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ABSTRACT 

Currently, there has been a flurry of research focused on multiferroic materials due to 

their potential applications. Lead (Pb)-based ferroelectric and multiferroic materials 

(PZT, PMN-PT, PZN-PT etc.) have been widely used for sensors, actuators, and electro-

mechanical applications due to their excellent dielectric and piezoelectric properties. 

However, these materials are facing global restriction due to the toxicity of Pb. In this 

thesis, multiferroic properties of ferroelectric-ferromagnetic heterostructures consist of 

Pb-free perovskite oxides 0.5Ba(Zr0.2Ti0.8)O3-0.5 (Ba0.7 Ca0.3)TiO3 (BZT-BCT) and 

La0.7Sr0.3MnO3 (LSMO) have been studied. The heterostructures BZT-BCT/LSMO were 

fabricated on LaAlO3 (LAO) and Pt substrates by pulsed laser deposition. Structural and 

crystalline qualities of the films have been investigated through theta-2theta scan, rocking 

curve, and phi-scan of X-Ray diffraction (XRD) and Raman spectroscopy. Ferroelectric 

and ferromagnetic properties have been characterized using the Sawyer-Tower method, a 

SQUID magnetometer, and Ferromagnetic resonance (FMR) spectroscopy. A well-

behaved magnetization-magnetic field (M-H) hysteresis has been observed in LSMO as 

well as heterostructures, indicating ferromagnetism in the films. FMR spectroscopy data 

support the static magnetization data obtained using SQUID. These results may guide the 

development of next-generation lead-free ferroelectric-ferromagnetic heterostructures for 

magnetoelectric device applications. 

 

 

KEYWORDS:  epitaxy, polarization, piezoresponse, double-exchange, Gilbert damping. 

 

 

                                                                    This abstract is approved as to form and content 

 

    

 _______________________________ 

 Kartik Ghosh, PhD 

 Chairperson, Advisory Committee 

 Missouri State University 



iv 

STUDY OF MULTIFERROIC PROPERTIES OF FERROELECTRIC- 

FERROMAGNETIC HETEROSTRUCTURES BZT-BCT/LSMO 

 

 

By 

Md Abdullah-Al Mamun 

 

 

A Masters Thesis 

Submitted to the Graduate College 

Of Missouri State University 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science, Materials Science 

 

 

August 2017 

 

         

         

 Approved: 

   

   

  _______________________________________ 

  Kartik Ghosh, PhD 

 

   

  _______________________________________ 

  Mahua Biswas, PhD 

  

    

  _______________________________________ 

  Keiichi Yoshimatsu, PhD 

 

 

  _______________________________________ 

  Julie Masterson, PhD: Dean, Graduate College 

 

 
In the interest of academic freedom and the principle of free speech, approval of this thesis indicates the 

format is acceptable and meets the academic criteria for the discipline as determined by the faculty that 

constitute the thesis committee. The content and views expressed in this thesis are those of the student-

scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. 

 



v 

ACKNOWLEDGEMENTS  

 

I would like to express my gratitude to my advisor, Dr. Kartik Ghosh, for the 

supervision, encouragement, and advice throughout my master’s years. He has cared 

every step of my progress in the thesis. I would also like to thank Dr. Robert Mayanovic 

for his cooperation performing different experiments. 

I would like to thank the department of Physic, Astronomy, and Materials Science 

for providing excellent lab facilities to complete my experiments. I am also thankful to 

the graduate students of our department to assist me different ways. I want to 

acknowledge Air Force Research Laboratory (AFRL) at WPAFB, Dayton OH for their 

cooperation to do some experiments there through my adviser. 

I am thankful to my beloved wife Mohsina Jannat who keeps patience in time of 

difficulties of my research. She encouraged me at tough situations. Finally, I would like 

to thank my parents for their constant support. 

 

 

 

 

 

 

 

 

 



vi 

TABLE OF CONTENTS 

 

Overview ..............................................................................................................................1 

Fabrication and characterization of Ferroelectric (FE)-Ferromagnetic (FM)  

heterostructures BZT-BCT/LSMO/LAO using pulsed laser deposition .............................6 

Abstract ....................................................................................................................6 

Introduction ..............................................................................................................7 

Experimental ............................................................................................................8 

Results and Discussion ..........................................................................................10 

Conclusions ............................................................................................................24 

Acknowledgement .................................................................................................25 

References ..............................................................................................................25 

  

Ferromagnetic resonance study of BZT-BCT/LSMO heterostructure grown on 

different substrates-LAO and Platinum using Pulsed Laser Deposition ...........................29 

Abstract ..................................................................................................................29 

Introduction ............................................................................................................30 

Experimental ..........................................................................................................32 

Results and Discussion ..........................................................................................34 

Conclusions ............................................................................................................50 

References ..............................................................................................................51 

 

Conclusions ........................................................................................................................53 

 

References ..........................................................................................................................54 

 

 

 

 



vii 

LIST OF TABLES 

 

Table 1. Calculated out-of-plane lattice parameter from XRD with Standard values 

from Literature (all the values in Angstrom) .....................................................................12 

 

Table 2. Peak positions and FWHM of the corresponding vibrational modes observed 

in Raman spectroscopy ......................................................................................................16 

 

Table 3. Remnant and saturation polarization with coercive field at different voltages 

applied to FECAP ..............................................................................................................17 

 

Table 4. Results from SQUID measurement .....................................................................22 

 

Table 5. Peak positions and FWHM of the corresponding vibrational modes observed 

in Raman spectroscopy of BZT-BCT/LSMO thin films on Pt and LAO substrates .........40 

 

Table 6. Static Magnetic properties derived from SQUID measurement for all the 

samples ...............................................................................................................................42 

 

Table 7. Dynamic magnetic properties of all the samples calculated from FMR..............49 



viii 

LIST OF FIGURES 

 

Figure 1. X-ray diffraction pattern of both LSMO (red line) and BZT-BCT/LSMO 

(black line) on LAO substrate. The inset plot shows the splitting of (002) peak, which 

is a characteristic of the tetragonal crystal structure ..........................................................11 

 

Figure 2. High resolution rocking curve profiles for the (a) BZT-BCT (002) (b) BZT-

BCT (003), and (c) LSMO (002) reflections. ....................................................................12 

 

Figure 3. Raman spectra of BZT-BCT/LSMO thin film on LAO substrate with 

Gaussian and Lorentzian peak fitting by using Origin software. .......................................13 

 

Figure 4. Polarization-electric field (P-E) hysteresis loops for ferroelectric capacitors 

Au-Ti/BZT-BCT/LSMO at different applied voltages ......................................................16 

 

Figure 5. Frequency dependence of dielectric constant (a) and dielectric loss (b) for 

BZT–BCT/LSMO thin film on LAO substrate. .................................................................18 

 

Figure 6. Leakage current characteristics of Au-Ti/BZT-BCT/LSMO with two different 

applied electric fields 100 kV/cm (black line) and 400 kV/cm (red line). ........................20 

 

Figure 7. (a) Magnetization-Applied field (M-H) hysteresis loop of LSMO/LAO (red), 

BZT-BCT/LSMO/LAO (purple) obtained at room temperature and (b) the low field 

fragments of the hysteresis loops of figure (a)...................................................................21 

 

Figure 8. Temperature dependence of magnetization for LSMO/LAO at different 

applied magnetic fields. .....................................................................................................22 

 

Figure 9. (a) Surface topography of LSMO (b) MFM phage image of ferromagnetic 

LSMO thin film on LAO substrate and (c) surface topography of BZT-BCT film and 

(d) PFM phage image of ferroelectric BZT-BCT thin film on LAO substrate ..................24 

 

