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ABSTRACT 

The effect of pure single-walled carbon nanotubes (SWCNTs) on plant growth and gas 

exchange was investigated in Arabidopsis thaliana. To date there has been no research on 

the effects of SWCNTs on whole plant physiology. A. thaliana seeds were directly grown 

in growth medium containing SWCNTs concentrations of 24.93µg/ml and 53.55 µg/ml. 

control plants were grown in media containing distilled water. I determined growth by 

measuring dry mass of plants. I determined gas exchange by measuring photosynthetic 

rates, stomatal conductance, transpiration rates, and water use efficiency. I also examined 

the following physiological mechanisms that would limit plant growth: ATP and NADPH 

supply to light reactions through photosynthetic light response curves, and rubisco 

activity through photosynthetic CO2 response curves. The presence of SWCNTs in the 

growth medium had no impact on the whole plant dry weight accumulation in any of the 

six experimental trials I carried out. Plants grown in growth media containing SWCNTs 

of a concentration of 24.93 µg/ml (4 experimental trials, n=12) and 53.55 µg/ml (1 trial, 

n=3) did not significantly influence any gas exchange variable after 21 days of growth. I 

also examined gas exchange variables after 7, 14, and 21 days of growth (1 trial, n=3). In 

this trial, there was a statistically significant treatment and time effect on photosaturated 

photosynthetic rate, photosynthetic efficiency and water use efficiency. My study 

illustrates that pure SWCNTs at realistic environmental conditions have no serious 

negative effects on plant growth and gas exchange; however, they may affect plant 

developmental rates. These findings have implications for plant and animal health, public 

awareness, and environmental remediation. 
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1 

INTRODUCTION 

 

Overview of Nanotechnology 

Nanotechnology encompasses the concepts of science, engineering, and technology 

to fabricate products at nanoscales. Nanotechnology can be defined as manipulation of 

matter at atomic or molecular level. Engineered particles that are of 1 to 100 nm in size in 

at least one dimension are called “nanoparticles” (Rasmussen et al., 2010). The prefix 

‘nano’ was derived from the Greek word nannos which means “very short man” and in 

today’s world its scientific value is 10-9 or one-billionth (0.000000001) of the base unit. 

This nanoscale and its extent of size can be easily imagined and familiarized with some 

daily life examples in a descending order of their value – an ant is on the order of 5 mm in 

size, a dust mite is 200 µm in size, red blood cells are about 8 µm in diameter, ATP synthase 

of our cells is 10 nm in diameter and finally the double helix of DNA on nanoscale is about 

2 nm wide (Allhoff et al., 2010). The physicist, Richard Feynman, described 

nanotechnology in a talk “There’s Plenty of Room at the Bottom” at an American Physical 

Society meeting at the California Institute of Technology on December 29, 1959 that paved 

the way to the ideas and concepts of nanotechnology. He described how individual atoms 

and molecules can be manipulated and controlled. A decade later, Professor Norio 

Taniguchi, while working with ultraprecision machining, coined the term 

“nanotechnology”.  

 

 

 

http://media.wiley.com/product_data/excerpt/53/07803108/0780310853.pdf
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Types of Nanoparticles  

Since their discovery, several types of nanoparticles have been manufactured, such 

as whiskers and fibers. These are several nanometers to several hundred microns in width, 

and are a smaller version of nanowires. Other types include nanotubules, nanocables, and 

nanotubes of less than 100 nm width. Most nanoparticles are synthesized by either physical 

vapor deposition (PVD), which transfers growth species from source to a substrate where 

it deposits these nanoparticles to form a structure; or, chemical vapor deposition (CVD), 

where chemical reaction in the vapor phase creates the nanostructure (Allhoff et al., 2010). 

Various compounds of carbon, zinc, silicon, cadmium, or titanium are used at smaller 

dimensions to create various nanostructures, nanomaterials, and nanotubes whose 

properties are different from the same materials of larger dimension.  

With the advent of manufacturing nanoparticles, nanotechnology has been used in 

a wide range of applications in many fields: environmental science, agriculture, molecular 

biology, atomic physics, organic chemistry, medicine, batteries, textiles and manufacturing 

industries, electronics, fuels, cosmetics, and sports accessories.  

 

Uses of Nanoparticles in Environmental Science  

The following are some the uses of nanoparticles in various industries. Nanoclays 

and nanomembranes, which are made of carbon nanotubes (CNTs), are used to filter 

organisms and molecules out of water, and perform better than bacterial and viral filters 

(Buzea et al., 2007). Quantum dots, which are semiconducting particles exhibiting 

quantum mechanical properties, are a source of cheap renewable energy (Murray et al., 

2000). Nanoparticles like cerium oxide (CeO2) and titanium dioxide (TiO2) dispersed in 
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soil act as catalytic agents and convert harmful substances to less harmful or harmless 

substances, and also hematite catalysis formation of various minerals help in absorbing 

many heavy metals from both water and soil in the environment (Rai et al., 2015).  

 

Uses of Nanoparticles in Agriculture 

 Nanoporous fertilizers disperse easily in the solvent and seep through soil like 

water under correct formulation and by using stabilizing agents (Rai et al., 2015). So, these 

are used in agriculture to increase resistance against pests and improve overall crop yield. 

Nanofertilizers function is slow and targeted for efficient release of fertilizer into soil, and 

sometimes contain nutrients and growth promoters to stimulate growth of the plants. For 

instance, Brassica juncea (mustard) seeds treated with a low concentration (23 µg/ml and 

46 ug/ml) of nanoparticles, such as multi- walled carbon nanotubes (MWCNTs) of 

diameter 30 nm, have shown to have higher germination rates and increased root and shoot 

growth (Mondal et al., 2011). Nanosensors are used to detect pathogens in the field, and 

also monitor environment and crop health (Milani et al., 2012).  

 

Uses of Nanoparticles in Medicine 

As nanoparticles are of smaller scale (nanoscale) than  body cells, these particles 

can easily approach the cells and can be functionalized for easy drug and gene delivery, or 

can be tagged with fluorescent biological labels to manipulate the biological targets (Salata 

et al., 2004).  Likewise, nanomachines are used as vehicles during surgery to deliver 

substances to a target. Another example is tissue engineering with titanium implants coated 

with hydroxyapatite particles (HA), which provide stability and compatibility to the bone. 

http://link.springer.com/search?facet-creator=%22Mahendra+Rai%22
http://link.springer.com/search?facet-creator=%22Mahendra+Rai%22
http://pubs.acs.org/action/doSearch?ContribStored=Milani%2C+N
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salata%20O%5Bauth%5D
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Also, HA coated with radiolabeled calcium (45Ca) is used for imaging of dental implants 

after surgery.  Radiolabeled nanoparticles can detect proteins, pathogens, and tumors; and, 

they can probe DNA structure and enhance contrast during MRIs for imaging of internal 

organs (Salata et al., 2004). Zinc oxide (ZnO) nanoparticles help in selective destruction 

of tumors (Rasmussen et al., 2010).  Similarly, magnetic and metal based nanoparticles 

with alternating magnetic and shortwave radiofrequency create hyperthermia around the 

nanoparticles for thermal destruction of the tumors (Rasmussen et al., 2010). As a final 

example, exposure of tobacco cell cultures to MWCNTs significantly upregulated the gene 

expression of tobacco aquaporin gene and marker genes for cell division and cell wall 

extension (Khodakovskaya et al., 2012). 

 

Uses of Nanoparticles in Electric and Electronics  

In the case of electronics, silicon nanowires are used as semiconductors. Zinc 

Sulphide (ZnS) is used in thin film for electroluminescent displays (ELDs). TiO2 thin films 

are used as electrodes in photo voltaic cells (Allhoff et al., 2010). In electronic devices, 

nanoparticles provide a high rate of electric conductivity.  Semiconducting CNTs are used 

to manufacture field effect transistors (Postma et al., 2001) and also nanoradios (Jensen et 

al., 2007). Owing to their dense nature, gold nanoparticles are used as probes in 

transmission electron microscopy (Sun et al., 2011). 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Salata%20O%5Bauth%5D
https://en.wikipedia.org/wiki/Nanoradios
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Uses of Nanoparticles in Textiles  

Zinc nanoparticle’s property of absorbing UV rays can be used by applying these 

particles on textiles (Sun et al., 2011). Metal nanoparticles contain surface plasmons, which 

are used for imparting different colors to textiles (Nadanathangam et al., 2010). CNTs used  

in textiles show antistatic properties and self-cleaning or water repellent properties. SiO2 

and ZnO increase the durability of the textile and TiO2, SiO2 and, silver (Ag) nanoparticles 

used in textiles have antibacterial properties (Siegfried et al., 2007). Smart clothes are 

entering into market, which can monitor a person’s body functions like respiration rate, 

breathing frequency, body temperature, and blood pressure (Mecheels et al., 2004). 

