoparticle modification (i.e. core-shell structure) induced by doping and 

use of the hydrothermal treatment. The increase in the distinguishable features in the PL 

spectrum at low and high (near IR) wavelength regions are attributed to various 

contributions from oxygen-vacancies and trapped electrons, respectively. Furthermore, 

X-ray Photoelectron Spectroscopy (XPS) has been performed to observe the shift in the 

local chemical states due to Ln incorporation into the anatase TiO2 structure. 
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INTRODUCTION 

 

TiO2 nanostructured materials are being investigated for a number of applications, 

including photocatalysis, gas sensing, solar cell devices, antibacterial agents, and self-

cleaning coatings.
1
 Photocatalytic activity as well as other physical and chemical 

properties of the material is enhanced by the higher surface area to volume ratio inherent 

in nanostructured materials. Of the common TiO2 phases, anatase is the most 

photocatalytic, having highly suitable energy band vs NHE potential characteristics.
1 

However, anatase TiO2 remains inefficient, absorbing primarily UV light due to its wide 

bandgap (3.2 eV).
2 
Doping with lanthanide (Ln) ions has been found to be advantageous 

for enhancing the optical and catalytic properties of TiO2 nanoparticles
3
 including 

enhancing the photoreceptivity of visible light.4 However, the incorporation of larger 

amounts (i.e., greater than doping level) of Ln ions results in substantial disruption of the 

crystalline phase of anatase TiO2 nanostructures. Hydrothermal Ln-incorporated 

overgrowth of TiO2 nanoparticles and nanostructures may result in less disruption of the 

crystalline structure. In this work, we have fabricated TiO2-LnxTi1-xO2 core-shell 

nanoparticles (Ln = Nd, Eu, Gd, Yb) using hydrothermal methods. In situ 

photoluminescence (PL) characterization was made of the NPs under different 

atmospheres and to high temperatures, from which we can infer about the photocatalytic 

ability of the samples.
5
 Photoluminescence intensity has been found to correspond to 

photocatalytic ability in indirect bandgap semiconductors. Oxygen vacancies can be 



 

2 

 

manipulated by atmospheric exposure to oxidizing and reducing gasses, and in this study 

we observe these changes in situ via photoluminescence. 

 

1.1 Aims and Goals  

In 1972, Fujishima and Honda demonstrated photocatalytic splitting of water 

using a TiO2 electrode under ultraviolet light. After this development, research began in 

earnest on TiO2 to make it an efficient photocatalyst by using various techniques. One of 

the popular techniques is to dope different types of elements with TiO2 to attain the 

desirable characteristics for photocatalysis. The initial goal of the research is to observe 

the change in physical, structural and optoelectronic behavior of hydrothermally treated 

rare earth doped TiO2.  The reason for choosing rare earth dopant is the availability of 4f 

shell of rare earth elements for band gap modification of the typical TiO2. Typical anatase 

TiO2 has a band gap of 3.2 eV which makes it an inefficient photocatalyst under sunlight. 

Doping of TiO2 with lanthanide (Ln) metal dopants may alter the photocatalytic 

properties, potentially expanding responsiveness into the visible spectrum. 

 

1.2 Extent of Research on TiO2 for Photocatalysis 

Photocatalysis research on TiO2 can be classified based on applications as 

following: 

1. Drinking water purification 

2. Waste water treatment 

3. Killing of microorganisms and pathogens 
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4. Destruction of air pollutants/air purification 

5. Conversion or recovery of heavy metal ions/precious metal ions 

6. Photocatalytic reactor engineering 

7. Oil spill remediation 

8. Prevention of algal bloom and algal growth 

9. Photocatalytic oxidation coupled with other treatment processes 

10. Synthesis of visible light active photocatalytic materials 

11. Photocatalytic materials for self-cleaning, superhydrophilic, and antibacterial 

function 

12. Coating technology for product developments 

13. Photo-functional composite materials 

14. Hydrogen production through water splitting 

15. Development of visible light sensitizers and composite materials 

16. Photocatalytic conversion of N2/CO2 

17. Nano-structured TiO2 electrodes for dye-sensitized solar cells 

18. Solar reactor design and development 

19. Photocatalysis for chemicals synthesis and manufacturing 

20. Development of new synthetic method utilizing greener processes and reagents 

21. Metal corrosion prevention using a TiO2 photoanode 

22. Photocatalyst coating on metal surface for corrosion prevention 

23. Development of alternative lithographic process utilizing photocatalysis 
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1.3 Structure of TiO2 

Titanium dioxide has three main phases: rutile, anatase, and brookite. It has eight 

polymorphs, i.e., different structural modifications. Among them three metastable phases 

can be produced synthetically (monoclinic, tetragonal and orthorombic and five other 

forms (α-PbO2-like, baddeleyite-like, cotunnite-like, orthorhombic OI, and cubic phases) 

at high pressure. The main of source of titania is ilmenite ore. Another source rutile is the 

next most abundant and contains around 98% titania in the ore. Heating in the  

 

  

Figure 1. Unit cells of the TiO2 polymorphs: rutile, brookite and anatase (from left to 

right) 

 

temperature range of 600°-800 °C converts the metastable anatase and brookite phases to 

the equilibrium rutile phase. 

The structure of the three major forms are: rutile (tetragonal), anatase (tetragonal) 

and brookite (orthorhombic), which can be understood in terms of (TiO6
2- 

) octahedra 

differing by the distortion and connectivity of the octahedral chains (Figure 1 ).
6
 The 

http://en.wikipedia.org/wiki/Monoclinic_crystal_system
http://en.wikipedia.org/wiki/Tetragonal_crystal_system
http://en.wikipedia.org/wiki/Baddeleyite
http://en.wikipedia.org/wiki/Cotunnite
http://en.wikipedia.org/wiki/Ilmenite
http://en.wikipedia.org/wiki/Anatase
http://en.wikipedia.org/wiki/Brookite
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major structural parameters are summarized in Table. The most stable of these phases is 

rutile in most temperature and pressure conditions. However, there has been some recent 

evidence that the anatase phase may be more stable than the rutile phase for very small 

particle sizes (≤15 nm).
7 

 

Table 1. Physical properties of bulk TiO2. The space group notation is that of 

Schöenflies. The point group is the notation of Hermann–Mauguin.
7
 

 

 Anatase Rutile Brookite 

Crystal System Tetragonal Tetragonal Rhombohedral 

Space group 19

4hD  
14

4hD  
15

2hD  

Point group I41/amd P42/mnm Pbca 

a (Å) 3.782 4.584 5.436 

b (Å) 3.782 4.584 9.116 

c (Å) 9.502 2.953 5.135 

ρ (g/cm) 3.8-3.9 4.2-4.3 3.9-4.1 

 

1.4 TiO2 as a Photocatalyst 

Titanium dioxide generates a pair of a conduction band (CB) electron and a 

Valence Band (VB) hole in the solid oxide lattice upon absorbing a photon with energy 

greater than 3.2 eV (or wavelength<388 nm). The subsequent charge transfers at the 
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interface initiate various types of redox reactions under the ambient condition (in both air 

and water). Any semiconductor with an appropriate magnitude of the bandgap and the 

position of band edges is able to initiate photoinduced redox reactions on its surface. 

