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ABSTRACT 

Viral bacterial coinfections are known to cause severe pneumonia, especially in the 

elderly and in pediatric patients. Antibiotics like β-Lactams kill the bacteria but fail to 

improve symptoms suggesting a faulty immune system may play an important role in the 

disease. Interleukin-1β (IL-1β) is an important immune signaling cytokine responsible for 

inflammation. It exists as an inactive precursor that can be activated by caspase-1 

containing inflammasomes (multi-protein complex). Influenza A virus (IAV) and 

Streptococcus pneumoniae (S. pneumoniae) activate the inflammasome through the 

NOD-like receptor protein NLRP3 and/or AIM2. Previous reports in mice indicate that 

IL-1β levels are dramatically elevated during coinfection with IAV and S. pneumoniae. 

However, how IL-1β levels increase and their importance in coinfection is not known. 

We have discovered that IL-1β expression and secretion is increased during coinfection 

as a result of activation of multiple signaling pathways simultaneously. This was 

concluded in experiments where macrophages or mice deficient in various immune 

pathways including Myd88, Aim2 or Nlrp3 genes were examined for their effects on IL-

1β production. Treatment options were then explored. Mice were given an antibiotic 

and/or an IL-1β neutralizing antibody. Treatment of mice with clindamycin antibiotic 

significantly improved mortality and simultaneously reduced IL-1β levels. Further 

inhibition of IL-1β using neutralizing antibodies resulted in improved weight gain 

compared to clindamycin alone. Thus, we concluded that IL-1β plays an important role 

during the coinfection of IAV and S. pneumoniae. 
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1 

INTRODUCTION 

 

 

A coinfection occurs when the host is infected by one pathogen, which initiates an 

immune response and taxes the body’s resources. A second pathogen then takes 

advantage of this weakness and also attacks the host (1). Secondary bacterial infection 

during influenza A virus (IAV) infection is a contributing factor to disease severity and 

mortality. Streptococcus pneumoniae (S. pneumoniae) is one of the main pathogens 

causing coinfection following IAV infection (2-4). In fact, the coinfection of IAV and S. 

pneumoniae is the 8th leading cause of death in the United States (5). Throughout history, 

influenza pandemics have taken millions of lives. The highest mortality was recorded in 

the 1918-1919 H1N1 “Spanish flu” pandemic, which resulted in 50-100 million deaths 

(6-8). Autopsies of Spanish flu victims linked the deaths to severe complications related 

to bacterial coinfections, with S. pneumoniae as a major coinfecting agent (9-12). 

Subsequent research has shown that infection with more severe IAV strains leads to 

increased susceptibility to bacterial coinfections (8, 13, 14). In this particular coinfection, 

the immune system response plays an important role in the development of disease. In 

part, the response of the immune system to IAV is different than the one to S. 

pneumoniae. Thus, when a coinfection occurs, the immune response to IAV impairs the 

response to S. pneumoniae. Therefore, to understand coinfection, one must first 

understand the pathogens involved and the immune response to those pathogens. Our 

hope is that a better understanding of the mechanisms responsible for this coinfection can 

facilitate the quality of treatment available. 
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Influenza A Virus 

IAV is an enveloped negative-sense single-stranded RNA virus part of the 

Orthomyxoviridae family (15). Its genome is made up of eight RNA segments that can 

encode up to 12 different proteins. There are two types of glycoproteins, hemagglutinin 

(HA) and neuraminidase (NA). Within those two groups, there are 17 subtypes of HA 

(H1–H17) and 9 of NA (N1-N9) (16-18).  Additional proteins include the matrix proteins 

1 and 2 (M1 and M2) (19), nucleoprotein (NP) (20), polymerase complex proteins (Phox 

and Bem1/2 ( PB1, PB2,) and Polymerase acidic protein ( PA) ) (21, 22), and non-

structural proteins 1/2  (NS1 (23), NS2 (24, 25),), PA-X (26) and PB1-F2 (27). There are 

four types of influenza viruses (A, B, C, D) (28-30). Influenza types A, B and C originate 

from avian, mammal and human sources and all three are able to cause infection in 

humans, with influenza A virus producing the most severe disease and influenza C virus 

the least severe (31-33). Influenza D virus thus far has only been detected in cattle (30). 

The influenza A virus has been seen under prevailing pandemic conditions, due to being 

the only strain with an animal reservoir that can transmit to humans, hence attention has 

mostly been focused on it (34, 35). Transmission of the virus occurs through inhalation of 

infectious air droplets and contact with infected fomites (36). Once inside the body, the 

virus infects columnar epithelial cells in the respiratory tract by the attachment of HA to 

specific sialic acid residues, which are present on the cell surface through post-

translational glycosylation modifications on cell proteins destined for the cell surface. 

Binding to sialic acid induces Clathrin mediated endocytosis (CME) or other alternative 

endocytic routes, which allows the virus to enter the cell (37, 38). Once the virus is in the 

endosome, M2 proteins allow H+ ion influx and cause dissociation of M1 proteins from 
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nucleocapsids. Viral and endosomal membrane fusion through changes in the HA protein 

conformation also occur (39). The viral ribonucleoprotein particles (vRNPs) made up of 

viral genomic RNA (vRNA), PB1, PB2, PA, and NP are released into the cytoplasm and 

translocate to the nucleus to begin replication and transcription (40, 41). When the 

vRNPs enter the nucleus, transcription of positive sense viral mRNA begins (42, 43). 

Transcription initiates when PB2 binds to the 5′-cap structure of host mRNAs, cutting it 

and snatching it to allowing those ~12 nucleotides to serve as a primer template for the 

polymerase acidic protein (PA) to start mRNA synthesis (44-46). The viral polymerase 

also produces complementary RNA (cRNA), which is similar to mRNA, but without a 

5’-cap. This cRNA is then used as a template to make the negative stranded vRNA. Once 

sufficient viral proteins have been synthesized using the mRNA, the virus polymerase 

switches to the production of vRNA. vRNA exits the nucleus and M1 proteins package 

the virus so it can be ready to exit the cell (47). Newly packed virions then assemble at 

the plasma membrane and initiate a process called budding (48). First, HA and NA 

interact with lipid rafts (cholesterol enriched regions) in the plasma membrane allowing 

the initiation of budding. Second, M1 protein is recruited and binds to the cytoplasmic 

tails of HA an NA. Then vRNPs gather around the M1 protein. Third, virion elongation 

occurs due to the polymerization of the M1 protein. Budding is finalized when the M1 

protein recruits the M2 protein, which initiates membrane scission and viral release. 

Finally, when the virus buds out of the cell, NA protein allows it to detach from sialic 

acid receptors and infect new cells (49, 50) . IAV causes the disease influenza, with 

symptoms consisting of fatigue, runny nose, fever, chills, headaches, muscle aches, and 
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congestion. IAV also allows bacteria like S. pneumoniae to initiate pathogenicity through 

multiple factors (51-55). 

 

Streptococcus pneumoniae (S. pneumoniae) 

S. pneumoniae is a non-spore forming diploccoci, characterized by its round two-

joined cells that can form long chains. It is facultative anaerobic, being able to grow with 

or without oxygen. It is also alpha-hemolytic, so when grown on a blood agar plate, it 

oxidizes hemoglobin and lyses red blood cells. This type of hemolysis results in a green 

zone being produced around bacterial colonies. This bacterium is transformable, being 

able to take up genetic material from the environment.  It is also nutritionally fastidious, 

needing specific nutrients and environmental conditions to grow. Finally, it also ferments 

lactic acid (56, 57). Its mode of transmission consists of droplets or aerosols distributed 

between hosts (58). Exposure of the host is followed by nasopharyngeal epithelial cell 

attachment made possible by mucosal evasion due to its capsule and neuraminidase 

(NanA). This leads to asymptomatic colonization in some people but systemic 

dissemination in others (59). This colonization is mainly found in the nasopharynx of 

children, yet the carriage rate decreases with age (60, 61). 

 S. pneumoniae is a gram-positive bacteria, and its cell wall consists of 

peptidoglycan and teichoic acids. A polysaccharide capsule covers the cell wall. S. 

pneumoniae virulence can be categorized by serotyping its capsular polysaccharide (62). 

Some serotypes act as primary pathogens and easily invade the host, yet higher mortality 

rates are related to opportunistic pathogens containing serotypes with lower invasive 

disease potential such as S. pneumoniae type 3 strain. The polysaccharide capsule 
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contains a unique teichoic acid component: a ribitol phosphate backbone that binds to 

phosphorylcholine (PCho) (63). PCho facilitates bacterial endocytosis, entrance into the 

bloodstream and crossing of other barriers due to its interaction with the platelet-

activating factor receptor (PAFr) present on human cells (64). It also has pili, which aid 

with adhesion to human cells. Pneumococcal surface protein A (PspA), and choline 

binding protein (Cpb) A also aid in adherence (57). Adherence to the alveolar epithelium 

and the release of toxic components such as the exotoxin pneumolysin (PLY) and 

hydrogen peroxide results in alveolar damage and fluid build-up in the alveolar space (65, 

66). PLY is a toxin produced by S.pneumoniae responsible for damaging the host’s 

membrane by forming lytic pores. It has also been shown to cause DNA- double strand 

breaks resulting in cell cycle arrest (67). Hydrogen peroxide has been shown to be 

produced by S. pneumoniae in aerobic conditions through a pyruvate oxidase. It harms 

alveolar epithelial cells and other bacteria that share a common microenvironment (68).  

Although S. pneumoniae is an extracellular pathogen that can asymptomatically 

colonize the upper respiratory tract, when the body is weakened, an opportunistic 

pathogen such as S. pneumoniae is able to become invasive and cause disease. S. 

pneumoniae can cause pneumonia, which is characterized by alveolar inflammation 

usually centering in one lobe of the lungs (69). Some of the symptoms linked to 

pneumonia are chills, fever, cough with phlegm or pus, and difficulty breathing. In 

addition to pneumonia, this pathogen is associated with otitis media, meningitis and 

septicemia (13, 70). These conditions are especially prominent following IAV infection 

and can cause the immune system to over react (13, 70).  
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The Immune System and Inflammation 

The immune system is responsible for orchestrating cells, tissues, and organs to 

maintain homeostasis and defend the body against foreign agents. Inflammation is a 

biological response to harmful stimuli. It is characterized by five hallmarks: redness, 

increased heat, swelling, pain and loss of function. These five signs are due to 

vasodilation, increased vascular permeability, decrease cell function and increased 

vascularity (71). Inflammation allows the immune cells to communicate and migrate to 

the site of trauma. Unfortunately, if the immune system is not properly regulated, 

inflammation can get out of control. This can be due to intrinsic factors like genetic 

mutations or extrinsic factors such as coinfections (72, 73). Inflammation is initiated and 

regulated by the two arms of immunity: innate and adaptive.  