Textiles in the future might contain not only sensors to detect pathogens, but also warn the 

person by changing their color on simple wiping (Siegfried et al., 2007).  

 

Uses of Nanoparticles as an Adsorbent  

Silver nanoparticles are used in the manufacturing of toothpastes, soaps, and face 

creams as they have an ability to kill bacteria on skin. TiO2 does not penetrate beyond the 

epidermis of skin, so it is used in sunscreen lotions providing protection again UV rays.  

Also, self-cleaning windows use a 15 nm thick coating of activated TiO2 engineered to be 

highly water-repellent so that rainwater just flows off the surface, washing away the dirt 

(Patel et al., 2011).  

 

Uses of Nanoparticles in Sports 

CNTs stiffen the shaft and head of some tennis racquets and bicycles, which claim 

to be of higher strength and are lighter in weight. They also decrease rolling resistance and 
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increase durability of tires in automobiles. Nano-nickel used in golf balls increase moment 

of inertia. Swimsuits that use nanotechnology not only allow swimmers to move more 

quickly through the water but also mimic shark’s skin. Nanoclay reduces weight and 

increases the speed of water boats. Lastly, “Opportunities for Nanomaterials in Sporting  

Applications – 2008-2013: Trend, Forecast and Competitive Analysis", mentioned that 

silica nanoparticles are used to decrease torsion index in skis and also increase hoop and 

flex strength of rods in fly-fishing. 

 

Negative Effects of Nanoparticles on Micro-organisms and Animal Cells 

Nanoparticles have many useful applications as described above; however, 

nanoparticles may also have negative effects on various life forms and the environment. 

Research examining the potential negative effects of nanoparticles is lagging behind the 

development of new nanoparticles. For example, Ng et al., (2015) showed that metal oxide 

compounds of tin (Sn), iodine (In) and aluminium (Al) exhibited low toxicity when 

interacted with the surface of cell walls of the bacteria Escherichia coli and the diatom 

Skeletonema costatum. Titanium nanoparticles have been shown to damage nucleus and 

cell membranes, along with chloroplasts and internal organelle in the fresh water 

microalgae of Chlorella sp. (Iswarya et al., 2015). Silver nanoparticles have been shown 

to affect the cellular functions of Bacillus subtilis species, and also kill Azotobacter 

vinelandii at low concentrations (Gambino et al., 2015). Silver nanoparticles between 40-

100 nm in ionic and in bulk form have caused oxidative stress, genotoxicity, and disruption 

of actin cytoskeleton in mussel hemocytes and gill cells (Katsumiti et al., 2015). Kidney 



 

7 

epithelial cells exposed to ZnO nanoparticles between 12.5-50.0 µg/ml have been shown 

to cause DNA damage (Uzar et al., 2015). 

 

Negative Effects of Nanoparticles on Plants 

Oukarroum et al., (2015) showed that both nickel oxide nanoparticles and nickel 

(II) oxide at a concentration of 1000 µg/ml caused cellular oxidative stress and strongly 

inhibited Photosystem II (a protein complex in the thylakoids membrane of plants where 

the light energy is converted into the motion of energized electrons) quantum yield in the 

aquatic plant Lemna gibba. Exposure of A thaliana plants to TiO2 nanoparticles and Ag 

nanoparticles compromised their transcriptional responses to microbial pathogens; and, 

increased bacterial infection and reduced root hair formation on leaves (Garcia-Sanchez et 

al., 2015). Barley plants exposed to different concentrations (0, 125, 250, and 500 mg/kg) 

of cerium oxide nanoparticles failed to from grains (von Moos et al., 2015). ZnO 

nanoparticles of 500 mg/kg reduced germination of alfa alfa seeds by 50%; and, root and 

shoot biomass by 80% and, 25% respectively. Zinc chloride (ZnCl2) nanoparticles where 

observed to reduce catalase activity in stems and leaves of Medicago o sativa L. (alfalfa), 

which was symbiotically associated with Sinorhizobium meliloti in soil (Bandyopadhyay 

et al., 2015).  Seed germination was inhibited in ryegrass by nanoparticles of zinc and in 

corn by nano ZnO2 at a concentration of 2000 µg/ml. Seed germination was inhibited by 

nano zinc of 50 µg/ml in radish and of 20 µg/ml concentration in rape and ryegrass (Lin et 

al., 2007). 
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Carbon Nanotubes  

Of all the nanoparticles discussed above, CNTs are used in many applications 

because of their high surface area to weight ratio. They are light weight and highly elastic 

as compared to carbon fibers and deliver higher surface area for increased chemical 

interaction in their specific application. Wang et al., 2009, described that carbon nanotubes  

 (CNTs) are constructed with length-to-diameter ratios of up to 132,000,000:1 and are 

allotropes of carbon. They exhibit extraordinary strength and unique properties, and are 

efficient conductors of heat. There are two main types of CNTs. SWCNTs can be 

conceptualized as wrapping one-atom-thick layer of graphite called graphene into a 

seamless cylinder and have a diameter close to one nanometer. MWCNTs are multiple rolls 

or concentrics of SWCNTs of different diameters.  

These CNTs are manufactured mainly by three way- arc discharge method, pulsed 

laser deposition, chemical vapor deposition.  

Arc Discharge Method. This is the easiest and simplest way of producing CNTs. 

Two carbon rods separated by 1mm distance are filled with inert gas at low pressures. A 

direct current of 50 to 100 A and a potential difference of 20 V creates higher temperatures 

between the electrodes. A small rod shaped deposit is formed on the electrodes after the 

discharge vaporizes their surface (Wilson et al., 2002).  

Pulsed Laser Deposition. Graphite rods containing 50:50 catalyst mixture of 

cobalt and nickel undergo laser vaporization at 1200oC, and heat treatment in vacuum at 

1000oC. A second laser pulse is applied to vaporize target uniformly, and to break the larger 

particles formed during the first laser pulse, which builds them into rope-like nanotube 

structures of 100 µm in length (Wilson et al., 2002).  
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Chemical Vapor Deposition. A classical method that is cost effective and 

produces good quality CNTs. Carbon nanostructures are deposited over a metal catalyst by  

catalytic chemical vapor deposition of acetylene over cobalt and iron catalysts at 545oC. 

Chemical vapor deposition synthesizes bundles of SWCNTs as well as MWCNTs over 

carbon/zeolite catalyst (Wilson et al., 2002).  

Apart from uses already discussed above, CNTs have general uses in many 

industries. CNTs are used in the manufacturing of high efficient solar panels (Guldi et al., 

2005), power and data transmission using electrical cables and wires (Dawid et al., 2014), 

in storing hydrogen  (Dillon et al., 1997), used as a paint on aircrafts to absorb incoming 

radar signals (Bourzac, 2011), used as building blocks in manufacturing of biomedical 

implants (Sitharaman et al., 2013), in improving physical and mechanical properties of 

textiles (Shim et al., 2008)  and also used in optical power detectors in military equipment 

for defusing unexploded mines (Pop et al., 2005).  

 

Negative Effects of CNTs in Higher Organisms 

Research on CNT toxicity in plants, when discharged in to the environment, is 

lacking (Chen et al., 2010).  However, the scientific community has realized that 

understanding the fate of nanomaterials from cradle to grave is essential to the 

sustainability of nanotechnology (Chen et al., 2010). Kolosnjaj et al., 2007, showed that 

CNTs crossed membrane barriers in T cells and induced harmful effects like inflammation 

and fibrotic reactions. Lam et al., 2006, showed that CNTs accumulated in the cytoplasm 

of human cells caused cell death. Serious occupational health hazard related to air polluted 

cardio-pulmonary disease were produced when CNTs were chronically inhaled. CNTs 
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impaired respiratory functions, induced atherosclerotic lesions in the brachiocephalic 

artery, damaged mitochondrial DNA in aorta, and increased aortic plaque in the heart. In  

rodents, SWCNTs collectively effected and produced inflammation, epithelioid 

granulomas, and fibrosis in lungs. The needle shape of CNTs has been shown to lead to 

pleural mesothelioma of the lungs. 