Figure 10. X-ray diffraction pattern of both LSMO (red line) and BZT-BCT/LSMO 

(black line) on LAO substrate. The inset plot shows the splitting of (002) peak, which 

is a characteristic of the tetragonal crystal structure ..........................................................34 

 

Figure 11. X-ray diffraction pattern for PLD grown LSMO thin film on Pt substrate ......36 

 

Figure 12. Raman spectra of PLD grown thin films (a) BZT-BCT/LSMO on Pt substrate 

(black line), BZT-BCT/LSMO on LAO substrate (red line) and (b) .................................37 

 

Figure 13. (a) Magnetization-Applied field (M-H) hysteresis loop of the LSMO/LAO 

(red), LSMO/Pt (purple) obtained at room temperature and (b) the low field fragments 

of the hysteresis loops of Figure (a) ...................................................................................40 



ix 

Figure 14. (a) Magnetization-Applied field (M-H) hysteresis loop of the BZT-BCT/ 

LSMO/LAO (red), BZT-BCT/LSMO/Pt (green) obtained at room temperature and 

(b) the low field fragments of the hysteresis loops of Figure (a) .......................................42 

 

Figure 15. (a)FMR absorption derivative vs applied magnetic field for the sample 

LSMO/LAO at 7 GHz (black), 8 GHz (red), and 9 GHz (green). The arrow shows the 

resonant frequency and the width (orange line) shows the linewidth. (b) Frequency 

dependence of FMR linewidth and (c) FMR resonance field for the same sample ...........44 

 

Figure 16. (a) FMR absorption derivative vs applied magnetic field for the sample 

LSMO/Pt at 7 GHz (black), 8 GHz (red), and 9.5 GHz (blue). The arrow shows the 

resonant frequency and the width (orange line) shows the linewidth. (b) Frequency 

dependence of FMR linewidth and (c) FMR resonance field for the same sample ...........46 

 

Figure 17. (a)FMR absorption derivative vs applied magnetic field for the sample BZT-

BCT/LSMO/LAO at 7 GHz (black), 8 GHz (red), and 9 GHz (green). The arrow shows 

the resonant frequency and the width (orange line) shows the linewidth. (b) Frequency 

dependence of FMR linewidth and (c) FMR resonance field for the same sample. ..........47 

 

Figure 18. (a) FMR absorption derivative vs applied magnetic field for the sample BZT-

BCT/LSMO/Pt at 7 GHz (black), 8 GHz (red), and 9 GHz (green). The arrow shows the 

resonant frequency and the width (orange line) shows the linewidth. (b) Frequency 

dependence of FMR linewidth and (c) FMR resonance field for the same sample. ..........48 

 

 



 

1 

OVERVIEW 

 

In the last couple of decades, researchers focused on multiferroic (MF) materials 

due to widespread applications of advanced technology1. The MF materials possess two 

or more of the ‘ferroic’ order parameters-ferroelasticity, ferroelectricity, and 

ferromagnetism2. Some other non-primary order parameters such as ferrotoroidicity3, 

antiferromagnetism, ferrimagnetism etc. MF properties exhibit in a material mainly due 

to the presence of magneto-electric (ME) coupling. The ME coupling refers to the impact 

on the electric polarization through the change in magnetic field or the impact on 

magnetization through the change in electric field. The ME coupling is a unique feature 

that has a tremendous effect on technology with applications in solid-state transformers, 

multiple-state memories4, data-storage media, high sensitivity magnetic field sensors, 

actuators, and spintronic5. The goal of the research is to find or develop materials which 

would possess both the ferroelectric and ferromagnetic properties in its single phase. But 

due to the basic difference in the mechanism of ferroelectricity and ferromagnetism, there 

exist very few materials in nature with the MF property4.    

The most recognized MF material is BiFeO3 (BFO) which displays the co-

existence of spontaneous electric and magnetic ordering in the same phase at room 

temperature6. But for commercial applications with BFO, some limitations must be 

overcome. It has a high leakage current and behaves like an antiferromagnetic material 

which weakens the magnetization at room temperature. So, the improvement of both the 

properties is mandatory for further applications. To enhance the MF properties some 

researcher doped rare earth (RE) and transition metal (TM) ions into BFO7. The RE ion 
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as a dopant degrades the ferroelectric polarization8. Therefore, researchers have been 

trying to figure out the MF properties of other materials also. Some other reported MF 

materials are YMnO3
9, BiMnO3

10, TbMnO3
11, DyMnO3

12, and some hexaferrite13. Also, 

there are several reports on MF properties of composite materials or heterostructures. 

Currently, researchers are working on the heterostructures of BFO/CoFe14 and 

BFO/CoFeB15. However, a system has yet to be experimentally demonstrated which will 

be electrically and magnetically tunable. In my thesis, heterostructure of ferroelectric 

BZT-BCT and ferromagnetic lanthanum strontium manganese oxide (LSMO) has been 

used to investigate MF properties. 

The precursor of BZT-BCT is BaTiO3 (BTO) which is mainly used as a dielectric 

rather than a piezoelectric material because of its poor piezoelectric properties (d33 ∼ 

200 pC/N) and low Curie temperature Tc ∼ 120oC16. But through doping with suitable 

donor or acceptor ions, the Curie temperature and electrical resistance of BTO can be 

altered17. Doping of zirconium (Zr) into titanium (Ti) site increases the chemical stability 

of the system and doping of calcium (Ca) into barium (Ba) site decreases the 

polymorphic phase transition (PPT) temperature significantly in BTO18. Therefore, 

BaZrxTi1-xO3 (BZT) and BayCa1-yTiO3 (BCT) have been extensively studied for the future 

non-toxic (Pb-free) ferroelectric/piezoelectric materials.  

 BZT-xBCT is a solid solution of rhombohedral (R3m) BZT and tetragonal 

(P4mm) BCT with an MPB (near x = 0.5). Recently, Liu and Ren reported that the bulk 

ceramics of a Pb-free BZT-xBCT system has a high piezoelectric coefficient (d33 ∼ 620 

pC/N) near the MPB19. Their reported piezoelectricity is comparable to that of Lead 

Zirconate Titanate (PZT) and even it is superior to that of existing Pb-free systems. The 
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improved dielectric, piezoelectric and ferroelectric properties are due to the MPB starting 

from a tetragonal-cubic-rhombohedral triple point which flattens the energy barrier for 

lattice distortion and polarization rotation from (001)T state to (111)R state20. Also, there 

might be an intermediate orthorhombic (Amm2) phase, separating the tetragonal and 

rhombohedral phases which eases the rotation of ferroelectric domains21.      

 On the other hand, the ferromagnetic LSMO is a mixed-valence manganite which 

is an optimal source of fully spin-polarized carriers and shows a rich physics of magnetic 

phases and transport mechanisms22. When lanthanum ions (La3+) in lanthanum 

manganese oxide, LaMnO3 are partially substituted with divalent ion Sr2+, a mixed 

valence state of Mn3+ and Mn4+ is generated, leading to a dramatic change in physical 

properties, such as insulating to metal transition, colossal magnetoresistance (CMR), and 

paramagnetic to ferromagnetic transition23. These characteristics can be tuned by 

changing Sr dopant concentration in LSMO which prompts applications in magnetic 

devices24. 

LSMO shows high-spin polarization due to its half-metallic nature arising from 

conducting electron. The high-spin feature makes LSMO reliable for applications in spin-

dependent transport devices such as magnetic tunneling junction25, spin-valves26, read 

heads in hard disk drive, magnetic random access memory (MRAM), and data transfer in 

the magnetic recording system. The switching speed of those applications is limited due 

to the magnetic damping of the system. Also, the switching current behavior of the spin-

torque transfer (STT) system27 and the thermal magnetic noise of TMR read heads28 

depend on the damping constant. Different applications demand different values of 

damping constant. The damping constant for the STT based MRAM must be small to 
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minimize the power consumption. On the other hand, for the read sensors, a large 

damping constant is expected to improve the thermal stability29. Therefore, nowadays the 

researcher focused to understand the damping mechanism and control parameters to 

ensure the applications. In this respect, it is necessary to explore the magnetic dynamics 

and to tune the damping properties of LSMO for realizing high-speed spintronic devices.  