 

 
Figure 2. Energy-level diagram showing the conduction band and valence band edge 

positions of various semiconductors at pH 0 along with selected redox potentials. The 

energy scales are referenced against both the vacuum level and the normal hydrogen 

electrode (NHE).
1
 

 

Figure 2 compares the bandgap and the band edge position of various 

semiconductors at pH = 0. Other wide bandgap semiconductors with high positive values 

of Evb such as ZnO, WO3, and SnO2 often show some oxidative photocatalytic 

reactivities. However, in most cases their photoactivities are lower than those of TiO2. 

The strong remedial power of TiO2 photocatalysts is mainly ascribed to the strong 

oxidation potential of VB holes (Evb=+2.7 V NHE at pH 7) or OH radicals that are 
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produced on the TiO2 surface through the reaction of VB holes with the surface hydroxyl 

groups or adsorbed water molecules. The reaction of a VB hole should accompany the 

CB electron transfer to maintain the electro neutrality of the catalyst particle and the 

typical scavenger of CB electrons is O2. Such a sensitized photooxidation in the TiO2-

mediated remediation is closely compared with the nature’s photochemical cleanup 

mechanisms.
1
 

 

1.5 Rutile versus Anatase for Photocatalysis 

The anatase is more suitable than the rutile TiO2 for photo-catalysis because 

the former has a smaller indirect band gap whereas the latter  has a direct band gap as the 

primary band gap or its indirect band gap is very similar to its direct band gap. Indirect 

band gap semiconductors generally exhibit longer charge carrier life times compared to 

direct gap materials. A shorter electron-hole pair life in rutile than in anatase would make 

it less likely for charge carriers to participate in surface reactions. Transient 

photoconductivity measurements on single crystalline samples show longer charge carrier 

lifetimes in anatase than in rutile phase.
8
 

Surface properties play an important role in charge transfer and adsorption of 

molecules. The surface properties may differ largely for the same material for different 

surface orientations or reconstructions and consequently may contribute to the 

observation of pronounced surface effects in photocatalytic activities. Surface properties 

can be subdivided into (i) chemical effects: coordination structure of surfaces that 

controls adsorption of molecules, (ii) electronic structure of the clean surface or defects 
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and adsorbate (e.g. hydroxyl)-induced states that may be crucial for charge trapping and 

separation at the surface, (iii) interaction of molecules with surface defects, and (iv) 

surface potential differences (such as work function differences measured in vacuum or 

flat band potentials in aqueous solution) may affect charge transfer from the photocatalyst 

to molecules. The relative position of the conduction band minimum (CBM) in rutile and 

anatase is still controversial. The large band gap of anatase suggests the CBM in anatase 

to be higher than for rutile. However, recent results are suggesting that conduction band 

of anatase is actually lower than that of rutile.
8 

 

 

1.6 Gas Sensing:  

  Hydrogen is one of the powerful clean energy carriers. It is the ultimate fossil fuel 

candidate. It has a high heat of combustion (142 kJ/g), a low minimum ignition energy 

(0.017 mJ), a wide flammable range (4–75%), and a high burning velocity. The 

combustion product of hydrogen is water. That’s why it is free from contamination and 

can be converted into hydrogen and oxygen again for cyclic duty. Liquid hydrogen has 

been used for rocket fuels. Hydrogen is highly used in semiconductor processing, 

petroleum extraction, metal smelting, glassmaking, and in the chemical industry because 

of its strong reducing properties. Hydrogen can also be applied in environmental 

protection, seismic surveillance area such as for indicating certain type of bacterial 

infection, biomedical hazard, or detection of environmental pollution.
9 

 

Hydrogen gas is odorless, tasteless and colorless. It cannot be detected by humans 

without using a detection device. The wide flammable range and low ignition energy 
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makes it easy inflammable and explosive. Therefore accurate and quick hydrogen 

detection is necessary during the production, storage and use of hydrogen. It is also 

essential for controlling the hydrogen concentration of semiconductor manufacturing, 

nuclear reactors, and coal mines etc.  

As the traditional hydrogen detectors such as mass spectrometers, gas 

chromatographs and specific ionization gas pressure sensors are limited by their 

expensive cost, large size, slow response, high temperature of use, and potential safety 

hazards. Cheap hydrogen gas sensors of smaller size, and low power consumption, as 

well as lower operation temperature and faster response are required for widespread use 

such as portable and in-situ monitoring. The rapid development of the hydrogen economy 

has promoted research on new types of hydrogen gas sensors with accurate hydrogen 

sensing, near room temperature (RT) operation without power sources and compatibility 

with microelectronic integrated circuits.
9
  

There are many types of the commercially available hydrogen sensors. These 

include optical and acoustic electrochemical, semiconductor, thermoelectric, or metallic 

ones. However, semiconductor sensors exhibit fast response, long-term stability high 

sensitivity and potential for integration in hydrogen sensing performance than the other 

types. Still these kind of hydrogen sensors suffer from high operational temperatures, 

which requires high power consumption. They also have potential safety hazards. Again, 

the cross selectivity to other combustible or reducing gases is another critical issue, which 

should be restricted to enhance the sensing accuracy. Currently, semiconductor 

nanostructures such as thin films and nanowires have been employed as sensing materials 
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for building high-performance hydrogen sensors due to their high specific surface area 

and novel electron transportation properties. For example, mesoporous thin films or 

nanotube arrays synthesized by anodic oxidization show enhanced hydrogen sensing 

properties compared to traditional film-based sensors due to the greater specific surface 

area. 1D nanostructures show much higher sensing performance such a broader limit of 

detection (LOD), lower operation temperature, higher sensitivity and response time than 

thin films.  Nanoparticles-decorated semiconductor nanostructures have also been widely 

investigated for increasing of sensitivity and selectivity to hydrogen gas.
9
 

 