Innate immunity is the first line of defense. If a piece of broken glass punctures 

the skin, the innate immune system will coordinate immune cells such as macrophages, 

neutrophils, eosinophils, basophils, dendritic cells and natural killer cells to arrive at the 

site of trauma. Macrophages are mature monocytes that patrol the vasculature and reside 

in tissues with the main purpose of recognizing foreign particles. They are antigen 

presenting cells (APCs) meaning that they travel to lymph nodes and show antigens to T 

cells and B cells resulting in their activation. Most resident macrophages are 

embryonically derived, yet others originate from hematopoietic stem cells (HSC) in the 

bone marrow (74). Neutrophils originate from HSC, and travel to the site of infection and 

produce toxic substances such as hydrogen peroxide and superoxide, and form neutrophil 

extracellular traps (NETs) to eliminate foreign particles. Dendritic cells are also APCs; 

they travel to the site of infection to gather information about the foreign agent and then 
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travel to the lymph nodes to present the antigen to adaptive immune cells. The innate 

immune system also contains a group of proteins that make up the complement system. 

These proteins help with pathogen recognition by attaching to the foreign agent. They 

also surround the agent and impede its movement to other areas by a process called 

opsonization. Finally, they  eliminate the foreign agent by inducing cell lysis via the 

membrane attack complex (75).  

Specific immune receptors called Pattern Recognition Receptors (PRRs) present 

on epithelial and immune cells can detect Pathogen Associated Molecular Patterns 

(PAMPS), like bacterial peptidoglycan or viral RNA, or damage-associated molecular 

patterns (DAMPs), like membrane damage caused by S. pneumoniae PLY and changes in 

ion concentration occurring during infection. These PAMPS and DAMPS activate PRRs 

to initiate immune signaling cascades (76, 77). All together, these cells initiate signal 

transduction pathways that result in transcriptional enhancement of immune system 

genes, inflammasome (multiprotein complex) activation and cytokine (immune signaling 

molecules) production with the final goal of pathogen elimination and return to 

homeostasis. Overall, the innate immune system has a major role in controlling 

inflammation (78).   

Adaptive immunity is a long-term type of immunity, it takes a few days to form, 

yet long-lasting memory helps protect the body from future attacks. It is made up of the 

humoral and cellular immune responses. The humoral response consists of B 

lymphocytes that will produce antibodies to protect the body from future infections. The 

cellular response consists of T lymphocytes that will further help with the elimination of 

pathogens through receptor specificity. In the adaptive immune system, cells present 
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specific components from foreign particles called antigens to the receptors located on T 

and B lymphocytes. This antigen presentation results in the activation, migration, and 

differentiation of cells (79). During coinfection, the adaptive immune response to IAV 

results in the production of specific cytokines like Interferon (IFN)-  that can affect the 

innate immune response to the secondary infection with S. pneumoniae (80). 

 

Inflammation and Immunity During Coinfection 

The coinfection of IAV and S. pneumoniae results in pneumonia due to multiple 

factors. The cooperation between coinfecting pathogens causes severe pneumonia due to 

enhanced pathogen growth and dissemination as well as enhanced inflammation (81). 

IAV and S. pneumoniae work in a synergistic manner to increase activation of PRRs 

resulting in enhanced immune signaling production and inflammation.  

Since the immune response to coinfection plays an important function in the 

pathology of this disease, it is important to have a better understanding of the causes of 

inflammation. The immune response begins when IAV initiates an infection. Then, the 

virus limits some immunological mechanisms allowing S. pneumoniae to leave its normal 

microenvironment in the pharynx and infect the lungs. If we look at this in greater detail, 

the virus infects the host and spreads, causing the immune system to start trying to 

eliminate it. Infected lung epithelial cells attract alveolar macrophages and monocytes 

from the peripheral blood, so they can begin viral clearance through phagocytosis of 

infected cells (82, 83). This intercommunication occurs through the receptor interaction 

of the chemokine (C-C motif) ligand 2 (CCL2) and C-C chemokine receptor type 2 

(CCR2) (84). Other cells like Natural Killer (NK) cells aid in IAV elimination through 
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sialylated NK Cell Activating Receptors (NKp44/ NKp46) – HA interaction (85). 

Another cell type involved in the IAV immune response are dendritic cells. They can 

detect IAV viral particles and mature in response to inflammatory signals. They can also 

become infected by the virus or phagocytose the virus and express the viral antigens on 

their cell surface through a group of proteins called Major Histocompatibility Complex 

(MHC). Dendritic cells then migrate from the lungs to the lymph nodes. At the lymph 

nodes, they present IAV antigens to T and B cells, which results in T cell activation or 

antibody production. MHC I can activate cluster of differentiation (CD) 8+ cytotoxic T 

cells  (CTL) (86) and MHC II is able to activate CD4+ helper T cells and B cells (87). 

Antibodies produced by B cells against viral proteins HA(88), NA(89), M2(90) and 

NP(91) aid in viral clearance. T cells also play a major role in the IAV immune response. 

CD8+ cytotoxic T cells recognize and eliminate virus infected cells (92). To highlight 

their importance, viral clearance is delayed if these cells are not present. Naïve CD4+ T 

cells can differentiate into T helper 1 cells ( Th1) when a viral infection is detected. 

These cells secrete cytokines (IFN-γ, Interleukin-2 (IL-2), and Tumor Necrosis Factor-α 

(TNF- α), which enhance the activation of CD8+ T cells and macrophage function and 

also play a role in B cell differentiation (93). Other types of T cells are also involved. 

Regulatory T cells (Tregs) promote a well-balanced viral immune response created by 

CTL and CD4+ T cells and also help with the resolution of inflammation (94). T helper 

17 cells (Th17) counteract Tregs and enhance T helper cell viral responses (95). Overall, 

the adaptive immune response is required for the resolution of infection and protection 

from future infection, but it must be regulated appropriately. 
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Transcriptional Activation: PRRs and PAMPS. In addition to initiating an 

adaptive immune response, the pathogenic particles also trigger innate immunity. When 

PRRs present on epithelial and immune cells detect PAMPS or DAMPs created by the 

virus or the bacteria, an immune signaling cascade or activation of immune effector 

molecules is initiated (Figure 1A). Activation of PRRs during coinfection can induce 

inflammation through two mechanisms. The first is transcriptional activation of immune 

system genes. This starts by activating PRRs such as Toll-like receptors (TLRs), retinoic 

acid-inducible gene-I (RIG-I)-like receptors (RLRs), and certain Nucleotide 

oligomerization domain (NOD)-like receptors (NLRs). RLRs are cytoplasmic sensors 

that detect viruses. RIG-I is part of the RLR family and detects the 5′ triphosphate (PPP) 

of uncapped-RNA of IAV (96, 97). RIG-I deficiency has been linked to a delayed and 

attenuated antiviral response (98, 99). NLRs are another type of PRR. The NLRs have 22 

members and are subdivided into four categories: NLRA, NLRB, NLRC, and NLRP 

(100). Nucleotide oligomerization domain-2 (NOD2) is an NLR part of the NLRC 

subfamily. It becomes activated by muramyl dipeptide (MDP) of bacterial peptidoglycan, 

hence it detects the peptidoglycan of S. pneumoniae (101, 102). Mice with NOD2 

mutations have a higher susceptibility to bacterial and viral infections (103). TLRs are 

type I transmembrane proteins; there have been twelve murine and ten human TLRs 

characterized, but the most important ones when studying this coinfection are TLR2, 

TLR9, TLR3 and TLR7. TLR2 recognizes bacterial lipoprotein, lipoteichoic acids and 

lipomannans. TLR2 is important for recognizing PAMPs from gram-positive bacteria 

such as the peptidoglycan of S. pneumoniae (104, 105). Tlr2-/- mice have a difficult time 

clearing bacterial infection with S. pneumoniae primary infection, yet a difference in 
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immune response and bacterial outgrowth is not seen in post-influenza pneumococcal 

pneumonia (106-108). On the other hand, TLR9, which is embedded in an endosome 

membrane, recognizes 5'—C—phosphate—G—3' (CpG) deoxyribonucleic acid (DNA), 

present in S. pneumoniae (109). TLR3, also embedded in an endosome, detects viral 

double-stranded RNA, which is present in IAV (110). Deficiency in TLR3 in humans 

results in an increased risk of pneumonia, yet Tlr3-/- mice appear to have improved 

mortality compared to wild-type mice due to a decrease in inflammation (111-113). 

TLR7 is also embedded in an endosome and recognizes single stranded RNA from IAV 

(114-116). Tlr7-/- mice have delayed S. pneumoniae disease progression after IAV 

challenge due to decrease alveolar macrophage depletion, yet in the end, they still 

succumb to the coinfection (116). Importantly, this suggests that signaling through other 

immune receptors is important and that no single PRR may be responsible for 

inflammation during coinfection. 

Transcriptional Activation: Downstream Adaptor Proteins. After receptor 

activation, downstream adaptor proteins become stimulated. The Mitochondrial antiviral-

signaling protein (MAVS) becomes activated by RIG-I (Figure 1). Sun et al. explored the 

effect of Mavs deficiency in mice during viral infections, and found that these mice have 

difficulty fighting viral infections due to a reduction in interferon production (117).  The 

Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) adaptor protein becomes 

activated when it receives signals from NOD2. Lupfer et al. found that Ripk2−/− mice are 

more susceptible to IAV infection due to defective induction of damaged induced 

degradation of the mitochondria (mitophagy). These mice also showed increased 

production of proinflammatory cytokines IL-18 and IFN-γ (118). Adaptor protein 
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Myeloid differentiation primary response gene 88 (MYD88) is an essential member of 

several signaling pathways responsible for proper immune function including TLRs and 

interleukin-1 family cytokine receptors. It has been previously shown that deficiency in 

Myd88 leads to susceptibility to infection with pyogenic bacteria like S. pneumoniae. In 

vivo, mortality, morbidity, and bacterial growth in Myd88 deficient mice were enhanced 

compared to WT mice (119, 120). In addition, mice lacking this protein cannot signal by 

using the IL-1R signaling pathways (121, 122). MYD88 protein is able to interact with 

almost all TLRs, except TLR3, which signals in a MYD88-independent pathway 

(123).TIR-domain-containing adapter-inducing interferon-β (TRIF) is another adaptor 

protein activated by some TLRs. It has been noted in murine studies that the TRIF/TLR3 

pathway is responsible for excessive inflammation leading to pulmonary edema, 

increased proinflammatory responses and mortality (124).  