 

Positive Effects of CNTs on Plants  

In maize, SWCNTs have been shown to accelerate seminal root growth (Yan et al., 

2013). Plants localized with SWCNTs within the lipid layer of their chloroplasts tripled 

their photosynthetic rates, showed increased electron transport rates in leaves, and 

suppressed the reactive oxygen species as compared to Control plants (Giraldo et al., 

2014). Tomato plants grown in soil with MWCNTs doubled their flower and fruit 

production as compared to the plants grown in Control soil (Khodakovskaya et al., 2013). 

Growth of tobacco cell cultures increased by 55-64% when grown in medium containing 

MWCNTs between 5-500 µg/ml concentrations. (Khodakovskaya et al., 2012). 

 

Negative Effects of CNTs on Plants   

Begum et al., 2014, showed that CNTs had significant negative effects on plants 

including reduction in root and shoot length, cell death and electrolyte leakage. Plant cells 

exposed to C70–NOM (natural organic matter) and C60 (OH)20 of 10–110 µg/ml  produced 

cell lysis due to exhaustive endocytosis and necrosis (Chen et al., 2010). MWCNTs 

adversely effected red spinach (Amaranthus tricolor L) roots and leaves via cell damage 

and oxidative stress (Begum and Fugetsu, 2012).  Red spinach, lettuce and cucumber 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Khodakovskaya%20MV%5BAuthor%5D&cauthor=true&cauthor_uid=23019062
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treated with 1000 and 2000 µg/ml of MWCNTs significantly decreased their root and shoot 

lengths (Begum et al., 2012). Uptake of MWCNTs particles by Allium cepa root cells 

resulted in altered cellular morphology and, membrane integrity, compromised the function 

of mitochondria, induced DNA damage and chromosomal aberration, finally leading to 

apoptotic cell death (Ghosh et al., 2015). MWCNTs decreased dry weights, viability of 

cells, chlorophyll content, and superoxide dismutase activity of A. thaliana T87 suspension 

cells (Lin et al., 2009). MWCNTs inhibited the growth of algae as a result of oxidative 

stress and agglomeration (Long et al., 2012) and also reduced cell viability, decreased 

intracellular ATP levels and also triggered the production of reactive oxygen species 

(Pereira et al., 2014). In tomato seedlings grown in a medium containing single walled 

carbon nanotube-quantum dot conjugates, the carbon nanoparticles of 50 µg/ ml 

concentration accelerated leaf senescence of plantlets, inhibited root formation, reduced 

chlorophyll content by 1.5 fold in leaves, and decreased the total weight of root system by 

four times compared to Controls (Alimohammadi  et al., 2011).  Non functionalized CNTs 

inhibited root elongation in tomato, enhanced root elongation in onion and cucumber for  

0, 24, and 48 hours following exposure (Canas et al., 2008).  

Due to their uses in many industries as described above, they will be disposed in 

high rates into the environment; therefore, their toxicity needs to be determined. As they 

disintegrate slowly, CNTs may be found in living systems. To understand some of the 

effects of CNTs on the environment and humans, they need to be studied in plants, as 

terrestrial plants serve as links connecting all food chains. Any source of CNTs disposed 

into the environment will reach the soil and start disintegrating slowly, and possibly enter 

the food chain, which was evident from some recent epidemiological studies which showed 
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a strong correlation between particulate air pollution levels, respiratory and cardiovascular 

diseases, various cancers, and mortality. (Buzea et al., 2007). As they disintegrate slowly,  

CNTs may be found in human and other animal cells. Directly in the environment, CNTs 

may negatively affect plant physiological processes, such as gas exchange and growth.  

 The accumulation of carbon nanotubes levels in air and soil may affect growth and 

gas exchange in plants. In this research, I examined important gas exchange processes 

(photosynthesis, stomatal conductance, transpiration and biomass) in a model plant system. 

To my knowledge, all previous studies finding negative effects of CNTs on plants used 

carbon nanotubes (SWCNTs or MWCNTs) at concentrations that are well above those 

expected in nature. The prevalence of high concentrations (1000-2000 µg/ml) of carbon 

nanotubes as reported in Khodakovskaya et al., (2012) and Begum et al., (2012), is not 

realistic, as carbon nanotubes exist in very low concentrations when released into the 

environment. There is no current literature available which reports the realistic 

concentrations of carbon nanotubes in the environment. It is essential to initiate studies of 

CNTs in their pure form and at realistic concentrations to determine if and how they impair 

any physical or physiological functions in plants.  Therefore, I used low concentrations of 

carbon nanotubes (24.93 µg/ml and 53.55 µg/ml) in my study, and to date, there has been 

no research on the effects of low concentrations of pure SWCNTs on gas exchange and 

growth in plants.  
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RESEARCH GOALS 

 

 The goal of my research was to study the effects of realistic environmental 

concentrations of pure SWCNTs on Arabidopsis thaliana’s gas exchange and growth. I 

hypothesized that CNTs at low concentrations would have a negative effect on gas 

exchange leading to decreases in photosynthetic rate, stomatal conductance, and 

transpiration. CNTs would also affect the growth of A. thaliana leading to a decrease in 

biomass accumulation. My hypothesis were based in part on Alimohammadi et al., 2011 

findings that SWCNTs of a concentration of 50 µg/ml reduced the total weight of the root 

system of tomato plants by 75% as compared to tomato plants grown on regular media 

(controls).   
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MATERIALS AND METHODS 

 

Experimental Procedures 

Description of Individual Experiments. Experimental trials were divided into 

three categories depending on the concentration of CNTs used, and when during the growth 

period gas exchange measurements were recorded.  

Experiment I was conducted with A. thaliana plated on medium containing 24.93 

µg/ml CNTs and measured after 21 days of growth.  The procedure in the experimental 

methods described below was followed. Four independent growth trials were performed 

where gas exchange was measured after 21 days of growth. Each trial included Control 

plates (n=3) and CNT plates (n=3). Plants in a plate not used for gas exchange 

measurements were harvested after gas exchange measurements for biomass accumulation. 

Experiment II was conducted with A. thaliana plated on medium containing 53.55 

µg/ml CNTs and measured after 21days of growth. This experiment was performed to see 

if a higher concentration of CNTs would have a negative effect, as the lower concentration 

did not result in negative effects (see Results). The procedure in the experimental methods 

described above was followed. One independent growth trial was performed where gas 

exchange was measured after 21 days of growth. The trial included Control plates (n=3) 

and CNT plates (n=3). Plants in a plate not used for gas exchange measurements were 

harvested after gas exchange measurements for biomass accumulation. 

Experiment III was conducted with A. thaliana plated on medium containing 24.93 

µg/ml CNTs and gas exchange was measured after 7, 14 and 21 days of growth. This 

experiment was performed because previous trials indicated no negative effects on gas 
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exchange after 21 days of growth, but a reduction in growth of 19% in CNT grown plants 

compared to Control grown plants. Although this difference in growth was not statistically 

significant, I wanted to examine if CNTs were having a phonological effect on gas 

exchange.  The procedure in the experimental methods was followed in one individual trial 

that included Control plates (n=3) and CNT plates (n=3). Plants in a plate not used for gas 

exchange measurements were harvested after gas exchange measurements for biomass 

accumulation. 

 

Study Organism  

Arabidopsis thaliana belongs to the Brassicaceae family, along with species such 

as cabbage and radish.  A.thaliana is a small flowering annual and a native of tropical 

Afroalpine ecosystems and temperate Northern Hemisphere (Hedberg et al., 1957). Its life 

cycle is about 6 weeks, and is a prolific seed producer that can be cultivated easily in 

restricted spaces. Extensive genetic and physical m aps of all five chromosomes are 

available with 157 Mb of its genome sequenced and annotated (Bennett et al., 2003). A 

large number of mutant lines and genomic resources are also available. Transformation can 

be efficiently performed utilizing Agrobacterium tumefaciens (Valvekens et al., 1988). 

Owing to these factors, A. thaliana offers important advantages for basic research in 

genetics and molecular biology.  