1.7 Lanthanide (Ln) Doping:  

Doping is a technique that can be used to vary the number of electrons and holes 

in materials. Energy transfer via photon and/or assisted phonon transitions may easily 

take place in a Ln-doped TiO2 material since Ln ions lend easily accessible energy levels 

such as 
5
D1 → 

7
F1, 

5
D0 → 

7
Fj ( j = 1, 2, 3, 4) transitions of Eu

3+
 ions will cause visible 

luminescence peaking at 543, 598, 620, 665, and 694nm.
10

  In addition, Ln-doped TiO2  

have the capacity to enhance photocatalytic activity of a TiO2 nanomaterial due to 

following properties: ; (i) unique textural properties (mesoporosity with larger BET 

surface areas and pore sizes); (ii) quantum size effect; (iii) interesting surface 

compositions (more hydroxyl oxygens, adsorbed oxygen and some percentage of Ti
3+

 

species at the surface of the products with respect to pure TiO2). The increase in 

photoactivity is probably due to red shifts to a longer wavelength, the higher adsorption, 

and the increase in the interfacial electron transfer rate. Nevertheless, there are two major 
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controversies: i) whether the lifetime of transition metal or Ln ions-doped TiO2 

semiconductor nanoparticles can be shortened by orders of magnitude caused by quantum 

size effects; ii) lanthanide ions incorporate into the lattice sites of the host or be adsorbed 

on the surface because of the different radius and valence between Ln ions and cationic 

of host.
3
 The mathematical study on Ln doping shows 4f electron levels are found to 

occupy the bottom of the CB together with Ti 3d states, which supposes a negligible 

decrease of the band gap.
11

   

The ground state electron configurations of the lanthanides of this study are: 

Nd: [Xe] 6s
2
 4f

4
 

Eu: [Xe] 6s
2
 4f

7
 

Gd: [Xe] 6s
2
 4f

7
 5d

1
 

Yb: [Xe] 6s
2
 4f

14
  

 

1.8 Role of Oxygen Vacancy in TiO2 for Photocatalysis and Gas Sensing: 

Oxygen vacancies play an important role on the photocatalytic and gas sensing 

properties of Ln-doped TiO2 NPs. Density Functional Theory (DFT) based calculations 

reveal the effect of lanthanide doping in TiO2, which provides persuasive evidence that 

the notable catalytic properties of these systems arise from the facilitated oxygen 

vacancy.
11,12 

It has been reported that titania can be reduced by annealing in an oxygen 

poor atmosphere. The reduction of TiO2 takes place through an increase in the amount of 

oxygen vacancy under mild thermal treatments. Ti
4+

 cations are reduced and migrate to 

interstitial positions, further reducing neighboring cations under hard thermal treatment. 
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In any case, vacancy formation is more likely to occur in soft synthesis methods.It is 

generally involved in the catalytic activity of TiO2 through O atom donation or uptake in 

oxidation and reduction reactions.
11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 

 

EXPERIMENTAL AND CHARACTERIZATION TECHNIQUES  

 

2.1 Hydrothermal Processing:  

Hydrothermal synthesis is a process that utilizes single or heterogeneous phase 

reactions in aqueous media at elevated temperature (T>25ºC) and pressure (P>100 kPa) 

to crystallize ceramic materials directly from solution. Syntheses are typically conducted 

at self-assisted pressure, which corresponds to the saturated vapor pressure of the solution 

at the specified temperature and composition of the hydrothermal solution. Upper limits 

of hydrothermal synthesis prolong to over 1000ºC and 500 MPa pressure. Hydrothermal 

crystallization processes afford excellent control of morphology (fibrous, spherical, 

cubic, and plate-like) size (from a couple of nanometers to less than a micron), and 

degree of agglomeration. These characteristics can be controlled in wide ranges by 

varying reaction temperature, pressure and concentrations of the reactants or stirring 

speed.
13

 

 

2.2 SEM, TEM AND EDX:  

The scanning electron microscope (SEM) is one of the most multipurpose 

instruments available for the investigation and analysis of the microstructure morphology 

and chemical composition characterizations. The SEM utilizes a focused electron beam to 

scan across the surface of the specimen systematically, producing large numbers of 

signals. These electron signals are eventually converted to a visual signal displayed on a 

cathode ray tube (CRT). Image formation in the SEM is dependent on the acquisition of 
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signals produced from the electron beam and specimen interactions. The limit of 

resolution is defined as the minimum distances by which two structures can be separated 

and still appear as two distinct objects. Resolution in a perfect optical system can be 

described mathematically by Abbe’s equation
14

 as follows:  

d = 0.612 l /n sinα 

where, d = resolution, l = wavelength of imaging radiation, n = index of refraction of 

medium between point source and lens, relative to free space, and α = half the angle of 

the cone of light from specimen plane accepted by the objective 

(half aperture angle in radians); nsinα is often called numerical aperture (NA). 

To obtain a good image we need to control the instrumental parameters 

(accelerating voltage, working distance etc.). We need to set the accelerating voltage 

correctly for proper imaging of the sample. If the accelerating voltage is too high then it 

could affect the base plate and we will get wrong information about the sample whereas 

there will be shadow effects if the voltage is too low. Working distance must be 

maintained according to the accelerating voltage. The image could be blurred if the 

working distance is large. On the other hand low working distance could produce a 

darker image. The working chamber has to be at a high vacuum in order to avoid the 

collision among the electrons and other gases. If the chamber is not at high enough 

vacuum, we will not be able to get an image of the sample. We also need to control the 

aperture. Low aperture size is necessary for beam-sensitive samples. For most of the 

applications, optimum aperture size should be kept. High aperture size is only required 

for analytical purposes.
14
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Transmission electron microscopy (TEM) is an imaging technique where a beam 

of electrons is focused onto a specimen causing an enlarged version to appear on a 

fluorescent screen or layer of photographic film. In TEM a thin specimen is illuminated 

with primary electrons. The images can be formed in TEM by using either the central 

spot or the scattered electrons. The electrons that are used to form the image are selected 

by insertion of the electron beam through an aperture into the back focal plane of the 

objective lens. Most of the diffraction pattern is blocked so that only a fraction of the 

electrons are made visible through the aperture. External drives are used to control the 

aperture so that either the direct electrons or scattered electrons go through it. If the direct 

beam is selected, then the resultant image is known as a bright-field image. On the other 

hand, if scattered electrons of any form are selected then it’s called a dark-field image.
15

 

Energy-dispersive X-ray spectroscopy (EDS or EDX) is an analytical technique 

used for the elemental analysis or chemical characterization of a sample. When electrons 

of appropriate energy impinge on a sample, they cause the emission of x-rays whose 

energies and relative abundance depend upon the composition of the sample. Using this 

measure to analyze the elemental content of micro-volumes is what we commonly mean 

by microanalysis. Microanalysis is the easiest method for analyzing microscopic samples. 