Transcriptional Activation: Transcription Factors. MYD88 and/or TRIF can 

subsequently activate the transforming growth factor β-activated kinase (TAK1) (Figure 

1 B). The kinase then connects with the inhibitor of κB (IκB) kinase kinases (IKK) 

complex which results in phosphorylation of IκB and the nuclear translocation of the 

transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) (125). NF-κB is a family of five transcription factors that are upstream regulated by 

adaptor proteins and PRRs (126). They can also be activated by oxidative stress and 

cytokines. Among this family of transcription factors, the dimer RelA (p65)/p50 is the 

most well-known. It resides in the cytoplasm of immune cells. The dimer is kept inactive 

by a family of IκBs (α/β/γ). For the p65/p50 dimer to become activated, the serine 

residues of the IκBs have to be phosphorylated by the IKK complex, which is triggered 
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by PRR-adaptor protein interaction. The phosphorylation of IκBs results in 

polyubiquitination (Lys21/ Lys22 )  and 26S proteasome degradation of IκBs resulting in 

nuclear translocation of the NF-κB dimers. Once in the nucleus, the dimers bind to the 

promoters of many genes through κB motif interactions. The dimer also initiates 

transcription of IκB genes as a negative feedback mechanism to prevent excessive 

inflammation (127). NF-κB is involved in many processes, hence, unregulated activation 

of it can lead to reduction of apoptosis, increased cell survival and increased 

inflammation. Although over activation of  NF-κB would produce increased 

inflammation, which would results in an enhance immune response in the lung, enhanced 

inflammation only further impairs lung function and makes pneumonia worse.  

In addition to NF-κB, other transcription factors like Interferon Stimulated gene 

factor 3 (ISGF3) and Interferon Regulatory Factor 3 or 7 (IRF3/7) play a role in 

coinfection pathogen recognition. TLR3 and RIG-I initiate a signaling cascade which 

results in the activation of IRF3/7. These transcription factors localize to the nucleus and 

initiate the transcription of Type I interferons (IFN-α/β). The interferons then signal the 

interferon-α/β receptors (IFNAR) in an autocrine/paracrine manner resulting in their 

activation (Figure 1C). After ligand recognition, the heterodimer interferon-α/β receptor 

(IFNAR) 1/2 couple with receptor-bound Janus kinases (JAK1) and tyrosine kinase 2 

(Tyk2) (128). These kinases cross phosphorylate each other which results in their 

activation. Once activated, they phosphorylate tyrosine kinases leading to recruitment and 

phosphorylation of two latent proteins called Signal transducer and activator of 

transcription (STAT) 1/2. STAT 1/2 deficiency has been linked to increased 

susceptibility to IAV and other viruses (129, 130). STAT 1 and STAT 2 interact with 
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Tyk2 followed by activation of IRF9. The complex of STAT1/2 and IRF9 translocate to 

the nucleus and form the heterotrimeric transcription factor Interferon-stimulated gene 

factor 3 (ISGF3).  

Transcriptional Activation: Cytokines. In the nucleus, NF-κB and ISGF3 

initiate transcriptional regulation of immune signaling molecules called cytokines. IFN-

α/β are cytokines that serve an important protective function against viral replication, yet 

they increase bacterial burden by decreasing neutrophil responses needed to fight off 

bacterial pathogens (131-134). Type 2 interferon, IFN-γ, production has also been linked 

to impaired alveolar macrophage function and bacterial burden after coinfection (73, 80, 

135-137). Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) are proinflammatory 

pyrogenic cytokines transcribed by NF-κB (138). Interleukin-1-beta (IL-1β) is another 

proinflammatory pyrogen produced by leukocytes and is a key inflammatory mediator 

that can regulate the production of TNF-α and IL-6 (139-141). IL-1β plays an important 

role in both the innate and adaptive immune response and irregularities in this cytokine 

have been linked to inflammatory disorders, tumor angiogenesis and metastasis (142). It 

is synthesized as an inactive precursor (pro-IL-1β) that must be activated by a 

multiprotein complex called the inflammasome (143). NF-κB is also in charge of the 

transcriptional regulation of the components necessary to form the inflammasome (129, 

144).  

Inflammasome Activation. There are different types of inflammasomes, yet the 

two most important ones during this coinfection are the NLR Family Pyrin Domain 

Containing 3 (NLRP3) and Absent in melanoma 2 (AIM2) inflammasomes. The NLRP3 

inflammasome is a multiprotein complex containing the NLRP3 protein, the apoptosis-
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associated speck-like protein containing a caspase recruitment domain (ASC) and the 

cysteine protease caspase-1. NLRP3 senses dsRNA from IAV (145). It also senses 

DAMPs like reactive oxygen species, and K+ and H+ fluxes resulting from cell damage 

caused by IAV or S. pneumoniae infection (143, 146-149). AIM2 can also activate the 

inflammasome when it recognizes DNA in the cytoplasm from S. pneumoniae (148, 150). 

Active caspase-1 in the inflammasome cleaves inactive pro-IL-1β into their active forms 

and triggers pyroptotic cell death. Once activated, IL-1β leaves the cell through pores and 

activates inflammation (151-153). Pro-IL-1β can also become active by Fas 

signaling/Caspase-8 and by a noncanonical inflammasome pathway involving Caspase-

11 or by extracellular cleavage by neutrophil protease 3 (154).  

 

Pathogen Immune Evasion 

Even though the immune system is complicated, pathogens such as IAV and S. 

pneumoniae have found a way to evade it. 

Influenza A Virus. IAV has certain mechanisms to evade the immune system 

(155).  NS1 inhibits the recognition of 5'-triphosphate (uncapped) viral ssRNA by innate 

receptors (156). It can also inhibit dendritic cell maturation (157). Overall, it has been 

shown that IAV can prevent monocytes from differentiating into dendritic cells by 

affecting antigen endocytosis and reducing the amount of CD11c, CD172a, CD1w2 and 

CCR5 cell surface proteins present (157). In addition, PB2 (158), PB1 (159) and PA 

(160) play a role in cap snatching, which limits innate immune receptors from 

recognizing IAV RNA and results in diminished immune signaling. IAV can also evade 

natural killer cells by replicating inside them and inducing apoptosis (161). IAV is able to 
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evade the humoral immune response due to antigenic variation, which can be categorized 

either as antigenic shift or drift. Antigenic drift occurs when the virus experiences small 

changes in its genome due to point mutations. During antigenic drift, mutations can 

accumulate preventing antibodies from recognizing the virus. Antigenic shift is the virus’ 

ability to change HA and/or NA proteins. This allows the virus to have infinite subtypes. 

It occurs when the virus jumps from one reservoir to another creating an antigenically 

distinct virus. It can also occur through re-assortment, when two viruses infect one 

reservoir simultaneously also resulting in a distinct virus through genetic recombination 

(162). During antigenic shift, the emergence of antigenically unique viruses occurs. 

Hence, antibodies have no effect on the new virus, so it takes the body a long time to 

produce the proper immune response (163, 164). A final way IAV can evade the immune 

system is by interfering with T cell recognition. This occurs when amino acid variation 

and alteration of epitope regions interferes with antigenic presentation and detection (58). 

For example, mutations in the Cytotoxic T lymphocyte (CTL) epitopes and amino acid 

substitutions in the NP aid IAV to escape from CTLs (165).  

S. pneumoniae. The innate immune system usually eliminates S. pneumoniae by 

opsonizing, phagocytizing and killing the bacteria. This is possible due to complement 

opsonizing the bacteria and neutrophil receptors interacting with the complement 

proteins. S. pneumoniae immune evasion targets this mechanism (166). Several structural 

components of S. pneumoniae aid it through immune evasion. Its polysaccharide capsule 

covers its cell wall and prevents most of the PAMPs in the cell wall from being detected 

by PRRS. This capsule is also antigenically diverse, thus preventing the production of a 

universal antibody against S. pneumoniae. The capsule also prevents the bacteria from 
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being phagocytosed by macrophages, and to be damaged by toxic substances produced 

by neutrophils. It also prevents the bacteria from getting trapped in the mucus in the 

lungs, and it impedes opsonization by complement (167). The production of proteins such 

as PspA by S. pneumoniae inhibit one of the complement pathways by competing with its 

attachment to the bacteria (168). PLY released from the bacteria also aids in immune 

evasion by shifting the focus of the complement proteins to the toxin and not to the 

bacterial itself (169). Finally, protein NanA also impedes complement deposition and 

disrupts neutrophil killing by deglycosylation of complement components (170). In 

addition to having its own protective mechanism, S. pneumoniae can benefit from IAV 

infecting the host. 

IAV Facilitates S. pneumoniae infection.  IAV facilitates the adherence of S. 

pneumoniae to airway epithelium by damaging the epithelial layers. The damage results 

in exposure of the underlying basement membrane and impairment of progenitor 

epithelial cells impeding their repair. Damage results in exposure of receptors such as 

fibrin and the platelet activating factor receptor (PAFr) (171). The pneumococcal surface 

protein A (PsaP) and pneumococcal serine-rich repeat protein (PsrP) are then able to 

interact with these receptors. In addition to exposure of receptors, the neuraminidase 

protein of IAV desialylates terminal sialic acids exposing galactosyl moieties to serve as 

ligands for galectins. Galectin 1 and 3 can then bind to the bacteria’s capsular 

polysaccharide increasing adherence to the lung tissue (172). IAV can also impede 

bacterial clearance (55, 73, 173-175). Pittet et al. compared bacterial clearance on the 

trachea of uninfected mice versus those infected with IAV. A decrease in bacterial 

clearance was seen on the mice infected with IAV. As previously stated, S. pneumoniae 



 

18 

resides in the nasal epithelium, and to reach the lungs it requires tracheal passage. IAV 

damages the cilia on the tracheal epithelium resulting in decreased tracheal mucocialiary 

velocity. This impedes the normal pneumococcal removal by movement of the mucus 

and ciliary beating and results in increased bacterial numbers that could eventually reach 

the lungs to cause pneumonia.  