 

Study Material  

I used pure CNTs suspensions that contained > 75% SWCNTs of average length of 

~0.4-0.6 µm manufactured by arc discharge method are obtained from the Brewer Science, 



 

16 

Rolla, Missouri These pure SWCNTs are of low ion content and have pure CNT fabric 

without any polymers. Therefore, these CNTs can be easily suspended in water based 

formulations without forming aggregates. I used these CNTs at low concentrations- 135 

µg/ml and 290 µg/ml, which when mixed with a plant growth medium were at a final 

concentration of 24.93 and 53.55 µg/ml in growth media, respectively.  

 

Experimental Methods 

Preparation of Holding Containers for Seeds Using Wax Paper. Wax paper was 

folded diagonally as shown in diagram A of Figure 1. The creased corner of triangle was 

folded to the opposite creased corner forming a right triangle as shown in diagram B in 

Figure 1. The sides of the triangle were taped (which touched) to prevent unfolding. The 

unsealed side was pulled apart to open creating a cone as shown in diagram C of Figure 1. 

Distributing and Weighing Seeds. A wax paper was folded into half for 

distribution of the seeds. Small amount of seeds were tapped into this folded wax paper 

and were transferred to the wax containers and 0.004 grams (4 mg) of seeds were weighed 

per container. These containers were placed carefully into a beaker.  

Sterilizing Seeds. Seeds packed in the wax container were placed in a dessicant jar 

along with a beaker containing 100 ml of bleach. This set up was placed in a hood and 3 

ml of HCl was added to 100 ml bleach beaker. The desiccant jar was sealed and was 

allowed to stand for 2 hours.   

Preparing the Murashige and Skoog (MS) Medium. MS salts of 0.1625 g were 

dissolved in 50 ml deionized water and pH was adjusted to 7. The volume of the solution 

was made up to 60.40 ml with deionized water and 0.6 g of agar was added. The culture 
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flasks with the MS medium were autoclaved for 20 minutes and the flasks were kept in a 

55oC water bath to prevent the melted agar from solidifying. 

Combining Components of the CNT Medium. The CNT suspension of 1,108 µL 

was added to a culture flask containing 4,826 µL of sterile autoclaved MS medium to 

prepare CNTs plates, and 1,108 µL of deionized water was added to a culture flask 

containing 4,826 µL of sterile autoclaved MS medium to prepare Control plates. The flasks 

were submerged into a sonicator containing water at ~55oC for ~ 2 minutes. Sonication 

ensured the uniform homogenous distribution of CNTs with the MS medium thus 

preventing any aggregation or clumps of CNTs. Amphotericin (fungicide) of 60 µL and 

carbenicillin (antibiotic) of 6 µL were added to the flask. Approximately 25 ml of the 

resulting medium was poured into each petri plate. The medium was allowed to solidify 

before plating it with A.thaliana seeds. 

Plating of Seeds.  Plating was done in a fume hood disinfected with ethanol. The 

wax containers were placed in a hood and were disassembled. Seeds were pressed with the 

thumb and were sprinkled on to the solidified medium in the plate. The petri plates were 

wrapped with parafilm and were refrigerated at -4oC for 48 hours. Refrigeration is a critical 

step for the seeds so as to imbibe uniformly into the agar medium. 

Incubation of Plants. Petri plates were removed and transferred into a growth 

chamber (Percival Scientific incubator, model I-36VL) that was maintained at 28oC with 

12 hours of light and 12 hours of dark. Minimum photosynthetically active radiation levels 

of 150 µmol m-2 s-1 were maintained in the chamber. The seeds started germinating into 

plantlets within five to seven days of incubation and full foliage was achieved by 21 days 

(Figure 2).                                
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Gas Exchange Measurements using a Licor LI-6400 XT Photosynthetic 

System. Langjun et al., 2006, describes the Licor LI-6400 XT (manufactured by LI-COR 

Biosciences at Lincoln, Nebraska, USA) as a porTable photosynthetic system used for 

taking gas exchange measurement of fresh leaves. The Licor measures photosynthetic rates 

(µmol CO2 m
-2 s-1), stomatal conductance (mol H2O m-2 s-1), and transpiration rates (mol 

H2O m-2 s-1) at various light and CO2 levels. I used the LICOR to measure photosaturated 

photosynthetic rates, ambient photosynthetic rates, stomatal conductance, transpiration, 

and responses of these variables to photosynthetically active radiation and CO2.  

Photosaturated Photosynthetic Rate (Amax). Amax is the rate of carbon 

assimilation at a PAR of 400 µmol m-2 s-1. Any further increase in the amount (wavelength) 

of light striking the leaf does not cause an increase in the rate of photosynthesis and the 

amount of light is said to be 'saturating' for the photosynthetic process (Wareing et al., 

1968). This is measured to examine the potential for carbon gain, whereas ambient 

photosynthetic rate measures the actual carbon gain during the light period in the growth 

chamber.  

Ambient Photosynthetic Rate (Aamb). Aamb is the rate of carbon assimilation 

at growth light levels, which were of 150 µmol m-2 s-1. Measuring at growth PAR indicates 

the efficiency at which the plant assimilates CO2 at growth light levels in the chamber 

during the 21 days of growth. 

Stomatal Conductance (g).  Stomatal conductance is a measure of the rate 

of CO2 entering or water vapor exiting through the stomata of the leaf. The opening and 

closing of stomata is regulated by the guard cells. Stomatal conductance is directly related 

to the concentration gradient of the water vapor from the leaf to the atmosphere. 
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Transpiration (E). Transpiration is the loss of water through aerial parts 

of the plants like leaves, stems, and flowers into the atmosphere. This process also occurs 

through the stomata of the leaf along with CO2 conductance. Water use efficiency (WUE) 

is the ratio of photosynthetic rate to the rate of transpiration.  Transpiration is a function of 

both g and vapor pressure, based on this WUE can be calculated as a ratio of A/g (intrinsic 

WUE) or A/E (instantaneous WUE). 

Photosynthetic Responses to Light. Light response curves illustrate a plant’s 

responses to photosynthetically active radiation. Light curves are generated to examine the 

underlying photosynthetic processes of light-dependent and light-independent reactions, 

the efficiency at which light is utilized by photosynthesis, and the rate of O2 uptake. A light 

response curve (Figure 3) can be used to interpret the rate at which O2 evolution levels off, 

light levels below which there is no net O2 evolution, and how efficiently solar energy is 

converted into chemical energy. 

The light response curve (Figure 3) gives the photosynthetic rate (CO2 

assimilation) as a function of irradiance level (PAR). At under low-light levels, the rate of 

photosynthesis increases with the irradiance level. At a particular light intensity, the rate 

of CO2 assimilation levels off, this point is called "light saturation point”. Any more light 

striking the leaf does not further increase the rate of CO2 assimilation or photosynthesis, 

this is called the “saturating point”. At "light compensation point", the rate of CO2 taken 

up by the stomata (photosynthesis) is equal to the rate of CO2 evolved (respiration). The 

efficiency at which the solar energy is converted into chemical energy is given by the slope 

of the response curve and represents the "photosynthetic efficiency" or “quantum yield”. 



 

20 

In order to interpret the above variables from the light curve, a linear 

equation for the light curve was obtained by fitting a line to initial three points, for each 

repetition or individual sample measured. Photosaturated photosynthetic rate (Amax) was 

obtained at saturating photosynthetically active radiation (400 µmol m-2 s-1). The slope of 

the linear equation illustrates the photosynthetic efficiency, and the light compensation 

point (LCP) indicates the photosynthetically active radiation level where photosynthesis 

and respiration are equal (Table 3). 

Photosynthetic Responses to Carbon Dioxide.  CO2 response curves 

(Figure 4) illustrate a plants response to CO2 concentrations. The data can be used to assess 

maximum potential photosynthetic rates, maximum rates of Rubisco carboxylation and 

maximum rates of electron transport for Rubisco bisphosphate (RuBP) regeneration (Cen 

et al., 2005). 

In Figure 4, the rates of photosynthesis that would be achieved depending 

on whether Rubisco, RuBP (Rubisco biphosphate), or TPU (triose phosphate utilization) 

are limiting, as indicated. The actual photosynthetic rate (solid line) at any given Ci is the 

minimum of these three potential limitations (Long et al., 2003). At the CO2 compensation 

point (CO2CP), the net CO2 assimilation becomes zero (respiration rate equals 

photosynthetic rate). 