 A considerable number of substrates are commercially available which have 

comparable lattice parameters to manganite perovskite materials. They can be used as a 

template for the growth of LSMO thin films. Widely used substrates are NdGaO3 (NGO), 

(LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT), SrTiO3 (STO), DyScO3 (DSO), and LaAlO3 (LAO). 

The lattice parameters are respectively 3.85, 3.87, 3.905, 3.95, and 3.78Å. Among them, 

STO, and LSAT are cubic crystals, NGO, and DSO are orthorhombic crystals and LAO 

has the rhombohedral distorted perovskite crystal structure, which is a direct match with 

LSMO. We have used LAO for the growth of all the thin films as it shows low dielectric 

loss and it has minor lattice mismatch with LSMO. Moreover, to investigate the dynamic 

interface properties with a conducting material, we deposited LSMO thin film on 

platinum (Pt) substrate. The actual structure of the substrate is Pt/Ti/SiO2/Si. The Pt 

coated silicon wafers have several advantages. The lattice constant of Pt is 4.0Å, which 

means a minimum lattice mismatch with LSMO. In addition, Pt layer is a polycrystalline 

layer and hence it helps during crystallization of thin films. It also improves the adhesion 

between the substrate and the thin film itself. The additional advantage of Pt is that it has 

oxidation resistance capability. The high oxidation temperature of Pt, compared to other 

metals as Gold and Silver, make it ideal for high temperature depositions as perovskite 
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phase stabilizes at high temperature only. The intermediate layer Titanium (Ti) is needed 

due to less adhesion of Pt to SiO2. 

 Several factors influence the properties of the thin film such as growth 

temperature, background pressure, annealing media, annealing time, oxygen desorption 

rate, film thickness, energy density of the excitation source etc. Besides these parameters, 

a smooth surface morphology is necessary for the applications of LSMO and BZT-BCT. 

Properties of the thin film are very sensitive to the amount of oxygen present during the 

deposition. Too much oxygen yield three-dimensional growth while too little oxygen 

yields inferior ferromagnetic properties. Structural order plays a vital role to the 

stabilization of ferromagnetic and conductive behaviors of the film. Therefore, a tunable 

and controlled growth approach is a must. Focusing on ideal layer-by-layer growth can 

compromise the functional properties of the film. In this respect, among various 

deposition techniques, pulsed laser deposition reveals a well-suited choice. 

In this thesis, thin film heterostructures of BZT-BCT(FE)/ LSMO(FM) on two 

different substrates-LAO and Pt have been investigated. The heterostructure on LAO 

substrate was used to analyze static properties whereas both the heterostructures were 

used for dynamic magnetic studies. Structural qualities have been investigated using 

XRD and Raman spectroscopy. The ferroelectric layer shows a high degree of 

polarization, a low leakage current, and a typical frequency dependent capacitance 

behavior. The ferromagnetic layer continues to show its ferromagnetism up to a high 

temperature (365K). MFs properties at microscale were investigated using piezoresponse 

force microscopy (PFM) and magnetic force microscopy (MFM).  FMR spectroscopy has 

been used to study the dynamic magnetic properties. 
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FABRICATION AND CHARACTERIZATION OF FERROELECTRIC (FE)-

FERROMAGNETIC (FM) HETEROSTRUCTURES BZT-BCT/LSMO/LAO 

USING PULSED LASER DEPOSITION 

 

Abstract 

Ferroelectricity and ferromagnetism have been investigated in lead (Pb)-free 

0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT)/La0.7Sr0.3MnO3(LSMO) 

heterostructures for multiferroic applications. BZT-BCT thin films were grown on 

LSMO/ lanthanum aluminate (LAO) by pulsed laser deposition (PLD) technique. Prior to 

that, LSMO was deposited on single-crystal LAO substrate by PLD. The epitaxial growth 

of the highly-oriented (00l) films was confirmed by XRD pattern. The small FWHM 

(0.11o) of the rocking curve peak performed about (00l) peak indicates the better out-of-

plane orientation of the film. The polarization switching behavior has been observed with 

a remnant polarization of 93.3 µC/cm2 and a coercive field of 159.89 kV/cm saturates at 

5V applied voltage. The low value (0.02) of the dielectric loss confirms the high quality 

of the ferroelectric thin film. A well-behaved room temperature M-H curve has been 

observed for LSMO/LAO through superconducting quantum interference device 

(SQUID) magnetometer indicating the ferromagnetic behavior of the film. The 

temperature-dependent magnetization of the film shows paramagnetic to ferromagnetic 

transition at about 365K, which is comparable to the bulk samples and recently reported 

value as well. These results guide researchers to develop next-generation heterostructures 

using BZT-BCT and LSMO for multiferroic applications. 
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Introduction 

MF materials simultaneously exhibit ferroelectricity and ferromagnetism in its 

single phase1. They can provide the desired ME coupling between the two order 

parameters which enable applications in magnetic data storage2, solid-state transformers, 

spintronic devices, high sensitivity magnetic field sensors, and actuators3. The researcher 

devoted themselves to combine electrical and magnetic properties in one single material 

which yielded new MF materials4. Up to today, the most reported MF material is 

BiFeO3
2. Also some other materials such as YMnO3

5. TbMnO3
6, DyMnO3

7, and 

hexaferrites8 attracted much to the researcher. However, researchers reported some 

drawbacks such as high leakage current, weak magnetism at room temperature etc. that 

limits the MF applications using those materials. To enhance the MF properties some 

researcher doped rare earth (RE) and transition metal (TM) ions into BFO9 but the RE ion 

as a dopant degrades the ferroelectric polarization10. In addition, there are several reports 

on MF properties of composite materials or heterostructures. Currently, researchers are 

working on the heterostructures of BFO/CoFe11 and BFO/CoFeB12. However, a system 

has yet to be experimentally demonstrated which will be electrically and magnetically 

tunable. In this study, I used heterostructure of ferroelectric BZT-BCT and ferromagnetic 

LSMO to investigate MF properties. There is no report of heterostructure composed of 

that two materials. For MF applications, the study of the properties of such 

heterostructure is vital. In this study, the ferroelectric BZT-BCT shows a high degree of 

polarization with low leakage current while the ferromagnetic LSMO continues to show 

its ferromagnetism up to a high temperature. The shift in the hysteresis loop for the 

heterostructure indicated the possible magnetoelectric coupling between the ferroelectric 
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and ferromagnetic layers. Details of the structural property correlation of BZT-

BCT/LSMO/ LAO will subsequently be discussed in the result and discussion section. 

 

Experimental 

Ferroelectric BZT-BCT ceramic target was prepared by a standard solid state 

reaction using high purity chemicals BaCO3 (99.9%, Inframat Advanced Materials), CaO 

(99.95%, Alfa Aesar), TiO2 (99.9%, Sigma-Aldrich), and ZrO2(99.9%, Inframat 

Advanced Materials) in appropriate proportions. Polyvinyl alcohol (PVA) was added to 

the mixture to prevent agglomeration of the powder particles. The final mixer was 

pressed with a ‘hydraulic press’ to form the target. After that, the prepared target was 

calcined at 1350 C and then sintered at 1450 C in air. On the other hand, a high purity 

dense LSMO target was purchased from Kurt J. Lesker Company. The target was 99.9% 

pure, 1.00" diameter×0.250" thick, +/-0.010" AL. A CMP polished highly oriented (001) 

LAO substrate (2" dia +/- 0.5 mm × 0.5 thickness +/-0.05 mm) was purchased from MTI 

Corporation. The configuration of the substrate was as follows: surface finish (RMS or 

Ra): < 8A with free sub-surface damaged, under 1000 class clean room, and in 100 grade 

plastic bag in a wafer container. 