Finally, IAV infection enhances bacterial growth due to the depletion of alveolar 

macrophages (73, 135, 174, 176) and dysregulation of neutrophils (177-179). Following 

the coinfection, an elevated number of neutrophils is seen. Even though the quantity of 

these cells increases, their antimicrobial ability is reduced by the lack of activity from the 

myeloperoxidase enzyme stored in their azurophilic granules. This enzyme is involved in 

inflammation and oxidative stress (180). Thus, infection with IAV facilitates the invasion 

and inhibits the removal of S. pneumoniae leading to a severe infection, pneumonia, and 

even death. 

 

Treatment 

           During coinfection, antiviral drugs can decrease complications from bacterial 

coinfections when given during the viral infection. This may prevent the initial tissue 

damage that aids S. pneumoniae superinfection (181). Previous studies show that 

treatment with β-lactam antibiotics, like ampicillin, can kill the bacteria but increase 

inflammation by the release of pneumococcal cell wall components through bacterial 

lysis (181). On the other hand, treatment with protein synthesis inhibitors that have a 

bacteriostatic effect, such as clindamycin, can improve the clearance of the bacteria 

without further stimulating the immune system via bacterial cell lysis (182). Although 
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specific cytokines play pathological roles during coinfection, the treatment of human 

patients with corticosteroids during coinfection provides no benefit (183-186). Thus, the 

global inhibition of inflammation may not be beneficial, and the specific roles of 

cytokines need to be examined to determine which have therapeutic potential. Thus, 

effective treatment of coinfection requires addressing the pathogens and immune-

mediated pathology. 
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HYPOTHESES 

 

Even though a vast amount of information is known about its regular biological 

function, the specific role played by IL-1β during the coinfection of IAV and S. 

pneumoniae has not been thoroughly studied. IL-1β plays a role in the activation of other 

pro-inflammatory cytokines such as TNF-α and IL-6 (141). These other cytokines are 

enhanced during this coinfection resulting in increased inflammation (171). Since TNF-α 

and IL-6 are enhanced during the coinfection then the production of IL-1β might be 

elevated as well. I  propose the following two hypotheses to explain the production of IL-

1β in this coinfection and the benefits that might result from its regulation:  

Hypothesis one: IL-1β production will be enhanced during the coinfection of IAV 

and S. pneumoniae in vitro in bone marrow derived macrophages and in vivo in C57Bl/6 

mice compared to its production during the single infection. 

Hypothesis two: Controlling IL-1β’s production in the C57Bl/6 mice by using 

neutralizing antibodies will help improve the immunopathology resulting from this 

coinfection. 
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METHODS 

 

 

Overall Experimental Design 

Experiments in cell culture and mice were performed to check their immune 

response to the coinfection of influenza A/PR/8/34 H1N1 virus and Type 3 S. 

pneumoniae (ATCC 6303). Cell cultures were single infected or coinfected with 

infectious virus and/or bacteria, and samples were collected to check cytokine and protein 

production as well as gene expression. Mice were infected and monitored for mortality 

and morbidity after being single infected or coinfected with virus and/or bacteria. In some 

experiments, lungs from infected mice were collected to check for cytokine production, 

immune cell infiltration and viral and bacterial titers. 

 

Mice 

Cell cultures of bone-marrow-derived-macrophages (BMDMs) were generated by 

harvesting bone marrow from tibia and femurs from WT, or Nlrp3-/-, Myd88-/-, Aim2-/-, 

Casp1-/-, Asc-/-, Tlr7-/- Tlr2-/- ,Ripk2-/-, Trif-/-, and Mavs-/- knockout mice all on the 

C57BL/6 genetic background. After bone marrow harvesting, cells were differentiated in 

L929 conditioned medium for 5 days as previously described (187). BMDMs were then 

counted and seeded in 12 well plates (Thermo Scientific, 130185) . The following day, 

BMDM were infected as described below.  

Pathogen-free C57BL/6, Nlrp3-/-, Myd88-/-, Aim2-/- mice (Mus musculus), were 

originally obtained from The Jackson Laboratory and then bread in-house. Casp1-/-,     

Asc-/-, Tlr7-/-, and Tlr2-/- knockout mice were housed at St. Jude Children’s Research 
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Hospital and have been reported previously [39, 77, 78]. CO2 asphyxiation followed by 

cervical dislocation was used to euthanize the mice. Infected mice were maintained in a 

Biosafety level 2 facility. All breeding and experiments were performed at the Missouri 

State University Vivarium in accordance with Institutional Animal Care and Use 

Committee (IACUC) guidelines under protocol (January 8, 2016; approval #16.009 and 

February 17, 2016; approval #16.015), the AVMA Guidelines on Euthanasia, NIH 

regulations (Guide for the Care and Use of Laboratory Animals), and the U.S. Animal 

Welfare Act of 1966.  

 

Preparation of Viral and Bacterial Stocks 

Viral and bacterial infectious agents were used in this study. Prior approval for 

this project was obtained from the Institutional Biosafety Committee (IBC) on October 

2nd, 2015. Highly pathogenic mouse-adapted influenza A/PR/8/34 H1N1 virus hereafter 

referred as “PR8” stocks were propagated by allantoic inoculation of hen’s eggs with 

seed virus.  Embryonated chicken eggs were obtained from Charles River Labs and 

infected with IAV at 10 days old. Allantoic fluid was collected after three days. Plaque 

assays were performed using Madin-Darby canine kidney (MDCK) cells (a gift from Dr. 

Paul Thomas, St. Jude Children’s Research Hospital) to determine stock titer. Two days 

before assay MDCK cells were seeded in 12-well plates in minimal essential medium 

(MEM) with 5% Fetal Bovine Serum (FBS) (GE Healthcare Life Sciences, SH30118.03), 

Penicillin/Streptomycin (Pen/Strep) (Corning, 30-002-Cl) and Glutamine (Lonza, 17-

605E). Ten-fold viral dilutions were prepared in MEM without serum. Wells were 

washed twice with 1 ml of PBS. 100 μl of each virus dilution was added to each well. 
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Plates were incubated at 37°C/5%CO2 for one hour. Overlay (2% agarose and 2x 

MEM/Bovine Serum Albumin (BSA) at 1:1 ratio) was prepared after 40 minutes of 

incubation. Following the one hour incubation period, the infection medium was removed 

and 2ml of overlay per well was added. Once agar hardened, plates were incubated 

upside down for 3 days at 37°C/5%CO2. After 3 days, agar plugs were removed with a 

spatula and plaques were stained with 1% crystal violet. The stain was removed, the wells 

were washed and the plate dried upside down on a paper towel. Plaques were counted 

visually.  

Type 3 S. pneumoniae (ATCC 6303) was used in our studies. Colony Forming 

Unit (CFU) assays were performed to confirm bacterial stock concentrations after growth 

of bacteria in Brain Heart Infusion (BHI) broth at 37°C/5%CO2 overnight. Petri dishes 

(Fisher brand, FB0875712) were filled with 25ml of BHI (BD 237500) agar (Fisher 

Bioreagent BP1423-500) and were kept at room temperature until solidified. A ten-fold 

serial dilution (10-1 to 10-6) was made with 900μl of BHI broth and 100μl of bacterial 

stock. Using a P200 micropipette, 100 microliters of each dilution was dispensed onto 

each plate (1 plate per dilution). Plates were incubated upside down at 37°C/5%CO2. The 

following day, colonies were inspected and counted visually. The dilution with colonies 

in the 30 -300 range was selected to obtain the CFU/ml.  

 

Infection schemes and Treatment 

For in vitro studies, macrophages were washed 2X with phosphate buffered saline 

(PBS), and 200 μl of Roswell Park Memorial Institute (RPMI) medium (Corning,10-

040e) was then added to each well. Multiplicity of infection (moi =#pathogens/#of cells) 
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was used to calculate the volume of pathogen stock to add (#of cells in well X MOI / 

concentration of pathogen stock). Macrophages were then mock infected, or single 

infected, either with 10 moi of PR8 or 1 moi of S. pneumoniae, or coinfected with 10 moi 

of PR8 then 3 hours later 1 moi of S. pneumoniae. After an additional hour, 200 μl RPMI 

with 20% FBS was added to all wells (Figure 2). Cell lysates and supernatants were then 

collected at 6, 12 or 24 hr time points for analysis by western blot, real-time quantitative 

polymerase chain reaction (qRT-PCR) or enzyme-linked immunosorbent assay (ELISA).  

For in vivo studies, mice were anesthetized on day 0 by intraperitoneal injection 

with 80mg/kg Ketamine and 8mg/kg Xylazine diluted in PBS. Mice were infected with 

125 PFU PR8 intranasally in a volume of 30 μl of PBS. Some mice were mock infected 

or coinfected on day 7 with 1000 CFU S. pneumoniae intranasally in a volume of 30 μl of 

PBS (171, 188). Additional mice were also singly infected with 1000 CFU S. pneumoniae 

on day 7. At all time points, mice were monitor at least daily for weight loss and mice 

were euthanized when they achieved 30% weight loss or became moribund. 

Alternatively, mice were euthanized on day 9 to collect lungs and blood for examining 

gross lung pathology, cytokine levels by ELISA, cell population by flow cytometry and 

for determining pathogen titer by CFU and PFU assays. Viral titers from homogenized 

lungs were analyzed by plaque assay using MDCK cells as previously reported (189). 

Quantification of S. pneumoniae from lung homogenates was done by making 10-fold 

serial dilutions of the lung homogenate and plating 100ml on brain heart infusion agar 

plates and incubating in a 37 ˚C incubator with 5% CO2 for 24 hr (Figure 3). 

Some groups of mice were treated after coinfection on day 7 by intraperitoneal 

injection with either clindamycin hydrochloride (60mg/kg), and/or an IL-1β neutralizing 
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antibody (Armenian Hamster IgG anti-mouse/rat IL-1β, 25 mg/kg), or an isotype control 

antibody (Armenian Hamster IgG 25 mg/kg) (BioXcell, clones BE0246 and BE0091). 

Clindamycin injections were given twice a day starting 18 hours after coinfection. 

Antibody injections were started 1 hour after coinfection and administered every other 

day. All experiments were performed at least in triplicate (Figure 4). 