In order to interpret the above variables from the CO2 response curve, a 

linear equation for the curve was obtained by fitting a line to initial three points, for each 

repetition or individual sample measured. Photosaturated photosynthetic rate (Amax) was 

obtained at saturating light levels (400 µmol m-2 s-1), which illustrates the “saturation 

point”. The slope of the linear equation illustrates the maximum rate of Rubisco 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Cen%20YP%5Bauth%5D
http://jxb.oxfordjournals.org/search?author1=S.+P.+Long&sortspec=date&submit=Submit
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carboxylation and finally the carbon dioxide compensation point (CO2CP) was given by 

the negative intercept on y axis of the CO2 response curve divided by the slope of the CO2 

response curve (Table 4).  

Biomass. Plants were harvested between 21 and 28 days of growth and wet 

weights were recorded. Plants were then dried in a hot air oven at 100oC for 48 hours and 

reweighed.   

 

Statistical Analyses 

General linear model in ANOVA (Minitab Student version 14) was used for 

analyzing the gas exchange variables: photosynthetic rate, stomatal conductance, 

transpiration and water use efficiency (Tables 1, 2, 5, 6, 9 and 10), light-response curve 

variables: photosaturated photosynthetic rate, photosynthetic efficiency and compensation 

point (Tables 3, 7 and 11) and CO2 response curve variables: photosaturated photosynthetic 

rate, maximum rate of Rubisco carboxylation, and carbon dioxide compensation point 

(Tables 4, 8 and 12).  Fixed effects (day and treatment) and random effects (treatment x 

day interaction) in ANOVA were analyzed for the data in Tables 1-12 for A. thaliana 

Control grown and CNT media grown plants. Pairwise comparisons were performed using 

Tukey’s test (Tables 1-12) and the threshold of significance was set to p = 0.05 for all the 

analyses.  
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RESULTS 

 

  In the case of growing plants in medium containing SWCNTs of a concentration 

of 24.93 µg/ml (experiment I), there were no statistically significant differences found in 

mean (± SE) photosaturated photosynthetic rate, ambient photosynthetic rate, stomatal 

conductance, transpiration, intrinsic water use efficiency, and instantaneous water use 

efficiency between A. thaliana plants grown without (Control) and with carbon nanotubes 

(CNT) of 24.93 µg/ml concentration (Tables 1 and 2). Similarly, in case of growing plants 

in medium containing SWCNTs of concentration of 53.55 µg/ml (experiment II), mean 

photosaturated photosynthetic rates, ambient photosynthetic rate, stomatal conductance, 

transpiration, intrinsic water use efficiency and instantaneous water use efficiency were 

also not significantly different between A. thaliana plants grown without (Control) and 

with carbon nanotubes (CNT) of 53.55 µg/ml concentration (Tables 5 and 6). These non-

significant trends are consistent across trails as indicated by low and consistent coefficient 

of variation (CV) values among the treatments for gas exchange variables and also between 

the experiments with different carbon nanotubes concentrations (24.93 µg/ml and 53.55 

µg/ml). Mean dry weights of the Control grown plants was 19% greater than the mean dry 

weights of CNT grown plants in experiment I (Figure 7). But this does not represent a 

statistically significant difference in mean biomass accumulation.  

Light curves of A. thaliana Control grown and CNT grown plants were almost 

identical to each other (Figure 5 and 8), which indicates no effects of carbon nanotubes at 

lower concentrations of 24.93 µg/ml and 53.55 µg/ml on light compensation points, 

photosynthetic efficiencies and photosaturated photosynthetic rates. Mean photosaturated 
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photosynthetic rates (Amax), photosynthetic efficiencies (slope) and light compensation 

points (LCP) between Control grown and CNT grown plants were not significantly 

different as illustrated in Tables 3 and 7. But the light compensation point (LCP) was in 

Control grown plants was significantly higher (p<0.01) as compared to the CNT grown 

plants as shown in Table 7. CO2 response curves of A. thaliana Control grown and CNT 

grown plants were almost identical (Figure 6 and 9), which illustrates no effects of  carbon 

nanotubes at lower concentrations of 24.93 µg/ml and 53.55 µg/ml on carbon dioxide 

compensation points, maximum rates of rubisco carboxylation (slopes) and photosaturated 

photosynthetic rate. CO2 response curves of Control grown and CNT grown plants run 

parallel to each other and for both the curves the rate of Rubisco carboxylation and rate of 

electron transportation for RUBP regeneration are limiting factors at Ci of 450 ppm (Figure 

6) and 480 ppm (Figure 9) in experiments I and II respectively. Mean photosaturated 

photosynthetic rate (Amax),  maximum rate of  Rubisco carboxylation (slope) and carbon 

dioxide compensation points (CO2CP) between Control grown and CNT grown plants of 

A. thaliana were not statistically significant (Tables 4 and 8). 

In experiment III, ANOVA results for all gas exchange variables did not show any 

significant differences between the treatments over time (7, 14, and 21 days of growth) 

except for the mean photosaturated photosynthetic rate Amax. This indicated statistically 

significant effects of Amax as a function of treatment and day (p<0.05) and, also as a 

function of treatment x day interaction (p=0.03) (Table 9). Therefore, pairwise 

comparisons between mean values of these variables (Tukey test) were performed Mean 

Amax readings taken after 7 days of growth of A. thaliana Control grown were significantly 

different from mean Amax of CNT grown plants measured after 7, 14 and 21 days of growth. 
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Mean Amax measured after 7, 14 and 21 days of growth significantly differed between the 

treatments (Table 9). Similarly ANOVA results for all gas exchange variables did not show 

any significant differences between the treatments over time (7, 14, and 21 days of growth) 

except for the mean intrinsic water use efficiency (Aamb/g) and the mean instantaneous 

water use efficiency (Aamb/E). This illustrates significant effects of Aamb/g (p=0.030) and 

Aamb/E (p=0.037) as a function of treatment x day interaction (Table 10). Therefore, 

pairwise comparisons between mean values of these variables (Tukey test) were 

performed. Mean intrinsic water use efficiency of A. thaliana Control grown significantly 

differed with time (7, 14 and 21 days of growth). Mean intrinsic water use efficiency 

measured after 7 days of growth of A. thaliana Control grown were significantly different 

from mean intrinsic water use efficiency of CNT grown plants  measured after 14 and 21 

days of growth. Mean intrinsic water use efficiency measured after 21 days of growth 

significantly differed between the treatments (Table 10).   The light curves of A. thaliana 

Control grown and CNT grown plants almost run parallel to each other (Figure 10, 11 and 

12). However, the ANOVA results showed significant day effect (p=0.023) and also 

treatment x day effect (p=0.049) for mean photo saturated photosynthetic rate (Amax) (Table 

11). CO2 response curves of A. thaliana Control grown and CNT grown plants almost run 

parallel to each other (Figure 13, 14 and 15) and for both the curves, rate of rubisco 

carboxylation and rate of electron transportation for RUBP regeneration are limiting factors 

at Ci of ~500 Pa. However, ANOVA results for the mean Rubisco carboxylation rate 

(slope) showed significant treatment effect (p=0.023) and also treatment x day effect 

(p=0.039) (Table 12). Mean carboxylation efficiencies of A. thaliana Control grown 

significantly differed with time (7 and 14 days of growth). Mean carboxylation efficiencies 
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measured after 7 and 14 days of growth significantly differed between the treatments 

(Table 12).  The significant differences of gas exchange variables between days and 

treatments describe that the physiology of A. thaliana was affected by phenological factors 

during the time course experiment III. Mean dry weight of A. thaliana Control grown plants 

was not significantly different than the mean dry weight of CNT grown plants during the 

time course experiments (Figure 16). 
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DISCUSSION 

 

Studies to date have reported both positive and negatives effects of carbon 

nanotubes on plants. But to my knowledge, there has been any reports on the effects of 

SWCNTs on gas exchange and growth in A. thaliana. In my study, I examined the effects 

of SWCNTs on gas exchange variables (photosynthetic rate, stomatal conductance, 

transpiration and water use efficiency) and growth (biomass accumulation) using A. 

thaliana.  Also many studies (Khodakovskaya et al., 2012 and Begum et al., 2012) from 

the literature reported the effects of higher concentrations (1000-2000 µg/ml) of carbon 

nanotubes on plants. But in my study I examined the effects of low concentrations of 

SWCNTs (24.93 µg/ml and 53.55 µg/ml) on A. thaliana plants. The use of low 

concentrations of carbon nanotubes in my study demonstrated more realistic concentrations 

of carbon nanoparticles in the environment. Results from my study indicate no significant 

toxic effects of carbon nanotubes on gas exchange variables (Tables 1-8). However, the 

time course experiment indicated that carbon nanotubes may affect developmental rates 

(Table 9-12).  The low coefficient of variance values between the treatments and among 

various experiments in my study demonstrated consistency in the results. 