It is sensitive to low concentrations—minimum detection limits (MDL) are below 0.1% 

in the best cases and typically less than 1%; and its dynamic range runs from the MDL to 

100%, with a relative precision of 1% to 5% throughout the range. Furthermore, the 

technique is practically nondestructive in most cases, and requirements for sample 

preparation are minimal.
16

 

http://en.wikipedia.org/wiki/Elemental_analysis
http://en.wikipedia.org/wiki/Characterization_%28materials_science%29
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2.3 X-ray diffraction (XRD):  

Powder X-ray diffraction offers a convenient method to characterize materials by 

using their constituent crystal structures. A crystalline sample contains regular repeating 

arrays of atoms. When the sample is irradiated by a monochromatic X-ray beam, it 

generates a unique spectrum in the form of diffraction peaks as a function of scattering 

angle. A powder diffractogram is used to identify crystalline components of a sample by 

the diffraction process. Powder diffraction can easily and unambiguously identify the 

crystalline forms of a material. XRD can quantify phase amounts, solve crystal structures, 

and refine crystal structures, determine micro-structural characteristics such as crystallite 

size, shape and strain, identify the spatial distribution of phases down to the micron level 

using mapping microdiffraction, and investigate phase stability and reactions under a 

range of different conditions e.g. time, temperature, pressure and atmosphere.
17

 

 

2.4 Raman Spectroscopy:  

In Raman spectroscopy, the sample is irradiated by intense laser beams in the UV-

visible region. The scattered light is generally observed in the direction perpendicular to 

the incident beam (υ0). The scattered light consists of two types: one, called Rayleigh 

scattering, which is strong and has the same frequency as the incident beam, and the 

other, called Raman scattering, which is very weak (~ 10
-5

 of the incident beam) and has 

frequencies υ0 ± υm, where υm is a vibrational frequency of a molecule. The υ0-υm and 

υ0+υm lines are called the Stokes and anti-Stokes lines, respectively (Figure 3).
18 

Thus, in 

Raman spectroscopy, we measure the vibrational frequency (υm) as a shift from the 
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incident beam frequency (υ0). Raman spectra are measured in the UV-visible region 

where the excitation as well as Raman lines appear.
18

 

 

 

Figure 3. Raman spectrum of CCI4 (488.0 nm excitation)  

 

2.5 Photoluminescence (PL):  

Photons are absorbed and electronic excitations are created when light of 

sufficient energy is incident on a material. After a while, these excitations relax and the 

electrons return to the ground state. PL occurs due to the radiative relaxation of electronic 

excitations. Information about the photoexcited material can be found by analyzing PL. 

The PL spectrum can provide information about the transition energies associated with 

the electronic excitations. Transition energies can be used to determine electronic energy 
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levels of a material. The relative rates of radiative and nonradiative recombination can be 

measured by PL. Information about the electronic states and bands can be found by 

observing the variation of PL intensity with external parameters like temperature and 

applied voltage. PL analysis is a useful tool in the characterization of surfaces. The 

energy distribution and density of interface states can be ascertained by studying the 

excitation intensity dependence of the PL spectrum. The presence of surface adsorbates 

affects the intensity of the PL signal. The depth of the trap can be determined by 

observing thermal activation in temperature-dependent PL. PL can be used to study 

virtually any surface in any environment; that is why it can be used to monitor changes 

induced by surface modification in real time. PL is usually not sensitive to the sample 

chamber pressure. Henceforth, it can be used to study surface properties in relatively 

high-pressure semiconductor growth reactors. Although PL depends quite strongly on 

temperature, with liquid helium temperatures being required for the highest spectral 

resolution, whereas room-temperature measurements are sufficient for many purposes. In 

addition, PL has little effect on the surface under investigation.  Low excitation can 

minimize sample heating and photoinduced changes. In situ PL measurements require 

optical access to the sample chamber. Compared with other optical methods, PL is less 

rigorous about sample thickness, beam alignment, and surface flatness. The advantages of 

PL analysis listed above derive from the power to probe fundamental electronic 

properties and the simplicity of optical measurements. The fundamental disadvantage of 

PL analysis also follows from the reliance on optical techniques: the sample under 

investigation must emit light. Indirect-bandgap semiconductors, where the conduction 
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band minimum is separated from the valence band maximum in momentum space, have 

inherently low PL efficiency. Nonradiative recombination tends to dominate the 

relaxation of excited populations in these materials. This problem can be augmented by 

poor surface quality, where rapid nonradiative events may occur. Nevertheless, once a PL 

signal is detected, it can be used to characterize both nonradiative and radiative 

mechanisms. Although it may not be possible to identify directly the nonradiative traps 

via PL, their signature is evident in several types of PL measurements. Another 

shortcoming of PL is the difficulty in estimating the density of interface and impurity 

states. When these states have radiative levels, they are readily identified in the PL 

spectrum, and the size of the associated PL peaks provides a relative measure of their 

presence in the sample. However, measuring the absolute density of these states is a far 

more formidable task and typically requires an exhaustive analysis of the excitation 

intensity dependence of the PL signal.
19

 

 

2.6 X-ray photoelectron spectroscopy (XPS):  

X-ray photoelectron spectroscopy (XPS) owes its quantification aspect to 

Einstein’s explanation of the photoelectric effect in 1905. XPS has excitation energies 

above a few hundred eV to the hard X-ray regime. Therefore, both valence levels and 

core levels are readily observable in XPS spectra. The fundamental energy conservation 

equation in photoemission is the following: 

hυ = EVacuum binding+ Ekinetic + Vcharge + Vbias 

     = EFermi binding+ ϕspectrometer + Ekinetic(2) + Vcharge + Vbias  
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in which h is Planck’s constant; υ is the photon frequency; EVacuum binding is the binding 

energy of a given electron relative to the vacuum level of the sample; Ekinetic is the kinetic 

energy of the emitted electron just as it leaves the sample; Ekinetic(2) is the kinetic energy 

as measured finally in the spectrometer, which may be different from Ekinetic by a small 

contact potential difference if the sample is a solid; EFermi binding is the binding energy 

relative to the Fermi level or electron chemical potential; ϕspectrometer is the work function 

of the spectrometer used to measure kinetic energy, Vcharge is a possible charging potential 

on the sample which could be built up if the secondary electron and emitted 

photoelectron current is not fully compensated by flow from the sample ground, Vbias is a 

time-dependent bias potential that may be placed between the spectrometer and the 

sample.
20

 A number of useful effects can be extracted from XPS energy distribution 

curves: (i) core-level satellites and final-state configuration interaction; (ii) core-level 

chemical shifts; (iii) core-level multiplet splittings; (iv) core-level vibrational fine 

structure; (v) photoelectron diffraction and holography; (vi) circular and linear dichroism; 

(vii) resonant photoemission.
20
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EXPERIMENTAL 

 

3.1 Sample Preparation:  

TiO2 nanoparticles were hydrothermally treated to cause surface doping and core-

shell particle formation with Nd
3+

, Gd
3+

, Eu
3+

, Yb
3+ 

ions. Lanthanide metal salts 

(NdCl3.6H2O, GdCl3·6H2O, Eu(NO3)3,YbCl3.6H2O) (0.02M) were dissolved in 

deoxygenated HPLC water, and TiO2 nanoparticles were added to the solutions. About 

0.06-0.08 g of high purity (99%) TiO2 anatase nanoparticles were added per 10mL 0.02M 

of the solution.  The pH of the solutions was maintained at ~6 at room temperature by 

adding either NH4OH or dilute HCl , in order to retain the anatase phase of the 

nanoparticles. The samples were heated in our Hastelloy C-276 hydrothermal reactor7
 
for 

approximately 18 hours above 200°C, and were removed with deionized water.  