 

 

Sample Analysis 

Enzyme-linked immunosorbent assay (sandwich ELISA) was used to analyze 

cytokine levels in cell culture supernatants or whole lung homogenates were analyzed 

using mouse Ready-SET-Go ELISA kits (eBioscience) for IL-1β (88-7013), IL-6 (88-

7064), or TNF-α (88-7324). Assays were performed using the manufactures 

recommendations. Microtiter plates were read at 450 nm using a BioTek ELx800 

microplate reader. 

Protein expression was analyzed through Sodium Dodecyl Sulfate Polyacrylamide 

Gel Electrophoresis (SDS-PAGE) (Fisher Bioreagens BP166-500) and Immunoblotting. 

4x SDS loading dye (glycerol, bromophenol blue, 2-beta-mercaptoethanol, Tris buffer 

and water) was added to lysates collected from in vitro infected BMDMs at different time 

points as described above (in vitro infection scheme and collection). Lysates were boiled 

at 95°C for 20 minutes, centrifuged for 5 seconds and subjected to SDS-PAGE at 100V 

for two hours. Gels were electrophoretically transferred onto polyvinylidine difluoride 

(PVDF) membranes ( GE Healthcare life Sciences,10600023) at 40V for 45 minutes. 

PVDF membranes were transferred to a container with 10 mls of 5% milk in Tris Buffer 

Saline (Fisher Bioreagents, BP152-1) + 0.05% Tween 20 (Fisher Scientific, BP337-500) 



 

26 

(TBST) for blocking the membrane. The container was placed on a shaker at room 

temperature for one hour. Milk was discarded and 10 mls of protein specific primary 

antibodies diluted in 5% milk in TBST was added to the container (Table 1). The 

container was covered and kept under 4°C refrigeration overnight. The following day the 

diluted antibody was saved and the membranes were washed 3 times with 10 mls of 

TBST. Membranes were incubated at room temperature for 5 minutes on the shaker for 

every wash. After the last wash was discarded, protein specific secondary antibodies 

diluted in 5% milk was added to the container (Table 1). The container was placed on a 

shaker at room temperature for 45 minutes. After incubation, the diluted antibody was 

saved and the membranes were washed 4 times with 10 ml of TBST. Membranes were 

incubated at room temperature for 5 minutes on the shaker for every wash. The last wash 

was not discarded, instead the membranes were transferred to another container and were 

finally treated with SuperSignal West Femto Maximum Sensitivity Substrate 

(ThermoScientific 34096). Bands were visualized using Azure biosystems C300 imaging 

system. 

Viral titers from homogenized lungs were analyzed by using MDCK cells through 

a plaque assay, detailed procedure can be found above (preparation of viral and bacterial 

stocks section). Plaque forming units were identify visually. Quantification of S. 

pneumoniae colony counts was done through CFU assay, detailed procedure can be 

found above (organism of interest section). Identification of colonies was done by visual 

inspection. 

Flow Cytometry was used to analyzed cell population in in vivo experiments. 

Lungs were collected on day 9 post-infection.  Lungs were homogenized by passing them 
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through a 70μm cell strainer using RPMI and the back of a syringe. Homogenate was 

centrifuged for 7 minutes at 400g, supernatant was removed, and pellet was resuspended 

in 5 mls of RBC lysis buffer and 5 ml RPMI. Samples were centrifuged for 7 minutes at 

400 g. Supernatant was removed and pellet was resuspended in 5 mls of 37.5% percoll at 

room temperature and centrifuged for 20 minutes at 1000g. All but 500μl of percoll was 

removed and 2mls of PBS were added. Samples were centrifuged at 400 g for 7 minutes, 

supernatant was removed and samples were stained with fluorescent antibodies (Table 2). 

Samples were run on the flow cytometer. Data was analyzed using FCS Express. Material 

were obtained from Life Technologies. 

Histopathology was used in this study to examine diseased mice lungs. C57Bl/6 

and transgenic mice were euthanized on day 9, two days after coinfection, to collect their 

lungs. Uninfected lungs from two mice were obtained at the same time as controls. Lungs 

were kept in formalin buffer. Fixed lungs were placed in individual cassettes and were 

processed in a Leica tissue processor on a 10-hour run to make cells transparent and able 

to be stained. Each cassette containing the processed tissue was then embedded in a block 

of paraffin. A Leica microtome StatLab low profile blades was used to cut the blocks. 

These were then placed onto Apex charged slides, usually with 2 or more sections per 

slide. Slides were then stained with hematoxylin and eosin. Permount toluene-based 

mounting media was used to cover slip the slides. Slides were examined by pathologist 

Dr.Gilbert. Each lung was scored using a system based on 27 characteristics (Table 3). 

Slides were imaged on an Olympus C23 microscope with an Amscope 5 mega-pixel 

digital microscope camera. 
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Real-time qPCR was used in this study to detect the expression of different 

cytokine genes.  Extraction of total mRNA was done by using TRIZOL 

(Invitrogen,AM97381). mRNA was then reverse-transcribed into cDNA using a high 

capacity cDNA reverse transcription kit (Applied Biosystems, 4368814 ). cDNA samples 

were analyzed by  real-time quantitative PCR (RT-qPCR) using DyNAmo HS SYBR 

Green qPCR Kits (Thermo Scientific, F,410L) and relative values normalized to β-actin 

control (see Table 4 for primer sequences). 

 

Statistical Analysis 

For in vitro experiments and in vivo cytokine production, one-way ANOVA with 

Tukey’s post hoc analysis was performed using PRISM6. For weight loss during in vivo 

experiments, two-way ANOVA with Dunnett's post hoc analysis was performed using 

PRISM6. For survival in vivo experiments, survival analysis was performed using the 

Wilcoxon test using PRISM6. For the histological score, a one-way ANOVA with the 

Kruskal-Wallis test was performed. A p value <0.05 was considered statistically 

significant for all tests. 
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RESULTS 

 

 

          To determine mechanisms by which the coinfection of IAV and S. pneumoniae 

affect IL-1β and other cytokines, bone marrow derived macrophages (BMDM) were 

infected with influenza A/PR/8/34 H1N1 (PR8) and S. pneumoniae ATCC 6303 type 3 

strain (S.p.) either alone or 3 h apart (See Figure 2 for infection scheme).  

 

Increased Production of Cytokine in vitro During Coinfection 

Cytokine levels in culture supernatants were compared to uninfected controls after 

24 h. A significant increase in the level of IL-1β was seen during coinfection of IAV and 

S.p. compared to untreated or single infected samples (Figure 5A). Significant increases 

in the production of IL-6, and TNF-α in coinfected samples were also observed (Figure 5 

B-D).  

Enhanced Production of IL-1β can Result from Bacterial Overgrowth. 

Previous reports show that IAV and S.p. coinfection results in increased bacterial growth 

(73, 135, 171, 190). To determine if S.p. growth affects cytokine production during 

coinfection in vitro, BMDMs were infected with PR8 and then live or heat-killed S.p. was 

added to wells either alone or 3 h apart from PR8. The heat-killed bacteria should only be 

able to initially activate PRRs by peptidoglycan detection, yet since it is dead, additional 

bacterial growth should not occur. Testing different amounts of bacteria could have been 

another way to examine the effect of bacterial numbers on IL-1β levels, yet since we 

were not interested in the specific amount required for IL-1β production, we did not go 

this path. Samples collected after 24 h indicate the production of IL-1β, TNF-α and IL-6 

levels were impacted negatively by heat killing the bacteria. However, even when 
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macrophages were coinfected with PR8 and heat killed S.p., there was still an increase in 

IL-1β over single infections alone. Thus, bacterial overgrowth can only partially be 

responsible for enhance cytokine production (Figure 6 A-C).   

            Overproduction of IL-1β is not Associated with Enhanced Inflammasome 

Activation. IL-1β is produced as an inactive precursor that must be cleaved to be 

functionally active. Enhanced IL-1β observed during coinfection could, therefore, result 

from increased expression of pro- IL-1β or from the enhanced activation of IL-1β by 

caspase-1 in the inflammasome. Inflammasome activation was first examined by 

generating BMDM from WT mice or mice deficient in inflammasome components Asc-/-, 

Casp1-/-, Nlrp3-/- or Aim2-/-. Macrophages were then infected with PR8 and S.p. singly or 

coinfected 3 hours apart. In cells lacking the inflammasome components caspase-1, ASC, 

or NLRP3, it was observed through ELISA that IL-1β levels significantly decreased 

compared to WT (Figure 7A). However, BMDM deficient in AIM2 did not show a 

significant difference compared to WT cells (Figure 7A). The inflammasome is clearly 

required for pro-IL-1β activation during single infections or coinfection, but it is not clear 

if there is enhanced Caspase-1 activation in coinfections. To answer this question, the 

same infection scheme was used and western blots were performed to check for caspase-

1 activation. However, active caspase-1 (caspase-1 p20) levels were similar regardless of 

whether BMDM were singly infected or coinfected (Figure 7B). This suggests that 

enhance IL-1β is not due to more pro-IL-1β being activated by caspase-1. 

            Overproduction of Pro-IL-1β is Associated with Enhanced NF-κB Activation. 

As enhanced Caspase-1 activation which would result in more pro- IL-1β being cleaved 

is not evident during coinfection, we examined pro-IL-1β expression to determine if 
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increased signaling through PRRs during coinfection enhances the activation of signals 

that will initiate the production of pro-IL-1 β. BMDMs were infected with PR8 and S.p. 

alone or coinfected 3 h apart. Samples were collected at 6, 12 or 24 h after initial 

infection and examined by western blot for pro-IL-1β expression. It was observed that 

pro-IL-1β expression was enhanced during coinfection more than singly infected samples 

(Figure 8A). The transcription factor NF-κB initiates transcription of the gene responsible 

for production of pro-IL-1β (191, 192). To verify that NF-κB is important during 

coinfection, BMDMs were infected and samples collected at 6, 12, and 24 h after initial 

infection. Western blots of phosphorylated-IκBα (p-IκBα) and total IκBα were performed 

to determine activation of the NF-κB pathway. In agreement with increased pro-IL-1β 

expression, p-IκBα levels were higher during coinfection, indicating enhanced NF-κB 

activation, which would results in the elevated production of pro-IL-1β (Figure 8 A). 