 Thin films of LSMO and then BZT-BCT were deposited on LAO substrates by 

Pulsed Laser Deposition (Excel Instrument, PLD-STD-18) technique.  A KrF excimer 

laser (Lambda Physik, COMPEX 201) with an energy density of 2 Jcm-2, the wavelength 

of 248 nm, pulsed duration of 20 ns, was used with 10 Hz pulse rate for the deposition. 

Thin films were grown at different growth temperatures (6000C to 8500C) and different 

oxygen pressures (10-1 to 10-4 mbar). The best performance was observed in the film 
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grown at the growth temperature of 800oC with 4.1×10-1 mbar oxygen pressure. The base 

pressure of the chamber was below 1×10-5 mbar. After the desired number of PLD shot, 

the deposited film was cooled down to room temperature maintaining the oxygen 

pressure at 110 mbar. The average film thickness was 100 nm, measured ex-situ by a 

profilometer (Veeco, Dektak 150). 

Thin films were characterized by X-ray Diffractometer (Bruker, D8 Discover) 

using θ-2θ scan in the range of 20° to 80° maintaining the Bragg−Brentano reflection 

geometry. The excitation source was an x-ray with the wavelength of 1.5405Å. The 

vibrational properties of the samples were characterized by micro-Raman scattering 

experiments (Horiba Labram Raman-PL System) with a 532 nm green laser excitation 

source. The experiments were performed in a back-scattering geometry with 15 seconds 

exposure time, and 20 accumulation cycles. The measured spot size was approximately 

2.5 μm in diameter on the thin film. We were aware of the possible damage of the thin 

film due to the excitation source. The Raman spectroscopy was collected through NGS 

Labspec-5 software in the range of 100 cm-1 to 1000 cm-1. The data were analyzed by 

Gaussian-Lorentzian peak fitting using Origin Pro 8.5.1.  

 Temperature and magnetic field dependent magnetization of the films were 

measured by a SQUID magnetometer (Quantum Design, MPMS 5XL) interfaced through 

MultiVu software. The temperature was varied from 5k to 370k. The M-H hysteresis loop 

of the sample was observed by varying magnetic field from -5000 Oe to +5000 Oe. The 

maximum sensitivity of the magnetometer was 10-9 emu. Polarization measurement was 

carried out by Sawyer-Tower technique. Au-Ti top electrodes were deposited onto the 

thin film by thermal evaporation using a physical mask on the thin film. The diameter of 



 

10 

the electrodes was 100 to 200𝜇𝑚. The data were analyzed through Origin Pro 8.5.1 

software. 

 

Results and Discussion 

Figure 1 presents XRD plots of BZT-BCT/LSMO (black) and only LSMO (red) 

thin films on LAO substrate. It can be observed that both the samples exhibit a complete 

single-phase perovskite structure. There is no evidence of secondary phases such as 

Ba3Ca2Ti2O9 and the possibility of such impurity is minimized by sintering at higher 

temperatures13. Due to the complete solid solubility of Ca2+ at Ba-site and Zr4+ at Ti-site 

at the higher sintering temperature, no other secondary phase was observed in the present 

BZT–BCT ceramics. 

It should be noted that the highly-oriented thin films demonstrated a weak 

splitting, which could be induced by formation of multiple domains, e.g., a- and c-

domains, analogous to the case of PZT14. The splitting of XRD peak in the 2θ range of 

43.5 to 44.5 is a unique characteristic of the tetragonal phase in BZT-BCT. The single 

(002) plane corresponding to cubic phase transforms into (200) and (002) 

crystallographic planes, which are the characteristics of a tetragonal structure15. The inset 

XRD plot in Figure 1 corroborates the presence of tetragonal crystallographic structural 

symmetry in the PLD grown thin film. The asymmetricity of the peak shape indicates the 

existence of tetragonal and cubic phases. This tetragonal structure might partly be a 

consequence of averaging ⟨111⟩ displacements of octahedral Ti4+  (local rhombohedral 

structure)16. The splitting of peaks must not be attributed to the presence of CuKα or 

CuKβ at higher  
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angles, as this is predominantly seen in the mentioned 2θ range (43.5 to 44.5). In 

addition, the (003) diffraction peak at 68.5º shows mixed diffraction peaks, which is 

consistent with Liu’s results17. Such coexistence plays a key role in enhancing the 

piezoelectric performance. To further investigate the texture of the films, we performed 

XRD rocking curve around BZT-BCT (002), BZT-BCT (003), and LSMO (002) plane, 

which are displayed in Figure 2(a), 2(b), and 2(c) respectively. The FWHM (θ) of the 

rocking curves are 0.10°, 0.14°, and 0.37° respectively. The small values of FWHM 

confirmed the oriented nature of the films. 

The c-axis lattice constants of LSMO calculated from the XRD data for LSMO/ 

LO and BZT-BCT/LSMO/LAO are 3.892 and 3.943 Å, respectively. As the lattice 
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Figure 1. X-ray diffraction pattern of both LSMO (red line) and BZT-BCT/LSMO 

(black line) on LAO substrate. The inset plot shows the splitting of (002) peak, which 

is a characteristic of the tetragonal crystal structure. 
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constant of bulk LSMO is 3.889 Å, this induces tensile strain in the LSMO thin film. 

However, the scenario is critical for the heterostructure. The BZT-BCT/LSMO/ LAO 

heterostructure experiences two strain effects, one incurred from the strain of LSMO/ 

LAO due to the lattice mismatch between the film and the substrate and the other from 

the BZT-BCT/LSMO interface. Table 1 shows the experimental and standard values of 

the c-axis lattice parameters. 

In addition to XRD analysis, we performed room-temperature Raman experiment 

to investigate the molecular vibrational modes present in the crystal lattice. Raman 

spectroscopy is a highly responsive technique to evaluate the atomic structure and phases 

of the materials. The cubic perovskite structure inherently has no Raman active modes 

while the tetragonal structure shows some significant modes18. The phases of ABO3 type 
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Figure 2. High resolution rocking curve profiles for the (a) BZT-BCT (002) (b) BZT-

BCT (003), and (c) LSMO (002) reflections. Horizontal axes are shown in the relative 

angles of 2θ in degree. Vertical axes are shown in the arbitrary units. The FWHM (θ) 

of the reflections are 0.10o, 0.145o, and 0.37o, respectively. 

 

Table 1. Experimental out-of-plane lattice parameters from XRD (all the values in 

Angstrom) 

         BZT-BCT              LSMO             LAO 

LSMO/LAO 
 

3.892     3.802 

BZT-BCT/LSMO /LAO             4.117 3.943     3.802 
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perovskite crystals are interesting. For example, tetragonal BaTiO3 has five atoms and 

there are fifteen degrees of freedom present per unit cell19. It behaves as a ferroelectric 

crystal below its transition temperature (Tt ~120oC) and the vibrational modes are Raman  

active up to Tt. The cubic phase above Tt is essentially Raman inactive and can be easily 

distinguishable from the Raman active tetragonal structure20. The Raman spectrum of 

tetragonal BZT-BCT thin film shown in Figure 3 exhibits the following six active modes: 

2 A1(TO), 1 A1(LO), 1 E(TO), 1 E(LO), and 1 B1. Each of the A1 and E modes split into 

TO (transverse optical) and LO (longitudinal optical) modes due to the presence of long-

range electrostatic forces21. 