 

 

  

 

 

 

 

 

Figure 4. The hydrothermal reactor and gaskets. On the left is the hydrothermal reactor. 

The reactor is made of Hastelloy C-276 alloy. On the right, the two gaskets used for 

sealing between the reactor and lid. 
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Suspended particles were settled by centrifuge, excess water was decanted, and 

nanoparticles were evaporated in ambient conditions. 

  

3.2 Calcination:  

The nanoparticle samples were calcined at 500°C in air (figure 5), in order to 

remove hydrocarbons from the surface. The precipitation of Ln cations on TiO2 NPs can 

create certain amount of defects which act as recombination centers that decrease the 

photocatalytic activity. This adverse effect can be mitigated by calcination of the doped 

TiO2 NPs. 

 

 

Figure 5. Calcination chamber for the nanoparticles 
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3.3 XRD:  

Powder x ray diffraction (XRD) measurements were performed on each of the 

samples using a Bruker D8 Discover instrument (Figure 6). The XRD instrument was 

operated at 40 kV and 40 mA with characteristic x-ray radiation from a Cu tube (Cu Kα 

with λ = 1.54184 Å). Reitveld refinement analyses were made of XRD spectra averaged 

from 6 individual spectra. XRD data were analyzed by using DIFFRAC plus Topas 

software. 

 
Figure 6. Bruker D8 Discover instrument  

 

The radius  of the individual spherical nanocrystals has been estimated using the 

Scherrer equation 

 
cos

K
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Where, K  is a shape factor constant,   is the x-ray wavelength,   is the full width half 

maximum (FWHM) of a broadened diffraction peak, and   is the angle that the 

diffraction peak was detected at.
7
 

 

3.4 SEM, TEM and EDX: 

 Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy 

(EDX) using an FEI Quanta 200 instrument (figure 7), operating at 2~20 kV, were 

performed on each of the samples of this study and on the TiO2 NPs. The SEM-EDX 

spectroscopy was made using a Field Emission Gun (FEG). The samples were imaged on 

carbon-backed tape. Transmission electron microscopy (TEM) was performed at 300 kV 

using an FEI Titan HRTEM. Nanoparticle samples were dispersed into heptane solution 

by using sonication method. Then TEM grids were put into the solution for few seconds 

to prepare the TEM samples. EDX measurements were performed to determine the 

elemental quantification by using both SEM and TEM systems.   

 

3.5 Raman and PL: 

 In-situ measurements were performed using a Linkam THMS600 heating stage, 

in both air and forming gas (5% hydrogen with 95% argon). Samples were heated up to 

520°C, on glass slides and aluminum plates, and kept at temperature for 2 hours. During 

the measurement in forming gas, the gas flow rate was kept at 1.3 LPM. Raman 
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Figure 7. FEI Quanta 200 instrument of PAMS, Missouri State University 

 

measurements were performed using a solid-state 785 nm laser and a 50X objective. PL 

spectra were collected using a 325 nm laser excitation source. Raman spectra were 

measured at 25° and 520°C. Room temperature PL intensity is considerably lower at low 

temperature than that of higher temperature measurement. To obtain optimum signal, it is 

necessary to focus correctly. The focusing was done by using 15× NUV lens The PL data 

has been analyzed from fitted curve by using OriginPro 8.5.1software. NGSLabSpec 

software has been used to find the peak positions in Raman data. 
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Figure 8. Linkam stage with the Raman setup for In-situ Raman and PL measurement. 

 

3.6 XPS:  

XPS was performed in the Jordan Valley Innovation Center (JVIC).  

 

 
Figure 9. XPS setup in Jordan Valley Innovation Center (JVIC) 
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The XPS spectrometer uses the characteristic Al-Kα transition at an energy of 1.486 keV 

or 8.33 Å, which is usually considered to be in the soft X-ray range. Peak identification 

and chemical compositional analysis were done using the Thermo Advantage chemical 

analysis software. Fitting of XPS spectra was made using OriginPro 8.5.1 software. 
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RESULTS AND DISCUSSION 

 

4.1 XRD: 

Analysis of x-ray diffraction (XRD) data confirm the preservation of the anatase 

structure of TiO2-LnxTi(1-x)O2 (Ln-TiO2) core-shell NPs (Figure 10).  This is consistent 

 
Figure 10. XRD data (a) of Anatase TiO2 (black), Nd-doped TiO2 (red), Eu-doped TiO2 

(blue), Gd-doped TiO2 (dark yellow) and Yb-doped TiO2 (wine).The XRD data indicate 

the preservation of anatase structure after the doping. * means contamination peak. 
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with a small amount of overgrowth, Ln precipitation on and core-shell formation of the 

TiO2 NPs. The crystallite size for pure anatase TiO2 is 13.7 nm. Scherrer equation 

analysis is consistent with a growth in size of the nanoparticles of 1 to 3nm. This suggests 

that the Ln dopants are precipitated within the surface and near-surface regions of the 

nanoparticles. 

 

 

Figure 11. The Rietveld refinement (Rwp=4.3%) for the representative Gd-TiO2 sample. 

 

  The Rietveld refinement analyses from TOPAS software indicate the 

lattice parameters and structural information of all the nanoparticle samples. Figure 11 

shows one of the representative system (Gd-TiO2 sample). The structural data obtained 

from the Rietveld refinement are presented in Table 2. 
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Table 2. Rietveld refinement analysis data for all the samples 

Sample ID a (Å) c (Å) Crystal Size (nm) 

TiO2 3.8 9.535 13.7 

Yb-TiO2 3.781 9.509 13.27 

Eu-TiO2 3.792 9.507 13.68 

Gd-TiO2 3.783 9.497 16 

Nd-TiO2 3.788 9.501 15.1 

 

 
Figure 12. Raman data (a) of Anatase TiO2 (black), Nd-doped TiO2 (red), Eu-doped TiO2 

(blue), Gd-doped TiO2 (dark yellow) and Yb-doped TiO2 (wine).The data indicate the 

preservation of anatase structure. 
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Figure 13. Raman data of (a) Gd-doped TiO2, (b) Nd-doped TiO2 measured in air. 