Finally, RNA was isolated from singly and coinfected BMDM at 6, 12, and 24 h after 

initial infection and performed qRT-PCR. It was observed that IL-1β, TNF-α and IL-6 

mRNA were all expressed at higher levels in coinfected samples (Figure 8 B-D).  

           Examination of Signaling Pathways Necessary for IL-1β Production in vitro. 

As enhanced NF-κB activation appears to be responsible for more IL-1β, we next 

examined the signaling pathways upstream of NF-κB (Figure 1). Various TLRs, NLRs 

and RLRs can facilitate NF-κB activation through adaptor proteins. I hypothesized that 

during coinfection, the NOD2-RIPK2 pathway could respond to S.p. peptidoglycan 

fragment muramyl di-peptide (MDP), RIG-I-MAVS pathways would respond to IAV 

RNA, and TLRs 2, 3, 7 and 9 could respond to their various ligands and activate TRIF or 

MYD88. Each of these pathways has the potential to activate NF-κB and subsequently 
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enhance pro-IL-1β expression. Thus to determine the pathways involved in pro-IL-1β 

expression during coinfection, BMDMs deficient in Ripk2-/-, Trif-/-, Myd88-/- or Mavs-/- 

were infected and the effect on IL-1β production in culture supernatants 24 hours after 

initial infection was examined. It was observed that only coinfected Myd88-/- BMDM had 

significantly reduced IL-1β compared to WT BMDM (Figure 9A). BMDM from Tlr2-/- or 

Tlr7-/- mice were then examined, and it was found that only Tlr2-/- BMDM had 

significantly impaired IL-1β production during coinfection compared to WT cells (Figure 

9B). As the TLR2-MYD88 signaling axis was most responsible for the increased 

expression of IL-1β, RNA from singly and coinfected BMDM obtained from WT mice at 

6, 12, and 24 h after initial infection was isolated and qRT-PCR was performed. 

Interestingly, infected cells with either IAV, S.p. or coinfected showed enhanced 

expression of MYD88 (Figure 9C). Thus, it was hypothesized that MYD88 was 

important because at the time of coinfection, after 3 hours of initial IAV stimulation, 

there was more MYD88 available for S.p. to activate and potentiate a signal. To further 

examine this enhanced signaling capacity during coinfection, BMDMs were infected with 

the same amount of the ligand peptidoglycan (PGN) either at the same time as IAV or 3 

hours apart like previously performed with S.p.; elevated levels of IL-1β were seen when 

the second signal was given after 3 hours of initial IAV infection (Figure 9D). Thus, time 

in between the coinfection results in an increase of IL-1β likely due to more MYD88 

being available for signaling. 

 

Pathways Regulating IL-1β in vivo During Coinfection 
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We next examined the effects of coinfection in vivo on cytokine production and 

inflammation. Mice were infected with a non-lethal dose of 125 PFU of PR8 intranasally 

on day 0 and then mock infected or coinfected with a non-lethal dose of 1000 CFU S.p. 

intranasally on day 7. Another group of mice were singly infected with S.p. on day 7. On 

day 9 after the initial flu infection (day 2 post-coinfection or S.p. infection), mice were 

euthanized and lungs were collected for further analysis. Similar to infection in BMDM, 

lungs from coinfected mice showed increased production of IL-1β, TNF-α and IL-6 

during coinfection in WT mice compared to PR8 or S.p. single infection (Figure 10 A-C). 

Mice deficient in either Nlrp3 or Myd88 showed significantly decreased production of 

IL-1β and Myd88-/- mice also showed significantly lower TNF-α levels compared to WT 

coinfected mice. Intriguingly, no significant differences were seen in IL-6 levels in any of 

the transgenic mice compared to WT mice (Figure 10 A-C).  

Morbidity and Mortality. To determine the effects of cytokine production 

dependent on NLRP3 and MYD88 on morbidity and mortality during coinfection, mice 

were infected as before and monitored for survival until day 14 after initial PR8 infection 

(day 7 post-coinfection). Although all genotypes of mice lost weight during infection 

with PR8, Myd88-/- mice consistently exhibited the highest weight loss (Figure 11 A). As 

previously reported, Aim2-/- mice lost significantly less weight during PR8 infection 

(Figure 11A) (193). However, no mice succumbed to PR8 infection alone due to the low 

infectious dose. Single infection with S.p. had little effect on weight loss due to the low 

infectious dose (Figure 11C). However, significant mortality was observed in Myd88-/- 

mice infected with S.p. alone (Figures 11D). During coinfection, Myd88-/- mice were 

more susceptible than WT mice (Figure 11 E-F). Aim2-/- mice displayed a similar 
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morbidity and mortality (Figure 11E-F). Finally, although Nlrp3-/- mice had similar 

mortality compared WT mice, they recovered weight faster than any other genotype of 

mice (Figure 11E-F).  

             Lung Pathology and Viral and Bacterial Titers. To understand the accelerated 

weight gain seen in Nlrp3-/- mice, we further examined lung pathology and viral and 

bacterial titers during coinfection. By day 9 (day 2 post-coinfection) PR8 was almost 

completely cleared from the lungs of WT, Myd88-/-, Nlrp3-/- and Aim2-/- mice and we 

observed no significant differences in viral titers (Figure 12A). S.p. titers were still high 

on day 9 (day 2 post-coinfection), but there was also no significant difference among the 

WT and the Myd88-/-, Nlrp3-/- and Aim2-/- mice. The bacterial titers in the lungs of Myd88-

/- mice were non-significantly higher than the Nlrp3-/- mice (Figure 12B). Bacterial titers 

in the blood of coinfected mice euthanized on day 9 were also collected, and Myd88-/- 

mice had less bacterial titers present in the blood. Histopathology examination showed 

that Myd88-/- mice had less lung damage during coinfection than WT mice, yet when total 

histological scores were compared among the genotype groups, no significance was 

found (Figure 13 A-B). I thus conclude that decreased activation of the NLRP3 

inflammasome, improves recovery from coinfection, perhaps by improving bacterial 

clearance or by improving malaise. In contrast, Myd88-/- mice have higher bacterial titers 

in the lungs compared to the Nlrp3-/- mice, which could explain why these mice succumb 

to the infection. The lower bacterial titers in the blood of Myd88-/- mice may also suggest 

the dissemination of bacteria to other organs at an earlier time after coinfection. Though 

this remains to be determined. 
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            Immune Cell Infiltration into the Lungs During Single or Coinfection. To 

have a further understanding of the underlying mechanism behind the increased amount 

of IL-1β in vivo during coinfection, the immune cell populations during the different 

infection schemes were analyzed through flow cytometry. Macrophage, neutrophil, 

dendritic cells and lymphocytes populations were analyzed in WT and knockout mouse 

lungs, either single or coinfected, collected on day 9 (day 2 post-coinfection). A 

significant increase of neutrophils was seen in the Myd88 deficient mice compared to WT 

(Figure 14A). A significant increase was also seen in the CD4 and CD8 populations in 

the Myd88 deficient mice compared to WT (Figure 14B). However, these findings do not 

agree with the histology reports where infiltrates of neutrophils and lymphocytes were 

lower in the Myd88 deficient mice, yet the difference between WT and Myd88 deficient 

mice was not significant in the histology samples (Figure 13B). As yet, it is not clear why 

there is a discrepancy between the histology and flow cytometry sampling methods. 

 

Effects of Individual or Combination Treatment with IL-1β Neutralizing Antibody 

and Clindamycin in Mice 

          To address the therapeutic potential of inhibiting IL-1β, WT mice were infected 

and treated them with an IL-1β neutralizing antibody beginning 1 h after coinfection. It 

was also considered that dramatic neutralization of IL-1β alone could impact viral or 

bacterial clearance. Thus, additional mice were treated with clindamycin or a 

combination of IL-1β neutralizing antibody and clindamycin, where clindamycin 

treatment was initiated 12 h post-coinfection. As a control, a fourth group of mice was 

injected with an Armenian Hamster IgG antibody isotype control (mock treatment). All 
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mice were then either monitored for 7 d for weight loss and survival or their lungs were 

collected on day 9 (2 d post-coinfection) to check cytokine levels and viral and bacterial 

titers in the lungs (see Figure 4 for timeline). The IL-1β neutralizing antibody, the 

clindamycin, and the combination of both treatments significantly decreased the levels of 

IL-1β present in the lungs during coinfection (Figure 15 A). The levels of IL-6 were also 

reduced, but the levels of TNF-α in the lungs were not (Figure 15 B-C). Treatment with 

clindamycin alone significantly improved mortality but not weight loss (Figure 16A-B). 

Treatment with IL-1β neutralizing antibody alone resulted in improved weight loss, but 

no difference in mortality compared to mock treated mice (Figure 16 A-B). Importantly, 

combination treatment with clindamycin and IL-1β neutralizing antibody resulted in 

improved weight loss and mortality (Figure 16A-B). To better understand these findings, 

the viral and bacterial titers in the lungs of mice on day 2 post-coinfection were also 

examined. There were no significant differences in viral titers between mock, the 

clindamycin, IL-1β  neutralizing antibody, and the combination treatment groups (Figure 

16C). It was found that clindamycin treatment significantly decreased bacterial numbers, 

but IL-1β neutralizing antibody did not significantly affect bacterial numbers (Figure 

16D).  No significant difference was found in the blood of coinfected mice among the 

treatment groups (Figure 16 E). To have a further understanding of the underlying 

mechanism behind the effects on morbidity and mortality among the different treatments 

lung histopathology and the cell population during the different drug treatments in 

coinfected WT mice was analyzed through hematoxylin & eosin (H&E) staining and flow 

cytometry. No significant difference among the treatments and the histological 

characteristic was observed (Figure 17A-B). No significant difference among the 
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treatment and the cell population was detected (Figure 18A-B). I thus conclude that 

combination treatment with IL-1β neutralizing antibody and clindamycin does not 

intervene with cell population or histopathology, at least at the time point we examined 

(Day 9). Combination treatment does have therapeutic benefit by inhibiting bacterial 

growth and preventing overt cytokine production resulting in improved morbidity and 

mortality associated with coinfections.  
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DISCUSSION 

 

            Inflammation allows a host to fight infection by facilitating the production, 

activation, and transportation of cytokines, receptors, and inflammatory cells. When 

improperly regulated or overly activated, inflammation can have detrimental results. The 

coinfection of IAV and S. pneumoniae has been linked to increased death rates during 

pandemic outbreaks, such as the 1918 “Spanish Flu”, where pneumococcus was found in 

samples collected from infected individuals (9-12). Coinfections also occur during 

seasonal influenza epidemics to varying degrees (186, 194). Previous reports show that 

pro-inflammatory cytokines, such as TNF-α, IL-6, and type I interferons increase during 

coinfection; some displaying a detrimental effect and others a protective effect (131, 

195). Thus, an improved understanding of the role for various cytokines and immune 

cells during coinfection is needed to understand how to treat this disease.  