The signature Raman peaks in the BZT-BCT thin film are observed at 179.94, 

320.51, 543.35, and 748.31 cm-1. The peak at 179.94 cm-1 corresponds to the A1 (TO)  

mode of vibration22 which represents the Ti-O phonon vibrations of BZT-BCT. Another 

A1 (TO) mode at around 543.35 cm-1 represents the O-Ti-O symmetric stretching  
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Figure 3. Raman spectra of BZT-BCT/LSMO thin film on LAO substrate with 

Gaussian and Lorentzian peak fitting by using Origin software. 
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vibrations23. These vibrations are caused due to the presence of non-centrosymmetric 

regions in which a Ti or Zr atom is displaced from its octahedral position because first-

order Pm3m Raman scattering is symmetry-forbidden in the centrosymmetric space 

group24. The sharp feature at 543.35 cm-1 indicates the high quality of the thin film. The 

peak at 320.51 cm-1, attributed to the B1 mode, is a characteristic peak for BZT–BCT and 

indicates the asymmetry of the TiO6 octahedra25. This band is considered to be the 

Raman signature of the tetragonal phase. The interesting feature in the Raman spectra of 

our BZT-BCT thin film is the absence of the A1g octahedral breathing mode at 800 cm-1 

which was observed in their bulk counterparts26. The breathing mode is associated with 

more dissimilar ions on B-site of the Raman active perovskite27. The absence of breathing 

mode demonstrates that Ca2+ resides on the Ba-site, not on the Ti-site in our case.  

The broadening and peak shift of A1 (LO) vibrational mode at 748.31 cm-1, 

compared to its bulk counterpart, is a characteristic feature of the tetragonal phase. The 

broadening represents the distortion in the thin film. Both the peak position and the 

broadening of this mode are related to the non-centrosymmetric region in the unit cell. 

The weak intensity of some of the vibration bands of the BZT–BCT film denotes the 

heavily damped phonons. The A1 (TO) mode at 543.35 cm-1 and A1 (LO) mode at 748.31 

cm-1 have a vital contribution in the polarization kinetics. The displacement of Ti/Zr ions 

from its octahedral position causes an increase in the dipole moment of the unit cell 

which finally increases the polarization.The peak positions of some of the modes such as 

B1/E (TO) and A1 (LO) / E (LO), shift towards either the lower or higher frequency 

region. This phenomenon of upshift/downshift in Raman spectrum indicates the localized 

chemical environments and/or strain19. As the BZT-BCT thin films were deposited under 
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the same PLD conditions, the deviation of chemical composition can be ruled out which 

has also been confirmed by XRD analysis. So, the epitaxial strain originating from both 

the substrate and the LSMO layer responsible for the shifting of Raman modes. Yamada 

et al. explained the strain relaxation process by surface energy variation in the different 

crystallographic surface in Barium Strontium Titanate (BST) system28. The LSMO thin 

film in our study yields a much lower vibrational frequency to be detected in the Raman 

spectroscopy due to its half-metallic nature.  

The well-defined peaks in the Raman spectroscopy prove the high quality of the 

thin film. Taken together, the XRD and Raman spectroscopy results indicate the presence 

of non-centrosymmetric regions that result from the local off-centering of the titanium 

(zirconium) atoms. Table 2 represents the peak positions and full width at half maximum 

(FWHM) of the corresponding vibrational modes in the BZT-BCT thin film. 

The polarization (P) vs electric field (E) hysteresis loop is the proof of the 

ferroelectricity in a material. Figure 4 shows the experimental P-E curves of an Au- 

Ti/BZT-BCT/LSMO ferroelectric capacitor. The curves are nothing but a hysteresis loop 

which is the indication of the ferroelectricity in the thin film. The hysteresis loops are 

almost centered along the y-axis. As the voltage increases, the capacitor starts to show 

hysteric characteristics and saturates at a higher voltage. Table 3 shows the remnant 

polarization, saturation polarization along with the applied voltage and coercive field for 

the sample Au-Ti/ BZT-BCT/LSMO ferroelectric capacitor. The experimental values are 

mentioned with their units.  
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The P-E hysteresis loops yield a large remnant and saturation polarization in our 

BZT-BCT thin film. It showed a maximum remnant polarization (Pr) of 93.3 µC/cm2 and  

a coercive field (Ec) of 159.89 kV/cm for the MPB composition at 5V applied voltage. 

The reason behind the high remnant polarization in the PLD grown thin film is the  

 

Table 2. Peak positions and FWHM of the corresponding vibrational modes observed 

in Raman spectroscopy 

Peak Position 

(cm-1) 

Vibration mode FWHM  

 (cm-1) 

         Reason 

179.94 A1(TO) 518.25 Ti-O phonon vibration 

320.51 E(TO)/B1 108.61 Raman signature 

543.35 A1(TO) 162.36 O-Ti-O symmetric stretching 

vibrations; 

748.31 A1(LO)/E(LO) 198.21 Raman signature 

 

-600 -400 -200 0 200 400 600
-150

-100

-50

0

50

100

150
 

 1 Volt

 2 Volt

 3 Volt

 4 Volt

 5 Volt

P
o

la
ri

za
ti

o
n

 (


C
/c

m
2
)

Electric Field (kV/cm)

 

Figure 4. Polarization-electric field (P-E) hysteresis loops for ferroelectric capacitors 

Au-Ti/BZT-BCT/LSMO at different applied voltages 
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uniform distribution of grain sizes, compositional homogeneity, absence of domain-wall 

pinning centers, and low defect density as described previously29. 

The observed coercive field was also higher than that of the BZT-BCT bulk 

ceramic (1.68 kV/cm)30. The much higher coercive field is a consequence of much 

smaller grains and substrate clamping effect31. As the average grain size is small in PLD 

grown thin films compared to their bulk counterpart, the length of the grain boundaries 

per unit volume is higher. This requires higher electric field to orient all the domains 

along the field direction. The orientation-dependent analysis by Luo et al. demonstrated 

that (001) oriented thin film shows superior ferroelectricity rather than (110) and (111)-

oriented thin film30. In this work, our sample is highly oriented along (001) direction, 

which upholds the high polarization phenomena in the BZT-BCT samples. 

The dielectric properties of the BZT–BCT thin film were measured at room 

temperature as a function of frequency ranging from 1 kHz to 50 kHz with an exciting 

voltage of 1 V. Both the electrodes were thermally evaporated Au-Ti. The top electrode 

Table 3. Remnant and saturation polarization with coercive field at different voltages 

applied to FECAP 

Applied Voltage 

(volt) 

Remnant 

Polarization, 

Pr (µC/cm2) 

Saturation 

Polarization, 

Ps (µC/cm2) 

Coercive Field, 

Ec  (kV/cm) 

1 4.36 26.2 5.87 

2 14.3 55.1 23.31 

3 28.8 85.8 46.13 

4 56.3 122 99.14 

5 93.3 163 159.89 
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was on the ferroelectric layer whereas the bottom electrode was taken from the half 

metallic LSMO layer. Figure 5(a) and 5(b) represent the typical frequency dependent 

dielectric constant and dielectric loss in a wide range of frequencies respectively. With 

increasing frequency, dielectric constant decreases but the loss tangent increases. The  

measured largest capacitance is 2.79 nF which yields a high dielectric constant of 5100 

because the spontaneous polarization vector points are normal to the (001)-oriented film 

surface and coincide with the dielectric measuring direction32.   