My growth methods and sample sizes were constrained by growing plants in sterile 

media for genetic analysis by other researchers. In addition, growth chamber space was 

limited. However, rates of growth and gas exchange were consistent with other studies.  

Control grown and CNT grown plants of A.thaliana in all my experiments were grown at 

light levels of 150 µmol m-2 s-1. These values were consistent with the light levels for 

growth (60 µmol m-2 s-1) reported by Zentgraf et al., (2003) in A.thaliana L.ecotype 
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Columbia plants. At saturating light levels, Amax in Control grown and CNT grown plants 

increased from >5 to >7 µmol CO2 m
-2 s-1 from 7 to 14 days of growth (Table 9). These 

values were consistent with the results reported by Flexas et al., (2007), where Amax slightly 

increased from 14 to > 15 µmol CO2 m
-2 s-1 from 28 to 34 days of growth in A. thaliana 

plants. The overall photosynthetic rates values of Control grown plants reported in my 

study ranged from >3.0 to > 7.0 µmol CO2 m
-2 s-1 (Table 1, 2, 5, 6, 9 and 10) , and these 

rates are consistent with the values reported by Dow et al., (2014), which ranged from 2.2 

to 8.2 µmol CO2 m
-2 s-1. Overall Amax values of Control grown plants reported in my study 

ranged from 4 to 7 µmol CO2 m
-2 s-1 (Tables 3, 7 and 11), and these were similar to values 

reported by Tanaka et al., (2013) in Control plants that ranged from 6 to 8 µmol CO2 m
-2 

s-1. The values of Amax of Control grown plants at a CO2 partial pressure of 400 µmol m-2 

s-1 in CO2 response curves reported in my study ranged from 3 to 5 µmol CO2 m
-2 s-1 (Tables 

4, 8 and 12) and these rates were consistent with the values reported by Tanaka et al., 

(2013), which ranged from 6 to 8 µmol CO2 m
-2 s-1. The values for intrinsic WUE reported 

in my study ranged from 2 to 15 (Table 2 and 9), were similar to the values reported by 

Dow et al., (2014). Similarly, instantaneous WUE values reported in my study ranged from 

0.28 to 1.2 (Table 2) and these were consistent with the values reported by Dow et al., 

(2014), which ranged from 1.0 to 4.0. The above findings illustrate that the gas exchange 

values obtained in my study are of normal ranges and consistent with the previous literature 

with respect to A. thaliana.  

Mondal et al., (2011), reported higher germination rates and increased root and 

shoot growth in Brassica juncea seeds grown in low concentrations of MWCNTs (23 

µg/ml and 46 µg/ml). Similarly, Yan et al., (2013), reported an accelerated root growth in 
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maize grown in SWCNTs.  In contrast, Begum et al., (2014), reported a significant 

reduction in root and shoot length, cell death, and electrolyte leakage, when exposed to 

higher concentrations (1000-2000 µg/ml) of MWCNTs.  Begum et al., (2012) reported a 

significant decrease in root and shoot lengths of Red spinach, lettuce, and cucumber when 

exposed to higher concentrations (1000 and 2000 µg/ml) of MWCNTs.  But my study 

reported no visible effects in germination rates, root, and shoot growth (data not shown) in 

A. thaliana plants grown in low concentrations (24.93 µg/ml and 53.55 µg/ml) of 

SWCNTs. Lin et al., (2009), reported decreased dry weights in A. thaliana T87 suspension 

cells when grown in agglomerates of MWCNTs. Similarly, Bandyopadhyay et al., (2015), 

reported reduced germination, shoot, and root biomass in alfa alfa seeds when exposed to 

ZnO nanoparticles of 500 µg/ml concentration.  In my study, no negative effects were 

observed in dry weights or biomass accumulation in A. thaliana plants grown in low 

concentration (24.93 µg/ml) of SWCNTs (Figure 7 and 16). Begum and Fugetsu, (2012), 

reported cell damage in root and leaves via oxidative stress in Amaranthus tricolor L 

exposed to MWCNTs. In contrast, I observed no effects on leaves and roots cells in A. 

thaliana when grown in a media containing SWCNTs of concentration 24.93 µg/ml (Figure 

2). Giraldo et al., (2014), reported an increased photosynthetic rates (tripled) when 

SWCNTs were inserted into the chloroplasts in plants. Since my study had neutral effects 

on the photosynthetic rates, this suggests that SWCNTs were not entering into the 

chloroplasts of A. thaliana plants. Oukarroum et al., (2015), reported cellular oxidative 

stress and decreased quantum yield in Lemna gibba when exposed to both nickel oxide and 

nickel (II) oxide nanoparticles at a concentration of 1000 µg/ml. In my study, the results 

from Tables 3, 7 and 11 illustrate no changes in quantum yield or photosynthetic efficiency 
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in A. thaliana CNT grown plants as compared to the Control grown plants when exposed 

to SWCNTs of low concentrations (24.93 µg/ml and 53.55 µg/ml).  

By studying the effects of pure SWCNTs at low concentrations on different gas 

exchange variables, growth and developmental patterns in A. thaliana, I conclude that my 

study provides no evidence of low concentrations of pure SWCNTs effecting whole plant 

gas exchange. However, my study can be further extended by using higher concentrations 

of SWCNTs to check when the shift actually starts where physiological variables and 

biomass will be negatively affected by CNTs. Second, by using aged CNTs, which are 

exposed to the UV rays for ~ 300 hours, to check if aged nanoparticles have any significant 

effect on Arabidopsis physiological variables and biomass. Another area of research 

interest would be to test the effect of functionalized groups, which are attached to florescent 

tags. This last experiment would demonstrate if the CNTs are internalized into the plant 

system using with fluorescent microscopy. Fourth, by using MWCNTs of lower 

concentrations, we can compare their effects on gas exchange variables and growth in A. 

thaliana with SWCNTs. 
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TABLES 

 

 

 

Table 1. Mean (±SE) and coeffiecient of variation of photosaturated photosynthetic rate 

(Amax), stomatal conductance (g), transpiration (E), intrinsic water use efficiency (Amax/g) 

and water use efficiency (Amax/ E)  at a photosynthetically active radiation (PAR) of 400 

µmol m-2 s-1 recorded after 21 days of growth in A. thaliana, grown in medium without 

(Control) (n=12) and with carbon nanotubes (CNT) (n=12) of concentration of 24.93 

µg/ml. 

 

Variable Treatment Mean SE 

Coefficient of 

Variation 

Amax (µmol CO2 m
-2 s-1) 

control 5.20 0.42 25.47 

CNT 5.00 0.44 24.80 

g (mol H2O  m-2 s-1) 

control 0.38 0.09 66.11 

CNT 0.38 0.09 71.09 

E (mol H2O m-2 s-1) 

control 5.56 0.77 43.55 

CNT 5.32 0.58 30.89 

Amax/g
 

control 5.56 0.77 43.55 

CNT 5.32 0.58 30.89 

Amax/E 

control 1.11 0.15 44.09 

CNT 1.00 0.11 30.87 
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Table 2. Mean (±SE) and coeffiecient of variation of ambient photosynthetic rate (Aamb), 

stomatal conductance (g), transpiration (E), intrinsic water use efficiency (Aamb/g) and 

water use efficiency (Aamb / E)  at a photosynthetically active radiation (PAR) of 150 µmol 

m-2 s-1 recorded after 21 days of growth in A. thaliana, grown in medium without (Control) 

(n=12) and with carbon nanotubes (CNT) (n=12) of concentration of 24.93 µg/ml. 