          The role for IL-1β and the function of various inflammasomes in activating IL-1β 

have been examined in infectious disease susceptibility, inflammatory disorders, and 

cancer progression (196-199). However, the specific role played by IL-1β and the 

inflammasome during the coinfection of IAV and S. pneumoniae has not previously been 

studied. Through in vivo and in vitro experimentation using bone marrow derived 

macrophages and transgenic mice, I have examined the importance of IL-1β in this 

setting. To this end, I have examined both the host response to the pathogen as well as the 

effect of pathogen growth on IL-1β production (Figure 19). One possible explanation for 

more IL-1β is that coinfection results in an outgrowth of S. pneumoniae. However, our 

findings show that increased IL-1β levels during coinfection occur even if heat killed 

bacteria is used in combination with IAV. If dead bacteria in combination with IAV can 
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still cause enhanced IL-1β production, then bacterial outgrowth cannot fully explain the 

increased IL-1β observed during coinfection. Instead, this augmentation of IL-1β results 

from the overproduction of the precursor of IL-1β (pro-IL-1β), and overactivation of the 

transcription factor NF-κB by upstream pattern recognition receptors and the adaptor 

protein MYD88. Importantly, the initial infection of cells with IAV enhanced the 

expression of MYD88, which is associated with a stronger signal during the secondary 

bacterial infection with S. pneumoniae. Furthermore, we show that the NLRP3 

inflammasome is important for the activation of IL-1β, but inflammasome activation 

itself is not elevated during coinfection. My data also implicate other inflammasomes or 

pathways involved in IL-1β production in vivo, as Nlrp3 deletion only partially affected 

IL-1β production. One likely hypothesis is that a combination of NLRP3 and AIM2 

contributes to inflammasome activation in vivo. Although Nlrp3-/- mice had only a partial 

decrease in IL-1β levels, I did observe improved weight loss in these mice compared to 

WT mice that survived infection. To elucidate why these mice regain their weight, 

bacterial titers were analyzed.  After 48 hours of a coinfection with a type 3 S. 

pneumoniae strain, the bacterial load in the lungs and blood of Nlrp3-/- mice decreased 

compared to WT mice, yet they were not significantly different. Previous studies with 

Nlrp3-/- mice single infected with 5 x 104 CFU of serotype 3 S. pneumoniae strain (6303) 

showed that six hours after infection bacterial numbers increased compared to WT, yet 

after 24 and 48 hours that bacterial load decreased improving morbidity. In WT mice 

after 24 and 48 hours, the bacteria disseminated to the blood and other organs such as the 

spleen, but not in Nlrp3-/- mice (119). On my experiment on day 9, all the genotypes 

started gaining weight back. On day 12 the Nlrp3-/- mice begun to gain more weight than 
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the WT, this could be due to the bacteria going back to normal levels resulting in a 

decrease in activation of pro-IL-1β by the AIM2 inflammasome. This trend is not seen in 

the Aim2-/- mice 48 hrs after infection probably due to the activation of the NLRP3 

inflammasome by the accumulation of damage already created until that point from the 

coinfection. This would also explain why elevated levels of IL-1β are seen in the Aim2-/- 

mice. Overall, these data show that 48 hours after coinfection, enhanced IL-1β is 

responsible for prolonged or overt inflammation but does not significantly affect 

pathogen burden.  

         Although Myd88-/- mice displayed decreased levels of IL-1β, this adaptor protein is 

involved in a variety of signaling pathways including most TLRs and the IL-1 receptor 

family. Therefore, Myd88-deficient mice are severely immunocompromised and, when 

coinfected, demonstrate increased mortality due to systemic complications (200). Myd88-

deficient mice also show a non-significant difference of increased bacterial titers in the 

lung compared to Nlrp3-/- mice and a significantly different decrease in the bacterial titers 

present in the blood. This suggest that bacterial burden in the lungs could be one reason 

why the Myd88-/- mice show increase mortality. Although nonsignificant, the Myd88-

deficient mice had a trend toward less lung damage compared to WT and the other 

genotypes. This could be due to decreased transcriptional activation, since most of the 

TLRs signal through MYD88, resulting in less production of pro-IL1β, less Caspase-1 

activation and less cell death. These mice also showed an increase of IL-6 which can 

have an anti-inflammatory role in the immune system, this could cause the pro-

inflammatory immune response against the bacteria not to begin on time after the co-

infection resulting in increased mortality. This increase could also suggest that other anti-
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inflammatory cytokines such as IL-10, which is known to act through MYD88-dependent 

signaling pathways (201), could be playing a role. In addition, the Myd88-/- mice showed 

an increase in neutrophils, CD4 T cells and CD8 T cells. The reason for this is not clear, 

but perhaps less immune signaling during IAV infections means that the immune 

response to S. pneumoniae can proceed more normally. However, this is only speculation 

and needs further examination. The neutrophils present could also not be functioning 

correctly, be undergoing apoptosis or still be immature. A variety of subsets of T cells 

could be categorized as CD4 T cells and some of these subsets could be playing a role in 

the decrease survival of the Myd88-/- mice, but this would again require further 

evaluation. Some of these subsets might also be present but not active. It has been shown 

that IAV induces IL-10 production, which can inhibit the activation of a type of cell 

called an invariant natural killer cells (iNKT) which usually have protective effects 

against this coinfection yet can produce lung damage. Mice missing these cells have 

increased mortality around 48 hours after coinfection (202). My findings agree with 

previous reports that Myd88-deficiency does not protect mice infected with the type 3 

strain of S. pneumoniae (119). Overall, my findings suggest that a tightly regulated, not 

excessive, but sufficient amount of inflammation is necessary to have a proper immune 

response against this coinfection. 

         After understanding the importance of IL-1β during this coinfection, its therapeutic 

relevance in mice was studied. In the clinical setting, patients are usually treated with an 

antiviral, an antibiotic or steroid. Several studies report that steroid treatment does not 

improve morbidity and mortality during coinfection in human patients (183, 184). Beta-

lactam antibiotics increase inflammation by releasing more bacterial ligands, potentially 
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worsening the condition in severe cases (182). Antivirals may improve survival in mice, 

particularly when combined with an antibiotic (135, 181, 203). The antibiotic 

clindamycin, which inhibits bacterial growth and reduces inflammation as a secondary 

effect, increases survival rates in mice during coinfection (135, 182). As I explored 

treatment options for coinfection, I used clindamycin in combination with IL-1β 

neutralizing antibody. Mice treated with IL-1β neutralizing antibody alone in my 

experiments showed improved weight loss, but this treatment alone did not improve 

overall survival. Treating the bacterial infection by using clindamycin and further 

controlling inflammation with the IL-1β neutralizing antibody in my experiments resulted 

in decreased weight loss and improved mortality in mice. Thus, IL-1β neutralization may 

have a place as an adjunct treatment to improve recovery time in cases of influenza A 

virus and S. pneumoniae coinfection.  
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Table 1. Western blot antibodies. Membrane was incubated with primary antibody 

overnight. Secondary antibody was added the following day. Antibodies were selected 

depending on the protein of interest. 

 

 

 

anti-β-Actin (D6A8) anti-rabbit HRP secondary 

antibody 

Cell signaling technologies 

IL-1β (D3H1Z) anti-rabbit HRP secondary 

antibody 

Cell signaling technologies 

phosphorylated-

IκBα,Ser32 (14D4) 

anti-rabbit HRP secondary 

antibody 

Cell signaling technologies 

IκBα antibody 

(9242) 

anti-rabbit HRP secondary 

antibody 

Cell signaling technologies 

Anti-caspase-1(p20 

mouse) 

anti-mouse HRP secondary 

antibody 

Adipogene, AG-20B-0042-

C100 
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Table 2. Fluorescent antibodies. The fluorophores detect specific cell receptors. These 

receptors represent a cell population. 

 

         

      Fluorescent antibodies 

  

 

Chanel 

 

Fluorophore 

 

Monocyte 

Receptor 

 

Represents 

 

Lymphocyte 

Receptor 

 

Represents 

FL-1 FITC CD11c 

Dendritic 

cells 

CD4 CD4 T cells 

FL-2 PE GR1 Neutrophils CD8 CD8 T cells 

FL-3 PerCP TCR-β T cells TCR-β T cells 

FL-4 APC CD11b Macrophages CD19 B cells 
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Table 3. Histological Scoring. Lungs collected from infected mice were analyzed by a 

pathologist and scored based on different characteristics. 

 

 

 

Histological Score 

 

Score 

infiltrate of 

neutrophils 

infiltrate of 

lymphocytes  airways Architecture 

 

0 

No significant 

abnormality. 

No significant 

abnormality. 

unremarkable 

airways 

intact alveolar 

architecture 

1 

Very patchy 

moderate  

Very patchy 

moderate  early plugging mostly intact  

2 

Mild patchy 

infiltrate 

Mild patchy 

infiltrate plugging  

inflamed 

airways 

3 

Mild fairly 

diffuse 

Mild fairly 

diffuse 

early 

obliteration 

architectural 

breakdown  

4 Patchy moderate  Patchy moderate  

diffuse 

obliteration of 

airways 

severe 

architectural 

breakdown 

5 Moderate mixed Moderate mixed   

 tissue mostly 

lost. 

6 Marked infiltrate Marked infiltrate     

          

  

YES (+1) / NO 

(0)       

Alveolar 

hemorrhage         

Necrosis         

    

Overall  Score  

____/27 
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Table 4. Real Time-qPCR primer sequences. Forward and reverse primers were added to a 

master mix depending on the mRNA of interest.  