The leakage current and the time-dependent dielectric break-down (TDDB) are 

vital issues for applications in electronics and memory devices. For a capacitor, which  

should completely block direct current (dc), the leakage current is the amount of dc 

current that flows at some dc bias. In a different way, we can say that the leakage 

phenomenon is a gradual loss of energy from a charged capacitor. The electronic devices 

have different regions of operation, such as active region, saturation region, cut-off 

region etc. The leakage current is the small amount of current that flows through the 

device even the  

0 10 20 30 40 50

4850

4900

4950

5000

5050

5100

5150

 

 

d
i-

e
le

c
tr

ic
 c

o
n

st
a
n

t

Frequency (kHz)

 BZT-BCT/LSMO/LAO

Top electrode: Au-Ti

Bottom electrode: LSMO

T = 300K (a)

3.0 3.5 4.0 4.5
0.00

0.02

0.04

0.06

0.08

0.10

 Sample: BZT-BCT/LSMO/LAO

 

 

L
o
ss

 t
a
n

g
en

t

Log10 f

(b)

 

Figure 5. Frequency dependence of dielectric constant (a) and dielectric loss (b) for 

BZT–BCT/LSMO thin film on LAO substrate. A wide range of frequencies was 

applied from 1KHz to 50KHz. The dielectric loss was plotted against logarithm of the 

frequency. 
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device is ‘turned off’. Though, this current is really small compared to ‘on current’, it still 

slowly discharges the capacitor. In leakage analysis, the time to breakdown (tBD) is 

another important characteristic of the device. This time is generally measured by 

applying a variable voltage until dielectric breakdown. It is usually assumed that tBD is a 

function of the total number of charged carriers passing through the films. Therefore, tBD 

is inversely proportional to the leakage current density (J)33. 

Most of the literature have demonstrated the ferroelectric properties and leakage 

behavior of BZT-BCT deposited on the metal electrode (for example Pt)34. Hwang et al. 

reported that, in general, thin films on metal electrodes exhibit lower leakage current 

density and withstand higher dc voltage without a dielectric breakdown in comparison to 

oxide electrodes35. Our ferroelectric material was deposited on oxide material (LSMO) 

and we have used that as the bottom electrode. So, it is a must to determine the leakage 

behavior of BZT-BCT with LSMO as an electrode. 

Figure 6 depicts the typical room temperature leakage current density-time (J-t) 

profiles assessed at two different applied electric fields of 100 kV/cm and 400 kV/cm for 

the BZT-BCT thin film. Both the current densities show similar behavior with respect to 

time passes. Initially, the leakage currents increase gradually with time and after a while 

reached a saturated steady state. The leakage current at low electric field reaches steady 

state faster than that at the higher electric field. The steady state values of the leakage 

currents at low and high fields are 15.9 and 78.1 µA/cm2 respectively which are very 

much comparable with reports on ferroelectric material with a metal electrode36. The 

ferroelectric material is ideally expected to possess very high electrical resistance. 

However, several factors such as cationic/anionic vacancies, structural distortions, grain   
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boundaries, film-electrode interface, etc., act as low resistance channels, thereby 

contributing to the mobility of charges in terms of leakage current. In our sample, as the 

leakage currents are very small, a higher time to breakdown is expected of our 

heterostructure. 

PLD grown LSMO thin film was highly epitaxial stimulated by monocrystalline 

LAO substrate at higher deposition temperature. Figure 7(a) shows the M-H curve of 

LSMO/LAO thin films with the field applied parallel to the film plane at room 

temperature. Figure 7(b) shows the low field fragments of the hysteresis loops. The 

magnetization was calculated after subtraction of a diamagnetic background from the 

substrate. The magnetization increases with increasing magnetic field until saturation is 
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Figure 6. Leakage current characteristics of Au-Ti/BZT-BCT/LSMO with two 

different applied electric fields 100 kV/cm (black line) and 400 kV/cm (red line). 
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reached at 500 Oe. A well-behaved M-H curve was observed for the LSMO thin film  

which is the indication of ferromagnetism in the sample.  It is worth noting that the 

magnetic disorder at the surface has been suggested to be considerably larger than in the 

bulk. In perovskite material, the cubic symmetry lacks at surfaces and charge is 

transferred from the bulk to the surface layers, leading to the formation of Mn3+37. 

 Figure 8 shows the temperature dependence of magnetization (M-T curve) of the 

LSMO/LAO sample at two different magnetic fields (High field of 5000 Oe and Low 

field of 100 Oe). The measurements were performed in a field-cooled condition, known 

as FC magnetization. Both the M-T curves reveal the Curie temperature (Tc) of the 

sample. The commencement of a spontaneous magnetization near T = 365K indicates Tc 

of the ferromagnetic thin film. Table 4 summarizes values from SQUID measurement. 

The surface morphology (topography) of the LSMO thin film deposited on LAO 

substrate is shown in Figure 9(a). There are no distinctive domain structures and domain 

walls found in the topography. However, the color contrast reveals the existence of 

-400.0 -200.0 0.0 200.0 400.0

 

 

M
a
g

n
et

iz
a

ti
o
n

 (
n

o
rm

a
li

ze
d

)

Magnetic Field, H (Oe)

 LSMO/LAO

 BZT-BCT/LSMO/LAO

T = 300K

(a)

 

-20 -10 0 10 20 30

-0.4

-0.2

0.0

0.2

 

 

M
a

g
n

et
iz

a
ti

o
n

 (
n

o
rm

a
li

ze
d

)

Magnetic Field, H (Oe)

 LSMO/LAO

 BZT-BCT/LSMO/LAO

T = 300K

(b)

 

Figure 7. (a) Magnetization-Applied field (M-H) hysteresis loop of LSMO/LAO (red), 

BZT-BCT/LSMO/LAO (purple) obtained at room temperature and (b) the low field 

fragments of the hysteresis loops of figure (a) 
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different domains in the sample. The MFM phase image is shown in Figure 9(b). The 

image contrast of the phase image is a clear indication of the magnetic activity present in 

the sample. The contrast shown by the MFM image occurs because of force gradients 

between the FM tip and the magnetic activity present on the sample’s surface. The phase  

image was achieved after topography measurements (tapping mode) followed by sample 

surface scanning at a constant height (lift mode). According to this procedure, no van der 
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Figure 8. Temperature dependence of magnetization for LSMO/LAO at different 

applied magnetic fields. 

 

Table 4. Results from SQUID measurement 

Results from M-H hysteresis loop Results from M-T curve 

Saturation Magnetization, 32 kemu/cm3 Field Curie Temperature 

Remnant Magnetization, Mr 11 kemu/cm3 H = 5000 Oe TC = 365.2 k 

Coercive field, Hc 15.19 Oe H = 100 Oe TC = 354.18 k 
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Waals forces are expected to be detected, and any change in the vibration amplitude of 

the cantilever is proportional to the gradient of magnetic fields perpendicular to the 

sample surface. 

The surface morphology of BZT-BCT film is shown in Figure 9(c). There is no 

evidence of cracking or defects on the surface. Furthermore, the topography is very much 

uniform which is an indication of a homogenous PLD deposition. From PFM surface 

morphology observation, it can be inferred that the BZT–BCT film exhibits a uniform 

and dense microstructure. Moreover, based on the substrate orientation dependence of the 

equilibrium grain shapes of the BZT-BCT thin film and the Winterbottom construction 

theory, it could be visualized that our BZT-BCT thin film maintains a layer-by-layer 

growth along the lowest energy surface for (001)-orientation38. The PFM phase image for 

the BZT-BCT thin film was obtained utilizing commercially available conducting tip in 

contact mode by applying a DC voltage of 1 volt between the tip (top electrode) and the 

bottom electrode (LSMO) grounded. The out-of-plane PFM phase image is shown in 

Figure 9(d). The phase image distinguishes the domains of opposite polarization with 

dark and bright contrast in the image. After scanning with a signal to the tip with respect 

to sample surface, a piezoelectric contrast (shown by the bright and dark shades) appears,  

result in spontaneous polarization, which can be switched by applying an external 

excitation. Therefore, we can conclude that the ferroelectricity in the BZT–BCT film at 

the nanoscale level can be confirmed using PFM. 
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Conclusions 

Highly oriented ferroelectric-ferromagnetic heterostructure was fabricated using 

PLD. Along with the theta-2theta scan of XRD, the small full width at half maximum 

(FWHM) at high-resolution XRD rocking curve corroborates the oriented nature of the 

films. The BZT-BCT ferroelectric thin film shows polarization switching behavior with a 

large remnant polarization of 93.3 μC/cm2, a high coercive field of 159.89 kV/cm, and a 

large dielectric constant with negligible loss. The well-behaved M-H hysteresis loop at 

room temperature confirms the ferromagnetic nature of the LSMO thin film with high 

 

Figure 9. (a) Surface topography of LSMO (b) MFM phage image of ferromagnetic 

LSMO thin film on LAO substrate and (c) surface topography of BZT-BCT film and 

(d) PFM phage image of ferroelectric BZT-BCT thin film on LAO substrate. 
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saturation and remnant magnetization. Temperature dependent magnetization data 

confirm a high Curie temperature of 360k, which is very close to the bulk sample. 