 

Variable Treatment Mean SE 

  Coefficient 

of 

Variation 

    Aamb (µmol CO2 m
-2s-1) 

Control 3.93 0.28 22.25 

CNT 3.76 0.29 22.19 

g (mol H2O m-2 s-1) 

Control 0.39 0.09 79.21 

CNT 0.36 0.09 71.31 

E (mol H2O m-2 s-1) 

Control 5.50 0.79 45.05 

CNT 4.96 0.59 33.66 

Aamb/g
 

Control 17.42 3.71 67.31 

CNT 15.46 3.45 63.11 

Aamb/E 

Control 0.85 0.13 46.00 

CNT 0.80 0.094 33.39 
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Table 3. Mean (±SE) photosaturated photosynthetic rate (Amax), photosynthetic efficiency 

(slope), and light compensation point (LCP) obtained from light response curves  after 21 

days of growth for A. thaliana plants grown without (Control) (n=12) and with carbon 

nanotubes (CNT, 24.93 µg/ml) (n=12). 

 

Treatment 

Amax 

(µmol CO2 m
-2 s-1) 

Slope 

(µmol m-2 s-1) 

LCP 

(µmol mol) 

Control 5.46+0.38 0.030+0.003 28.45+3.93 

CNT 5.03+0.79 0.026+0.003 24.24+4.21 
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Table 4. Mean (±SE)  photosaturated photosynthetic rate (Amax), carboxylation efficiency 

(slope), and carbon dioxide compensation point (CO2CP) obtained from carbon dioxide 

response curves  after 21 days of growth  for A. thaliana plants grown without (Control) 

(n=12) and with carbon nanotubes (CNT, 24.93 µg/ml) (n=12). 

 

Treatment 

Amax 

(µmol CO2 m
-2 s-1) 

Slope 

(µmol m-2 s-1) 

CO2CP 

(µmol mol) 

Control 4.22+0.15 0.013+0.001 134.43+9.60 

CNT 4.86+0.27 0.014+0.001 119.73+6.17 
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Table 5. Mean (±SE) and coeffiecient of variation of photosaturated photosynthetic rate 

(Amax), stomatal conductance (g), transpiration (E), intrinsic water use efficiency (Amax/g) 

and water use efficiency (Amax/ E)  at a photosynthetically active radiation (PAR) of 400 

µmol m-2 s-1 recorded after 21 days of growth in A. thaliana, grown in medium without 

(Control) (n=3) and with carbon nanotubes (CNT) (n=3) of concentration of 53.55 µg/ml. 

 

Variable Treatment Mean SE 

Coefficient of 

Variation 

Amax (µmol CO2 m
-2 s-1) 

Control 5.56 0.45 16.22 

CNT 5.45 0.78 24.93 

g (mol H2O m-2 s-1) 

Control 0.78 0.07 17.20 

CNT 0.90 0.06 10.7 

E (mol H2O m-2 s-1) 

Control 8.64 0.32 7.46 

CNT 9.16 0.27 5.06 

Amax/g 

Control 7.18 0.26 7.17 

CNT 6.17 1.19 33.30 

Amax/E 

Control 0.64 0.03 10.34 

CNT        0.74 1.23 12.23 
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Table 6. Mean (±SE) and coeffiecient of variation of ambient photosynthetic rate (Aamb), 

stomatal conductance (g), transpiration (E), intrinsic water use efficiency (Aamb/g) and 

water use efficiency (Aamb / E)  at a photosynthetically active radiation (PAR) of 150 µmol 

m-2 s-1 recorded after 21 days of growth in A. thaliana, grown in medium without (Control) 

(n=3) and with carbon nanotubes (CNT) (n=3) of concentration of  53.55 µg/ml. 

 

Variable Treatment Mean SE 

Coefficient of 

Variation 

Aamb (µmol CO2 m
-2 s-1) 

Control 4.05 0.38 18.90 

CNT 3.90 0.51 22.66 

g (mol H2O m-2 s-1) 

Control 0.72 0.07 19.58 

CNT 0.84 0.07 13.39 

E (mol H2O m-2 s-1) 

Control 8.22 0.31 7.55 

CNT 8.82 0.29 5.73 

Aamb/g 

Control 5.60 0.13 4.63 

CNT 4.75 0.88 32.28 

Aamb/E 

Control 0.49 0.03 12.28 

CNT 0.44 0.06 22.32 
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Table 7. Mean (±SE)  photosaturated photosynthetic rate (Amax), photosynthetic efficiency 

(slope), and light compensation point (LCP) obtained from light response curves  after 21 

days of growth for A. thaliana plants grown without (Control) (n=3) and with carbon 

nanotubes (CNT, 53.55 µg/ml) (n=3).  

 

Treatment 

Amax 

(µmol CO2 m
-2 s-1) 

Slope 

(µmol m-2 s-1) 

LCP 

(µmol mol) 

Control 6.19+0.60 0.039+0.003 33.71+4.91 

CNT 6.792+0.76 0.023+0.004 2.17+0.97 
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Table 8. Mean (±SE)  photosaturated photosynthetic rate (Amax), carboxylation efficiency 

(slope), and carbon dioxide compensation point (CO2CP) obtained from carbon dioxide 

response curves after 21 days of growth for A. thaliana plants grown without (Control) 

(n=3) and with carbon nanotubes (CNT, 53.55 µg/ml) (n=3).  

 

Treatment 

Amax 

(µmol CO2 m
-2 s-1) 

Slope 

(µmol m-2 s-1) 

CO2CP 

(µmol mol) 

Control 6.75+0.62 0.021+0.001 94.52+6.14 

CNT 5.40+1.21 0.015+0.004 127.60+25.40 
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Table 9. Mean (±SE) and coeffiecient of variation of photosaturated photosynthetic rate 

(Amax), stomatal conductance (g), transpiration (E), intrinsic water use efficiency (Amax/g) 

and water use efficiency (Amax/ E)  at a photosynthetically active radiation (PAR) of 400 

µmol m-2 s-1 recorded after 7, 14 and 21 days of growth in A. thaliana, grown in medium 

without (Control) (n=3) and with carbon nanotubes (CNT) (n=3) of concentration of 24.93 

µg/ml. For all variables, time was a statistically significant variable, but treatment and 

treatment x day interaction was not statistically different except for Amax; therefore, no 

pairwise comparisons were performed except for Amax. Means for Amax that do not share 

a letter are statistically significantly different from each other (p<0.05) as determined by 

pairwise comparisons using Tukey’s method. 

 

Variable Day Treatment Mean SE 

Coefficient of 

Variation 

Amax (µmol CO2 m
-2 s-1) 

7 

Control 5.12a 0.69 23.57 

CNT 4.37a,b 0.53 20.91 

14 

Control 7.25c 0.28 6.62 

CNT 5.34a,b 0.28 9.08 

21 

Control 5.72a,b,c 0.10 0.178 

CNT 6.26b,c 0.12 3.26 

g (mol H2O m-2 s-1) 

7 

Control 1.36 0.14 17.70 

CNT 1.36 0.25 32.09 

14 

Control 0.96 0.03 5.07 

CNT 0.88 0.09 16.44 

21 

Control 0.64 0.08 0.14 

CNT 0.56 0.04 13.12 

 

7 

Control 13.14 0.98 12.95 

CNT 13.18 2.11 27.76 

14 Control 9.81 0.02 0.36 
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Variable Day Treatment Mean SE 

Coefficient of 

Variation 

CNT 9.46 0.49 9.01 

21 

Control 7.23 1.14 27.20 

CNT 6.63 0.29 7.69 

Amax/g 

 

7 

Control 3.83 0.51 23.15 

CNT 3.27 0.20 10.36 

14 

Control 7.60 0.50 11.30 

CNT 6.24 0.75 20.83 

21 

Control 9.22 1.14 21.42 

CNT 11.21 0.85 13.07 

Amax/E 

7 

Control 0.39 0.05 21.95 

CNT 0.34 0.02 8.28 

14 

Control 0.74 0.03 6.80 

CNT 0.57 0.05 14.61 

21 

Control 0.83 0.11 23.67 

CNT 0.95 0.06 10.77 
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Table 10. Mean (±SE) and coeffiecient of variation of ambient photosynthetic rate (Aamb), 

stomatal conductance (g), transpiration (E), intrinsic water use efficiency (Aamb/g) and 

water use efficiency (Aamb / E)  at a photosynthetically active radiation (PAR) of 150 µmol 

m-2 s-1 recorded after 7, 14 and 21 days of growth in A. thaliana, grown in medium without 

(Control) (n=3) and with carbon nanotubes (CNT) (n=3) of concentration of 24.93 µg/ml. 