 

4.2 Raman Spectroscopy:  

Raman spectra at room temperature show the TiO2 anatase phase for all the 

samples. The major peaks were found at 143(Eg), 196(Eg), 393(B1g), 515 (A1g), 519 (B1g) 

(superimposed with 515 peak) and 637 cm
-1 

(Eg) at room temperature (Figure-12). 

Raman spectra collected at 520°C in air show 4-9 cm
-1

 shift (Figure-13) in first 

peak with compared to the room temperature measurement. This phenomenon has been 

previously reported by D.Wang et al, which is due to greater thermal expansion and 

anharmonic coupling at higher temperature.
21

 The anatase structure was preserved at 

520°C in both air and forming gas. 
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4.3 SEM, EDX and TEM: 

Figures 14 to 17 show the SEM and TEM images and EDX spectra from various 

nanoparticle samples.  

 

 
Figure 14. SEM image (Magnification: 32600, at 5KV) (a); EDX data collected from the 

sample (b), TEM image (10nm scale) (c) and TEM image (5nm scale) (d) of a Gd-TiO2 

NP. 
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Figure 15. TEM image (50nm scale) (a); EDX data;(b), HRTEM image (5nm scale) (c) 

and HRTEM image (5nm scale) (d) of Eu-TiO2 NPs. 

 

The EDX analysis confirms the presence of the Ln on the TiO2 NPs. Furthermore, 

SEM images reveal an overall morphology (i.e. nanocrystalline nature) and the TEM 

images confirm the anatase structure of our Ln surface-doped TiO2 NPs. Many of the 

nanoparticles exhibit faceting characteristic of the anatase (tetragonal) structure. No 
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significant change is seen before and after Ln-induced hydrothermal treatment of the 

TiO2 NPs. SEM pictures indicate substantial agglomeration of the anatase 

 

    
Figure 16. SEM image (Magnification: 51000, at 5KV) (a); EDX data collected from the 

sample (b); SEM image (Magnification: 400000, at 5KV) (c) of Nd-TiO2 sample 

 

TiO2 and Ln-TiO2 nanoparticles. EDX data measured from the Ln-TiO2 NP samples show 

that the amount of the dopant is not more than 2 atomic percent. In order to preserve the 

anatase structure of the TiO2 NPs, it was necessary to keep the amount of dopant low as 
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the lanthanides have considerably larger ionic radii than the titanium ion. The highly 

crystalline nature of the anatase TiO2 is observable in the TEM images. The majority of 

the Ln-TiO2 nanoparticles are in polyhedral shaped morphologies with higher 

concentration of aggregates. The aggregates seen in the micrographs are composed of 

fine primary particles. 

 

 
Figure 17. SEM image (Magnification: 27500, at 10KV) (a); EDX data collected from 

the sample (b), SEM image (Magnification: 400000, at 10KV) (c) of Yb-TiO2 sample. 
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4.4 Photoluminescence Spectroscopy (PL): 

Photoluminescence spectroscopy (PL) was used as the primary method to gage 

the samples’ potential photocatalytic and gas sensing behavior. An increase in 

photoluminescence was observed for the Ln- TiO2 NPs when measurements were made 

in forming gas at 520°C. In contrast, the measurements at room temperature did not show 

any noticeable difference in the PL features either in forming 

 

 
Figure 18. Photoluminescence spectra of the Ln-TiO2 NP samples: at 520°C in air (a); at 

520°C in forming gas (b); at room temperature in air (c); and at room temperature in 

forming gas (d). 

 

gas or in air environment, but the intensity of PL in forming gas was at least 6 times more 

than that in air. The defect distribution within anatase TiO2 structure is a reversible 
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process with respect to the temperature. The PL measurements at room temperature show 

that there is no difference in defect distribution before heating and after heating. 

 

The defect states giving rise to PL in the range of 400 to 700 nm are due to 

oxygen vacancies. The PL features in the near IR defects are due to trapped electron.
22,23 

 

The elimination of an oxygen atom leads to defects such as Ti
3+ 

centers and F
+
 and F 

centers where one or two electrons, respectively, are trapped at the vacancies.
24

 Near 

infra-red photoluminescence is enhanced at higher temperatures. The PL shows much 

reduced peaks at room temperature in IR range. It indicates the trap electrons are 

obtained by higher temperature in hydrothermally treated Ln-doped samples. The doped 

samples in forming gas at 520°C shows intense peaks around 1.7 eV, 1.59 eV and 1.38 

eV which are attributed to the trapped electrons (fig. 18(b)). The electrons become 

trapped in levels between the valence band and conduction band of the anatase TiO2.The 

trapped electrons go to the valence band, if they release energy, and then recombine with 

the holes there. These trapped electrons are attributed to the adsorption of the H2 on the 

surface of NPs at higher temperature leading to “enhancement of electron trap” defects. 

The recombination process creates emission of photo-energy which is observed in the PL 

spectra. At higher temperature the excited electrons undergo diffusion and get trapped at 

the energetically favorable sites. 

The PL measurement made in air show that the intensity of features attributed to 

oxygen vacancies are higher in the undoped sample than the Ln-doped samples regardless 

of the measurement temperature (Figure-18 (a), 18(c)). However, for measurements made 
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in air at 520˚C, the PL features due to electron traps are significantly more intense in the 

Ln-doped sample than the undoped sample. The doped samples contain the Ln ions 

which can share the f level electrons. The f level electron can mitigate the charge 

imbalance due to the defects. 