Further, PFM and MFM of the ferroelectric and ferromagnetic thin film, respectively 

reveal the corresponding domain of the as-grown film. These results may guide 

researchers to develop next-generation Pb-free ferroelectric-ferromagnetic 

heterostructures using BZT-BCT and LSMO for applications with electro-mechanical, 

and magneto-electric coupling. 
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FERROMAGNETIC RESONANCE STUDY OF BZT-BCT/ LSMO 

HETEROSTRUCTURE GROWN ON DIFFERENT SUBSTRATES-LAO AND 

PLATINUM USING PULSED LASER DEPOSITION 

 

Abstract 

In this article, dynamic magnetic properties of La0.7Sr0.3MnO3 (LSMO) capped 

with a Pb-free ferroelectric BZT-BCT layer deposited on two different substrates 

lanthanum aluminate (LAO) and Platinum (Pt) by pulsed laser deposition (PLD) have 

been investigated by FMR spectroscopy. The thin films on LAO substrate were highly 

(00l)-oriented whereas for Pt substrate, the films were randomly oriented. XRD data 

confirm the epitaxial growth of the thin films. The vibrational modes of the ferroelectric 

layer, investigated through Raman spectra, reveal significant red shifts for the thin films 

on Pt substrate compared to films on LAO substrate. The well-behaved room temperature 

M-H curves were observed for all the films through superconducting quantum 

interference device (SQUID) magnetometer indicating the ferromagnetic behavior of 

LSMO. The right shift of the hysteresis loop of the heterostructure may arise from the 

ME coupling between the ferroelectric and ferromagnetic layers. FMR measurement 

yields the significant values of linewidth offset, Gilbert damping parameter, 

gyromagnetic ratio, and in-plane uniaxial anisotropy field of the thin films. We found the 

lowest Gilbert damping parameter 0.02883 for the heterostructure BZT-BCT/LSMO/ 

LAO. In addition, the gyromagnetic ratio was also found lowest (0.00169 GHz/Oe) for 

the same film. The analysis concludes possible spintronic applications using BZT-

BCT/LSMO on LAO substrate rather than films on Pt substrate. 
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Introduction  

The precursor material of LSMO is lanthanum manganite (LaMnO3). After 

doping Sr2+ into LaMnO3 through solid-state reaction, LSMO is formed and it shows 

some amazing properties far away from LaMnO3. The unique properties are promising 

for potential applications in magnetic, magnetoelectronic, and photonic devices as well as 

in infrared detector and spintronic technology. The interplay among the spin, charge, and 

orbital degrees of freedom in this material1 leads to many intriguing phenomena such as 

metal-insulator transition, magnetic phase transition, and nanoscale electronic phase 

separation2. 

LSMO belongs to the family of perovskite like mixed valence manganites which 

is the most studied colossal magnetoresistant (CMR) material. The half-metallic nature of 

LSMO yields a high-spin polarization of its conducting electrons. This property makes it 

a reliable material for spin-dependent transport devices such as spin valves3, magnetic 

tunneling junctions4 especially when it is grown on strontium titanate (SrTiO3 or STO) 

and neodymium gallate (NdGaO3 or NGO) substrates. LSMO has nearly 100% spin 

polarization and a high Curie temperature of 365k. The other applications of LSMO 

involve magnetic random access memory (MRAM), read heads in hard disk drives, as 

well as spin-logic based devices5. Moreover, there are more advanced applications of 

magnetic materials in data transfer in magnetic recording systems. The switching speed 

of the magnetic elements for those applications is limited, in part, by the magnetic 

damping in the thin film. An understanding of the damping mechanisms and control 

parameters remains one of the key challenges in the push to achieve faster switching 

speeds. In this respect, it is a must to understand the magnetic dynamics and to tune the 



 

31 

damping properties of LSMO for realizing high-speed spintronic devices. The damping 

constant determines the critical switching current in a spin-torque transfer (STT) based 

devices6. For STT based MRAM, damping constant must be small to minimize the power 

consumption. Also, for TMR read heads, the thermal magnetic noise depends on the 

damping parameters which affects SNR of a read head7. On the other hand, a large 

damping constant is expected for the read sensors to improve the thermal stability8. 

All the above mentioned applications required LSMO interfaced with either an 

insulator or conducting or semiconducting materials. But the properties of LMSO is 

changed due to the interface and it makes the device applications limited9. In that respect, 

understanding the surface and interface properties of LSMO for magnetic and transport 

mechanism is vital. The properties of LSMO interfaced with a ferroelectric material is 

promising for various applications. Specially, how the magnetization of an LSMO thin 

film is altered when epitaxially joined to a ferroelectric material is very important. 

Interface surface pinning, unidirectional and uniaxial anisotropies and changes to other 

micromagnetic properties are all key characteristics for tunnel junction performance. 

Several reports demonstrated these properties in single-layer LSMO10. The effects of 

ferroelectric overlayer can be important and have begun to be studied11. In this report, we 

have shown the FMR study of LSMO thin film deposited on different substrates-LAO 

and Pt. Also, we have demonstrated the change of FMR properties after interfacing with a 

ferroelectric material BZT-BCT. The low values of Gilbert damping parameter with the 

typical values of gyromagnetic ratio and in-plane uniaxial anisotropy field confirm the 

possible applications in high-speed spintronic devices. 
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Experimental 

All chemicals were analytic grade reagents and used without further purification. 

The BZT-BCT ceramic target was prepared by a standard solid state reaction using high 

purity chemicals BaCO3 (99.9%, Inframat Advanced Materials), CaO (99.95%, Alfa 

Aesar), TiO2 (99.9%, Sigma-Aldrich), and ZrO2 (99.9%, Inframat Advanced Materials) in 

appropriate proportions. Polyvinyl Alcohol (PVA) was added to the mixture to prevent 

agglomeration of the powder particles. The final mixer was pressed with a ‘hydraulic 

press’ to form the target. After that, the prepared target was calcined at 1350oC and then 

sintered at 1450oC in the air. The CFO target was prepared from CoFe2O4 nanopowder 

(Inframat Advanced Materials) applying the same procedure with 900oC sintering 

temperature. On the other hand, a high purity dense Lanthanum Strontium Manganite 

(La0.7Sr0.3MnO3) (LSMO) target was purchased from Kurt J. Lesker Company. The target 

was 99.9% pure, 1.00" diameter×0.250" thick, +/-0.010" AL.  

A CMP polished highly oriented (001) LAO substrate (2" dia +/- 0.5 mm × 0.5 

thickness +/-0.05 mm) was purchased from MTI Corporation. The configuration of the 

substrate was as follows: surface finish (RMS or Ra): < 8A with free sub-surface 

damaged, under 1000 class clean room, and in 100 grade plastic bag in a wafer container. 