 

Real Time-qPCR primer sequences 

Primer Forward Reverse 

β-Actin  

FW 5’- GGC TGT ATT CCC CTC CAT CG-

3’  

Rev 5’-CCA GTT GTT AAC 

AAT GCC ATG T-3’ 

IL-1β 

 FW 5’ GAC CTT CCA GGA TGA GGA CA 

-3’ 

Rev 5’ AGC TCA TAT GGG 

TCC GAC AG-3’ 

 TNF-α 

 FW 5’-CAT CTT CTC AAA ATT CGA GTG 

ACA A- 3’ 

Rev 5’-TGG GAG TAG ACA 

AGG TAC AAC CC-3’ 

 IL-6 

 FW 5’- TCC AGT TGC CTT CTT GGG AC 

-3’ 

Rev 5’- GTA CTC CAG AAG 

ACC AGA GG -3’ 

MYD88  FW 5’ –ATC CGA GAG CTG GAA ACG-3’ 

Rev 5’ GCA AGG GTT GGT 

ATA ATC-3’ 
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Figure 1.  Proposed signaling pathway. A) Proposed signaling pathway of the coinfection 

with IAV and S. pneumoniae B) NF-κB activation. C) ISGF3 activation. 
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Figure 2. In vitro infection scheme. To analyze the proposed signaling pathways we 

obtained bone marrow from genetically modified mice which are missing a gene 

important to the pathway mentioned previously. We harvested bone marrow from these 

mice and made macrophages, then we plated these macrophages and infected them with 

either influenza, S. pneumoniae or both. Finally, we collected the samples usually after 

24 hrs and analyzed different proteins and cytokines in our proposed pathway using 

western blotting and ELISA. 
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Figure 3. In vivo infection scheme. WT and transgenic mice were anaesthetized and 

infected with one of the three indicated infection schemes intranasally and monitored for 

weight loss and survival or euthanized and lung samples collected on the indicated day 

post initial infection. 
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Figure 4. Drug treatment scheme.  WT mice were infected and treated with clindamycin 

or IL-1β neutralizing antibody (IL-1β neut. Ab) or co-treated at the indicated times. Mice 

were monitored for weight loss and survival or euthanized and lung samples collected on 

the indicated day post initial infection. 
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Figure 5. Increased production of cytokine in vitro during coinfection. ELISA was ran on 

samples collected from BMDMs infected with one of the previously stated infection 

schemes. (A-C) IL-1β, TNF-α and IL-6 concentrations significantly increases during 

coinfection compared to the uninfected sample. Data represent 2-5 independent 

experiments using n=2 per experiment. One-way ANOVA using Tukey’s post hoc 

analysis was used for statistical comparison. ns: not significant, p values: <0.05 (*), 

<0.01 (**), <0.001 (***).  
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Figure 6. IL-1β is partially dependent on bacterial growth. (A-C).The effect of heat killed 

S. pneumoniae on cytokine production were examined by infecting BMDMs with one of 

the indicated infection schemes and performing ELISA for IL-1β, TNF-α and IL-6 on 

samples collected 24 h post-infection. Data represent 2-5 independent experiments using 

n=2 per experiment. One-way ANOVA using Tukey’s post hoc analysis was used for 

statistical comparison. ns: not significant, p values: <0.05 (*), <0.01 (**), <0.001 (***). 
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Figure 7. Overproduction of IL-1β is not associated with enhanced inflammasome 

activation. A) BMDMs from the indicated genotype of mice were infected with a single 

pathogen or coinfected. Samples collected 24 h post-infection were analyzed by ELISA. 

Two-way ANOVA using Dunnett’s post hoc analysis was used for statistical comparison. 

p values: <0.05 (*), <0.01 (**), <0.001 (***). B) Protein levels of pro-caspase-1 and 

active caspase-1p20 were measured using Western blot analysis from BMDMs infected 

as indicated for 24 h. Actin was used as a control. 
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Figure 8. Overproduction of IL-1β is NF-κB dependent. (A) Protein levels of pro-IL-1β, 

phosphorylated IκB-α and total IκB-α were measured using Western blot analysis from 

samples collected at 6, 12, or 24 h after the indicated infection. Actin was used as a 

control. (B-D) mRNA from BMDMs samples collected at 6, 12, or 24 h post-infection 

with the indicated pathogens were examined for IL-1β, IL-6, and TNF-α gene expression 

by qRT-PCR. IL-1β mRNA was normalized relative to β -Actin. One-way ANOVA 

using Tukey’s post hoc analysis was used for statistical comparison. p values: <0.05 (*), 

<0.01 (**), <0.001 (***). 
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Figure 9. MYD88 is necessary for IL-1β production in vitro. A-B) ELISA was ran on 

samples collected from BMDMs infected with one of the infection schemes. C) mRNA 

from BMDMs samples collected at 6, 12, or 24 h post-infection with the indicated 

pathogens were examined for MYD88 gene expression by qRT-PCR. MYD88 mRNA 

was normalized relative to β -Actin. D) ELISA was run on samples collected from 

BMDMs infected with one of the infection schemes using Peptidoglycan (PGN) at the 

same time during coinfection or three hours apart. One-way ANOVA using Tukey’s post 

hoc analysis was used for statistical comparison. p values: <0.05 (*), <0.01 (**), <0.001 

(***). 
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Figure 10. Increased production of IL-1β in vivo is dependent on MYD88 and NLRP3.   

(A-C) Indicated cytokine levels were examined in whole lung homogenates on day 9 post-

PR8, day 2 post-S.p. or day 2 post-coinfection. Data are representative of two experiments, 

n=5-7 mice per group per experiment. One-way ANOVA using Tukey’s post hoc analysis 

was used for statistical comparison. ns: not significant, p values: <0.05 (*), <0.01 (**), 

<0.001 (***). 
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Figure 11. Morbidity and mortality of infected transgenic mice. (A,C,E). Weight loss in 

mice infected with PR8 alone, S.p. alone, or PR8-S.p. coinfection. (B,D,F) Mortality in 

mice infected with PR8 alone, S.p. alone, or PR8-S.p. coinfection. (A-F) Data are 

combined from two to three experiments, total n is indicated. Two-way ANOVA using 

Tukey’s post hoc analysis was used for statistical comparison for weight loss and Kaplan-

Meier Survival Plot and LogRank Test for survival data. ns: not significant, p values: 

<0.05 (*), <0.01 (**), <0.001 (***). 
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Figure 12. Viral and Bacterial titers in knockout mice. (A-B) Bacterial and viral titers in 

whole lung homogenates of coinfected mice on day 2 after coinfection.  (C) Bacterial 

titers in blood of coinfected mice on day 2 after coinfection. Data are representative of 

two-three experiments, n=5-7 mice per group per experiment. One-way ANOVA using 

Tukey’s post hoc analysis was used for statistical comparison (no differences were 

statistically significant). 
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Figure 13.  Histopathology of coinfected lungs. (a) Representative lung cross-section 

stained with H&E (40X). (B) Histological score from cross- sections of coinfected mice 

lungs obtained on day 2 after coinfection stained with H&E. Data are representative of 

two-three experiments, n=5-7 mice per group per experiment. One-way ANOVA using 

Dunn post hoc analysis and the Kruskal-Wallis test was used for statistical comparison. 

(no differences were statistically significant). 
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Figure 14.  Immune cell population during infection schemes with transgenic mice. 

Coinfected lungs of 9-14 mice were homogenized and analyzed by flow cytometry. A)  

Antibodies to detect neutrophils, macrophages and dendritic cells were used. B)  B cell, 

CD4 T cell and CD8 T cell population in WT and knockout  mouse lungs were analyzed. 

One-way ANOVA using Tukey’s post hoc analysis was used for statistical comparison. 

ns: not significant, p values: <0.05 (*), <0.01 (**), <0.001 (***). 
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Figure 15. Combination treatment with clindamycin and IL-1β neutralizing antibody in 

mice. (A-C) Indicated cytokines were examined in whole lung homogenates on day 2 

post-coinfection (day 9 post-PR8) by ELISA (A-C) Data are representative of two 

experiments, n=3-7 mice per group per experiment. One-way ANOVA using Tukey’s 

post hoc analysis was used for statistical comparison. 
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Figure 16. Morbidity and mortality during treatment. (A-B) Weight loss and mortality in 

WT mice coinfected and then treated with the indicated antibiotic and/or IL-1β 

neutralizing antibody. (C-D) Bacterial and viral titers in whole lung homogenates of 

coinfected mice on day 2 post-coinfection. (A-B) Data are combined from two 

experiments, total n is indicated. Two-way ANOVA using Tukey’s post hoc analysis was 

used for statistical comparison for weight loss and Kaplan-Meier Survival Plot and 

LogRank Test for survival data. ns: not significant, p values: <0.05 (*), <0.01 (**), 

<0.001 (***). (C-D) Data are representative of two experiments, n=3-7 mice per group 

per experiment. One-way ANOVA using Tukey’s post hoc analysis was used for 

statistical comparison.  
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Figure 17.  Histopathology of coinfected lungs treated with an antibiotic, a neutralizing 

antibody or combined treatment. (a) Representative lung cross-section stained with H&E 

(10X). (B) Histological score from cross- sections of coinfected mice lungs obtained after 

treatment and on day 2 after coinfection stained with H&E. Data are representative of 

two-three experiments, n=5-7 mice per group per experiment. One-way ANOVA using 

Dunn post hoc analysis and the Kruskal-Wallis test was used for statistical comparison. 

(no differences were statistically significant). 
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Figure 18. Immune cell population among drug treatments. Coinfected lungs of 9-14 

mice were homogenized and analyzed by flow cytometry. A)  Antibodies to detect 

neutrophils, macrophages and dendritic cells were used. B)  B cell, CD4 T cell and CD8 

T cell population in WT mouse lungs were analyzed. The changes of cell population 

under different treatments were studied. 
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Figure 19.  Influenza A Virus and Streptococcus pneumoniae coinfection and IL-1β 

involvement. During the coinfection of IAV and S.p. it is well known that IAV aids the 

bacteria by damaging epithelial layers, suppressing the respiratory burst of leukocytes, 

impeding bacterial clearance, depleting alveolar macrophages and dysregulating 

neutrophils. An overactive immune response results from S.p. infecting the host. This 

results in the increase production of the cytokine IL-1β. This increase is not due to 

enhanced activation of the inflammasome enzyme Caspase-1 or bacterial overgrowth. It 

is due to enhanced priming of the transcription faction NF-κB which results in elevated 

levels of pro- IL-1β. Using a neutralizing antibody to block IL-1β only helps improve 

morbidity and mortality in mice if combined with the antibiotic Clindamycin. 
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