For all variables, time was a statistically significant variable, but treatment and treatment 

x day interaction was not statistically different except for Amax; therefore, no pairwise 

comparisons were performed except for Amax. Means for Amax that do not share a letter 

are statistically significantly different from each other (p<0.05) as determined by pairwise 

comparisons using Tukey’s method. 

 

Variable Day Treatment Mean SE 

Coefficient of 

Variation 

Aamb (µmol CO2 m
-2 s-1) 

7 

Control 3.75 0.25 11.43 

CNT 3.50 0.53 26.39 

14 

Control 4.63 0.52 19.54 

CNT 3.80 0.48 21.95 

21 

Control 3.75 0.05 2.39 

CNT 4.41 0.20 8.16 

g (mol H2O m-2 s-1) 

7 

Control 1.29 0.13 16.87 

CNT 1.26 0.25 34.18 

14 

Control 0.87 0.02 3.05 

CNT 0.81 0.07 15.92 

21 

Control 0.64 0.10 25.92 

CNT 0.49 0.04 12.25 

 

7 

Control 12.64 0.86 11.79 

CNT 12.46 2.04 28.39 

14 Control 9.31 0.18 3.33 
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Variable Day Treatment Mean SE 

Coefficient of 

Variation 

CNT 9.00 0.45 8.57 

21 

Control 7.05 1.14 27.99 

CNT 5.88 0.56 16.37 

Aamb/g 

7 

Control 2.97c 0.37 21.35 

CNT 2.82c 0.24 14.74 

14 

Control 5.31b,c 0.63 20.47 

CNT 4.79b,c 0.81 29.31 

21 

Control 6.15b 0.93 26.09 

CNT 9.04a 0.31 5.91 

 Aamb/E 

7 

Control 0.30c 0.03 16.67 

CNT 0.28c 0.02 11.98 

14 

Control 0.50b,c 0.05 18.81 

CNT 0.42b,c 0.06 23.66 

21 

Control 0.56a,b 0.08 23.95 

CNT 0.76a 0.04 8.47 
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Table 11. Mean (±SE) photosaturated photosynthetic rate (Amax), photosynthetic efficiency 

(slope), and light compensation point (LCP) obtained from light response curves  after 7, 

14 and 21 days of growth for A. thaliana  plants grown without (Control) (n=3) and with 

carbon nanotubes (CNT, 24.93 µg/ml) (n=3).  

 

Day Treatment 

Amax 

(µmol CO2 m
-2 s-1) 

Slope 

(µmol m-2 s-1) 

LCP 

(µmol mol) 

7 

Control 4.39+0.18 0.021+0.011 29.94+6.42 

CNT 3.89+0.39 0.021+0.011 14.15+4.48 

14 

Control 6.21+0.78 0.031+0.011 17.23+6.81 

CNT 4.56+0.84 0.024+0.002 13.16+3.69 

 

21 

Control 5.12+0.14  0.025+0.003 35.25+1.14 

CNT  6.31+0.18  0.031+0.002 18.30+2.82 
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Table 12. Mean (±SE)  photosaturated photosynthetic rate (Amax), carboxylation efficiency 

(slope), and carbon dioxide compensation point (CO2CP) obtained from carbon dioxide 

response curves after 7, 14 and 21 days of growth for A. thaliana  plants grown without 

(Control) (n=3) and with carbon nanotubes (CNT, 24.93 µg/ml) (n=3). For all variables, 

time was a statistically significant variable, but treatment and treatment x day interaction 

was not statistically different except for Amax; therefore, no pairwise comparisons were 

performed except for Amax. Means for Amax that do not share a letter 

are statistically significantly different from each other (p<0.05) as determined by pairwise 

comparisons using Tukey’s method. 

 

Day Treatment 

Amax 

(µmol CO2 m
-2 s-1) 

Slope 

(µmol m-2 s-1) 

CO2CP 

(µmol mol) 

7 

Control 4.93+0.02 0.014+0.002a,b 104.88+7.55 

CNT 3.76+0.30 0.011+0.001b 114.37+8.19 

14 

Control 4.93+0.02 0.016+0.002a 118.11+35.70 

CNT 4.34+0.35 0.011+0.001b 115.4+12.30 

21 

Control 4.01+0.15 0.013+0.001a,b 149.52+4.58 

CNT 5.10+0.21 0.014+0.001a,b 116.36+7.30 
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FIGURES 

 

 

 

 

 

                 

                             

 

 

 

 

 

Diagram A                           Diagram B                     Diagram C 

 

 

Figure 1. Steps for preparing holding containers for A. thaliana seeds using wax paper  
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                           Control plates                                          CNT plates             
 

Figure 2. Photo of A. thaliana plants after 21 days of growth. Petriplates on the left (L) side 

contain medium without CNTs (Control plates) and on right (R) side contain medium with 

CNTs (CNT plates). 
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  Figure 3. Representative light response curve for a C3 plant. 
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Figure 4. Representative  ACi curve for a C3 plant. 
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Figure 5. Mean photosynthetic rate as a function of photosynthetically active radiation 

(PAR) after 21 days of growth for A. thialiana plants grown without (Control) (n=12) and 

with carbon nanotubes (CNT, 24.93 µg/ml) (n=12) 
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Figure 6. Mean photosynthetic rate as a function of carbon dioxide concentration (Ci) after 

21 days of growth for A. thialiana plants grown without (Control) (n=12) and with carbon 

nanotubes (CNT, 24.93 µg/ml) (n=12). 
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Figure 7. Mean (±SE) dry weight of A. thaliana plants  after 21 days of growth in Control 

grown (n=12) and CNT grown plants (24.93 µg/ ml, n=12). 
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Figure 8. Mean photosynthetic rate as a function of photosynthetically active radiation 

(PAR) after 21 days of growth for A. thialiana plants grown without (Control) (n=3) and 

with carbon nanotubes (CNT, 53.55 µg/ml) (n=3). 
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Figure 9. Mean photosynthetic rate as a function of carbon dioxide concentration (Ci) after 

21 days of growth for A. thialiana plants grown without (Control) (n=3) and with carbon 

nanotubes (CNT, 53.55 µg/ml) (n=3). 
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Figure 10.  Mean photosynthetic rate as a function of photosynthetically active radiation 

(PAR) after 7 days of growth for A. thialiana plants grown without (Control) (n=3) and 

with carbon nanotubes (CNT, 24.93 µg/ml) (n=3). 
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Figure 11. Mean photosynthetic rate as a function of photosynthetically active radiation 

(PAR) after 14 days of growth for A. thialiana plants grown without (Control) (n=3) and 

with carbon nanotubes (CNT, 24.93 µg/ml) (n=3). 
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Figure 12. Mean photosynthetic rate as a function of photosynthetically active radiation 

(PAR) after 21 days of growth for A. thialiana plants grown without (Control) (n=3) and 

with carbon nanotubes (CNT, 24.93 µg/ml) (n=3). 
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Figure 13. Mean photosynthetic rates as a function of carbon dioxide concentration (Ci) 

after 7 days of growth for A. thialiana plants grown without (Control) (n=3) and with 

carbon nanotubes (CNT, 24.93 µg/ml) (n=3). 
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Figure 14. Mean photosynthetic rates as a function of carbon dioxide concentration (Ci) 

after 14 days of growth for A. thialiana plants grown without (Control) (n=3) and with 

carbon nanotubes (CNT, 24.93 µg/ml) (n=3). 
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Figure 15. Mean photosynthetic rates as a function of carbon dioxide concentration (Ci) 

after 21 days of growth for A. thialiana plants grown without (Control) (n=3) and with 

carbon nanotubes (CNT, 24.93 µg/ml) (n=3). 
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Figure 16. Mean (±SE) dry weight of A. thaliana plants after 21 days of growth in Control 

grown (n=3) and CNT grown plants (24.93 µg/ ml, n=3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Effects of Low Concentrations of Carbon Nanotubes on Growth and Gas Exchange in Arabidopsis Thaliana
	Recommended Citation

	Missouri State University