As was noted by our group previously in the case of Eu-TiO2 NPs
7
, the primary 

PL peak measured from the Ln-TiO2 NPs is red shifted by approximately 50 nm 

compared to that of TiO2 NPs. As in the case of Eu-TiO2 NPs reported on previously
7
, 

 

 
Figure 19. Fitted PL curve at 520°C in forming gas for: (a) Nd-doped TiO2, (b) Eu-doped 

TiO2,(c) Gd-doped TiO2 and (d) Yb-doped TiO2 NP samples.  
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Table 3. Fitted PL data for the Ln-TiO2 NP samples in forming gas at 520˚C 

 

Peak 1 Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 632(2) 7.3 135(2) 0 

Eu-TiO2 629(1) 6.7 107.1(9) 0 

Gd-TiO2 624(1) 5.5 112(1) 0 

Yb-TiO2 638(2) 6.5 117(1) 0 

Peak 2 Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 688.2(4) 10 82.0(9) 0 

Eu-TiO2 688.1(3) 10 76.1(8) 0 

Gd-TiO2 685.0(3) 8.6 77.5(9) 0 

Yb-TiO2 692.5(3) 10 78.2(8) 0 

Peak 3 Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 727.9(3) 19 82.6(9) 1 

Eu-TiO2 729.5(2) 18 75.9(5) 1 

Gd-TiO2 728.9(3) 20 83.8(6) 1 

Yb-TiO2 730.3(2) 15 73.5(5) 1 

Peak 4 Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 779.5(4) 13 85(1) .5 

Eu-TiO2 781.1(3) 16 87(1) .5 

Gd-TiO2 781.2(3) 14 86(1) .5 

Yb-TiO2 780.8(3) 17 86(1) .5 

Peak 5 Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 908.2(3) 48 172.7(4) 0 

Eu-TiO2 902.1(3) 47 168.1(4) 0 

Gd-TiO2 905.8(3) 50 168.8(4) 0 

Yb-TiO2 898.3(4) 49 169.1(4) 0 

Peak 6 Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 968.6(4) 2.2 66.0(9) 0 

Eu-TiO2 968.4(4) 1.6 64(1) 0 

Gd-TiO2 967.2(2) 2.2 63.3(8) 0 

Yb-TiO2 967.4(3) 3.0 73.2(8) 0 
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Figure 20. Fitted PL curves at 520°C in air for: (a) Nd-doped TiO2, (b) Eu-doped TiO2, 

(c) Gd-doped TiO2 and (d) Yb-doped TiO2 NP samples.  

 

We note the presence of sharp resonance features in the PL associated with f-f transitions 

of Ln atomic-like states. These features are only observed for Eu- and rather weakly for 

Nd-doped NPs and stem from energy transfer from self-trapped excitons to Ln ions 

incorporated in the shell of Ln-TiO2 NPs. The feature occurring near 590 nm in Eu-doped 

TiO2 NPs is attributed to the 
5
D0 → 

7
F1 transition whereas the feature near 605 and 614  
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Table 4. Fitted PL data for all the samples in air at 520˚C 

 

Peak A Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 535(2) 8.6 78(5) 0 

Eu-TiO2 523(1) 4.4 60(4) 0 

Gd-TiO2 522(3) 6.4 60(3) 0 

Yb-TiO2 525(2) 9.9 64(7) 0 

Peak B Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 593(3) 5.13 54(3) 0 

Eu-TiO2 581(2) 5.96 72(5) 0 

Gd-TiO2 579(1) 5.8 65(3) 0 

Yb-TiO2 584(3) 11.4 73(5) 0 

Peak C Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 662(1) 13 107(2) 0 

Eu-TiO2 665(4) 11.7 126(4) 0 

Gd-TiO2 653(3) 14.7 140(5) 0 

Yb-TiO2 670(3) 24 133(7) 0 

Peak D Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 730(3) 1 40(2) 0 

Eu-TiO2 770(2) 1 50(4) 0 

Gd-TiO2 774(4) 1.8 60(2) 0 

Yb-TiO2 750(3) 2.44 50(3) 0 

Peak E Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 818(2) 21 167(5) 0 

Eu-TiO2 829(3) 17.5 150(5) 0 

Gd-TiO2 830(3) 12.3 134(7) 0 

Yb-TiO2 833(4) 14 140(4) 0 

Peak F Center (nm) Area (%) FWHM (nm) Shape Factor 

Nd-TiO2 957(2) 50 131(3) 0 

Eu-TiO2 958(3) 46.4 129(6) 0 

Gd-TiO2 958(2) 58 134(4) 0 

Yb-TiO2 958(3) 37.4 134(3) 0 
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nm is attributed to the 
5
D0 → 

7
F2 f-f transition, for Nd- and Eu-doped TiO2 NPs, 

respectively. Interestingly, exposure to forming gas at room temperature is found to 

stimulate and somewhat reduce the intensity of the 
5
D0 → 

7
F2 f-f transition feature in the 

Nd- and Eu-doped TiO2 NP samples, respectively. 

Figure 19 shows the fitted PL graphs for all the doped samples in forming gas. 

Figure 20 shows the fitted PL graphs for all the doped samples in air.  The fitted data 

shown in Tables 3 and 4 clearly indicate the position of the defect peaks in forming gas 

and air, respectively. 

 

4.5 XPS: 

The survey scan shows the presence of dopants and the principle Ti and O peaks 

(Figure 21). The quantification of the XPS data indicate that the amount of dopants is not 

more than 2 atomic percent. The XPS quantification agrees with the EDX quantification.   

The high resolution XPS analyses (Figure 22) were performed at various ranges 

according to the survey scans of the individual samples. The XPS of the Nd-TiO2 NP 

sample shows peaks at 984 eV and 1007 eV which are due to the Nd 3d5/2 and Nd 3d3/2 

photoemissions, respectively (Figure 22(a)). The other peaks are due to Auger electron  

excitations, initiated by the creation of a core hole - this is typically carried out by 

exposing the sample to a beam of high energy electrons. The XPS of the Eu-TiO2 NP 

sample shows peaks at 1135 eV and 1165 eV which are due to the Eu 3d5/2 and Eu 
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Figure 21. XPS survey scan for the Ln-TiO2 NP samples. 

 

3d3/2  photoemissions, respectively (Figure 22(b)). The XPS of the Gd-TiO2 NP sample 

shows a peak at 144 eV which is due to the Gd 4d photoemission (Figure 22(c)).  The 

XPS of the Yb-TiO2 NP sample shows a peak at 187 eV which is due to the Yb 4d 

photoemission (Figure 22(d)).   
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Figure 22. High resolution XPS of Nd in Nd-doped TiO2 (a); Eu in Eu-doped TiO2 (b); 

Gd in Gd-doped TiO2 (c) and Yb in Yb-doped TiO2 NP samples (d). 

 

The most noteworthy observations from the XPS analyses are presented in 

Figures 23 and 24. In Figure 23 (a), the O 1s peak for undoped TiO2 shows Ti-O bonding 

and hydroxide type bonding at 531.3 eV and 533 eV respectively. The TiO2-LnxTi(1-x)O2 

core-shell NPs exhibit additional bonding features due to Ln-O bonding. The XPS of the 

Nd-TiO2 and Eu-TiO2 NPs shows the Nd-O bonding peak at 529.6 eV (Figure 23(b)) and 

Table 5) and the Eu-O bonding peak at 528.3 eV (Figure 23(c) and Table 5), respectively.  
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Figure 23. High resolution scan in the range of O 1s for undoped TiO2 NP (a); Nd-doped 

TiO2 NP (b); Eu-doped TiO2 NP (c); Gd-doped TiO2 NP (d) and Yb-doped TiO2 NP 

samples (e). 
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Figure 24. High resolution scan in the range of Ti 2p for undoped TiO2 NP (a); Nd-doped 

TiO2 NP (b); Eu-doped TiO2 NP (c); Gd-doped TiO2 NP (d) and Yb-doped TiO2 NP 

samples (e). 
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Table 5. High resolution XPS data in the range of O1s (Binding Energy 525-540 eV) 

 

Peak A (Ti-O) Binding Energy(eV) Area (%) FWHM 

Undoped TiO2 531.32 72 1.24 

Nd- TiO2 530.95 49 1.48 

Eu- TiO2 531.60 78 2.88 

Gd- TiO2 531.27 55 1.17 

Yb- TiO2 531.41 52 1.83 

Peak B (Hydroxides) Binding Energy(eV) Area (%) FWHM 

Undoped TiO2 533.02 19 2.46 

Nd- TiO2 533.08 21 2.69 

Eu- TiO2 534 9 2.21 

Gd- TiO2 532.34 30 3.13 

Yb- TiO2 533.38 40 3.71 

Peak C (Ln-O) Binding Energy(eV) Area (%) FWHM 

Nd- TiO2 529.60 29 3.69 

Eu- TiO2 528.30 12 2.08 

Gd- TiO2 (peak C) 

                (peak C
I
)    

527.84  

529 

3.7 

3.7 

0.84 

1.41 

Yb- TiO2 528.78 8 1.78 
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Table 6. High resolution XPS data in the range of Ti 2P (Binding Energy 455- 470 eV) 

 

Peak A (Ti 2P3/2) Binding Energy(eV) Area (%) FWHM 

Undoped TiO2 460.10 53 1.06 

Nd- TiO2 459.93 38 1.30 

Eu- TiO2 459.94 56 2.08 

Gd- TiO2 459.96 49 1.18 

Yb- TiO2 460.11 52 1.46 

Peak B (Ti 2P1/2) Binding Energy(eV) Area (%) FWHM 

Undoped TiO2 465.87 31 2.17 

Nd- TiO2 465.45 25 2.13 

Eu- TiO2 465.58 18 1.70 

Gd- TiO2 465.65 26 2 

Yb- TiO2 465.79 32 2.71 

Peak C  Binding Energy(eV) Area (%) FWHM 

Nd- TiO2 457.56 11 2.68 

Eu- TiO2 457.22 10 1.83 

Gd- TiO2 457.23 9 2.15 

Yb- TiO2(peak C) 

               (peak C
I
)  

456.85 

458.22 

2 

5 

0.8 

1.45 

Peak D Binding Energy(eV) Area (%) FWHM 

Nd- TiO2 458.85 14 1 
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The XPS of the Gd-TiO2 NPs shows the Gd-O bonding peaks at 527.84 eV and 

529 eV (Figure 23(d) and Table 5) whereas the XPS of the Yb-TiO2 NPs shows the Yb-O 

bonding peak at 528.7 eV (Figure 23(e) and Table 5). In Figure 24(a), we observe two 

distinct peaks at 460.10 eV and 465.87 eV, which are assigned as the Ti 2P3/2 and Ti 2P1/2 

photoemissions for the undoped TiO2. As can be observed in Table 6, the energy 

difference between the Ti 2p1/2 and Ti 2P3/2 peaks is in the 5.7-5.8 eV range, which 

indicates that the predominance of the 4+ oxidation state of Ti (i.e., Ti
4+

) in the Ln-TiO2 

NP samples.
25

 The trend in the energies associated with the Ti 2P3/2 peak for all Ln-TiO2 

NP samples is consistent with the Ln contraction effect. Also, the binding energy of Ti 

2P1/2 for the Ln-TiO2 NP samples shows a similar effect. In addition to the Ti 2P3/2 and Ti 

2P1/2 peaks there are some additional peaks in the binding energy range of 456 to 458 eV 

(Table 6) for all the Ln-doped nanoparticles . These peaks can be explained as being due 

to the change of local chemical states upon the incorporation of the Ln
3+

 ions within the 

shell region of the TiO2-LnxTi(1-x)O2 core-shell NPs. Also, the peaks occurring on the 

low-energy side of the Ti 2P3/2 peak (C and C’ in Figure 24) indicate the complete 

incorporation of the Ln dopants in the anatase LnxTi(1-x)O2 structure of the shell region of 

the Ln-TiO2 NPs.
26  

We conjecture that peak D in Figure 24(b) is due to sample 

contamination.     
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CONCLUSIONS 

 

XRD and Raman measurements confirm the preservation of anatase after 

hydrothermal treatment. High temperature in situ Raman measurements indicate 

conservation of anatase structure even at 520˚C.  PL measurements show that the 

distribution of defect states depends on the environment at high temperature for anatase 

TiO2. The hydrothermally treated Ln-TiO2 NP samples are clearly affected by the 

surrounding atmosphere (i.e. air or forming gas) by exhibiting substantial modification in 

the PL under elevated temperature conditions. Measurements show that the PL activation 

due to surface defect states depends on the type of gas environment (i.e. air or forming 

gas) at high temperature for hydrothermally treated anatase Ln-TiO2 NPs. Specifically, 

exposure to forming gas (5% H2 and 95% Ar) at 520 °C results in the intensification of 

PL features at ~1.7 eV and 1.59 eV, which is consistent with adsorption of H2 on the 

surface of Ln-TiO2 NPs resulting in an enhancement of electron trap defects.  Our results 

are consistent with recent theoretical calculations predicting the establishment of electron 

defect states on the surface of TiO2 NPs with oxygen vacancies.
11

 Specifically, exposure 

to forming gas at high temperatures results in enhanced oxygen vacancies which can be 

detected by PL ex situ, and, in situ, results in dramatically enhanced PL intensity. XPS 

results demonstrate the effect of lanthanide incorporation to the anatase TiO2 structure by 

showing the variability in local chemical states. By analyses of the O 1s and Ti 2p XPS 

peaks for undoped TiO2 NPs and doped Ln-TiO2 NP samples, it is shown that Ln ions are 

precipitated onto the TiO2 nanoparticles causing formation of TiO2-LnxTi(1-x)O2 core-
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shell NPs.  Our analyses show that the TiO2-LnxTi(1-x)O2 core-shell NPs exhibit properties 

which are suitable for applications in gas sensing and offer a step toward realization of 

the practical use of these materials for various applications, including potentially for 

photocatalysis. Furthermore, our PL experiments show that Ln ions can provide an f-level 

electron to compensate for the charge imbalance created by the Ln doping and formation 

of TiO2-LnxTi(1-x)O2 core-shell NPs.  
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