The platinum substrate was also bought from MTI corporation with following 

specifications: Film-SiO2+Ti+Pt (111) thin film on Si (100) (P-type) substrate, 

2"x0.279mm, 1 side polished (1sp), SiO2=300 nm, Ti=10 nm, Surface roughness: < 20 A 

RMS. 

All the thin films were deposited on LAO and Pt substrate by Pulsed Laser 

Deposition (Excel Instrument, PLD-STD-18) technique using those targets. A KrF 
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excimer laser (Lambda Physik, COMPEX 201) with an energy density of 2 Jcm-2, 

wavelength 248 nm, pulsed duration of 20 ns, was used with 10 Hz pulse rate for the 

deposition. Thin films were grown in different growth temperature (6000C to 8500C) and 

different oxygen pressure (10-1 to 10-4 mbar). The best performance was observed in the 

film grown at the growth temperature of 800oC with 4.1×10-1 mbar oxygen pressure. The 

base pressure of the chamber was maintained at 9×105 mbar. After the desired number of 

PLD shots, the deposited film was cooled down to room temperature maintaining the 

oxygen pressure at 110 mbar. The average film thickness was 100 nm, measured ex-situ 

by a profilometer (Veeco, Dektak 150). 

Thin films were characterized by X-ray Diffractometer (Bruker, D8 Discover) 

using θ-2θ scan in the range of 20° to 80° maintaining the Bragg−Brentano reflection 

geometry. The excitation source was an x-ray with the wavelength of 1.5405Å. The 

vibrational properties of the samples were characterized by micro-Raman scattering 

experiments (Horiba Labram Raman-PL System) with a 532 nm green laser excitation 

source. The experiments were performed in a back-scattering geometry with 15 seconds 

exposure time, and 20 accumulation cycles. The measured spot size was approximately 

2.5 μm in diameter on the thin film. We were aware of the possible damage of the thin 

film due to the excitation source. The Raman spectroscopy was collected through NGS 

Labspec-5 software in the range of 100 cm-1 to 1000 cm-1. The data were analyzed by 

Gaussian-Lorentzian peak fitting using Origin Pro 8.5.1.  

The magnetization of the films was measured by SQUID mangnetometer 

(Quantum Design MPMS 5XL) interfaced through MultiVu software. The temperature 

was varied from 5k to 370k. Low temperature (5k) and high temperature (300k) M-H 
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hysteresis loop of the sample was observed by varying the magnetic field from -5000 Oe 

to +5000 Oe. The maximum sensitivity of the magnetometer was 10-9 emu. In our 

experiment, we used a slow and steady temperature ramp and sent a constant current 

using the current source. 

 

Results and Discussion 

Figure 10 illustrates the XRD pattern of both the BZT-BCT/LSMO (black) and 

only LSMO (red) thin films on LAO substrate. The XRD pattern shows the highly-

oriented spectra which are the indication of a complete single phase perovskite structure. 

Puli et al. demonstrated a possible secondary phase such as Ba3Ca2Ti2O9 in the (1-x) 

BZT-xBCT ceramic system12. But in our sample the existence of any secondary phases is 

ruled out due to sintering at a higher temperature. Also, the complete solid solubility of  
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Figure 10. X-ray diffraction pattern of both LSMO (red line) and BZT-BCT/LSMO 

(black line) on LAO substrate. The inset plot shows the splitting of (002) peak, which 

is a characteristic of the tetragonal crystal structure. 
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Ca2+ at Ba-site and Zr4+ at Ti-site at higher sintering temperature ruled out the possibility 

of any impurities, confirmed by XRD. 

The interesting feature of the XRD pattern is the splitting of the peaks. The inset 

of Figure 10 shows that weak splitting of the XRD peak in the 2θ range of 43.5 to 44.5 

induced by the formation of multiple domains, e.g., a- and c-domains, analogous to the 

case of PZT13. This is a unique characteristic of the tetragonal phase in BZT-BCT as the 

single (002) plane (cubic phase) transforms to (200) and (002) crystallographic planes 

(tetragonal phase). The other interesting feature of the XRD is the asymmetricity of the 

peak shape which confirms the coexistence of tetragonal and cubic phases in our thin 

film. The average ⟨111⟩ displacements of octahedral Ti4+ (local rhombohedral structure) 

is the reason of the tetragonal structure14. The presence of CuKα or CuKβ at higher angles 

can’t be the source of the peak splitting as this is predominantly seen in the mentioned 2θ 

range. The other diffraction peak (003) at 68.5o also shows mixed diffraction peaks, 

which is consistent with Liu’s report15. Such coexistence plays a key role in enhancing 

the ferroelectric performance of BZT-BCT. 

The c-axis lattice constants, of LSMO, calculated from the XRD data for 

LSMO/LAO and BZT-BCT/LSMO/LAO are 3.892 and 3.943 Å respectively. As the 

lattice constant of bulk LSMO is 3.889 Å, this induces tensile strain in the LSMO thin 

film. However, the scenario is critical for the heterostructure. The BZT-BCT/LSMO/ 

LAO heterostructure experiences two strain effects, one incurred from the strain of 

LSMO/LAO due to the lattice mismatch between the film and the substrate and the other 

from the BZT-BCT/LSMO interface.  
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Figure 11 represents the XRD pattern of the LSMO thin film grown on Pt 

substrate, which reveals the randomly oriented nature of the film. The XRD peaks at 

23.04, 32.5, 47.5, and 69.83 correspond to LSMO (001), LSMO (011), LSMO (002), and 

LSMO (003) respectively. The other peak at 40.03 denotes the reflection from Pt 

substrate. 

To investigate the molecular vibrational modes present in the sample, we 

performed room-temperature Raman experiment. This spectroscopy is a highly sensitive 

technique to evaluate the atomic structure and phases of perovskite BZT-BCT. ABO3 

type perovskite structures are very interesting to investigate. For example, Raman active 

modes are only found in the tetragonal perovskite structure rather than in cubic 

structure16. BaTiO3 (BTO), a perovskite, is the primary material of the BZT-BCT 

composite.  There are fifteen degrees of freedom present per unit cell (uc) of tetragonal 

BTO as it has five atoms in a uc17. The transition temperature (Tt) of BTO is 120oC. The  
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Figure 11. X-ray diffraction pattern for PLD grown LSMO thin film on Pt substrate 
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tetragonal crystal structure of BTO transforms to cubic crystal structure upon heating 

above Tt. In addition, the ferroelectric property vanishes at this temperature. The cubic 

BTO is not Raman active while the tetragonal structure shows significant modes18. Figure 

12(a) shows the following six active modes in Raman spectra of the BZT-BCT/LSMO 

thin film on both the LSMO and Pt substrate: 2 A1(TO), 1 A1(LO), 1 E(TO), 1 E(LO), 

and 1 B1. Due to the presence of long-range electrostatic forces19 each of the A1 and E 

modes split into TO (transverse optical) and LO (longitudinal optical) modes. Figure 

12(b) represents the deconvolution of the vibrational modes of BZT-BCT. 

The peaks in the BZT-BCT thin film on both the substrates are observed near 175, 

300, 525, and 735 cm-1. The peak near 175 cm-1 represents the Ti-O phonon vibrations of 

BZT-BCT and denoted to the A1(TO) mode20. Another A1(TO) mode at near 525 cm-1 

represents the O-Ti-O symmetric stretching vibrations21. The first-order Pm3m Raman 

scattering is symmetry-forbidden in the centrosymmetric space group. So, due to a Ti or  
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Figure 12. Raman spectra of PLD grown thin films (a) BZT-BCT/LSMO on Pt 

substrate (black line), BZT-BCT/LSMO on LAO substrate (red line) and (b) 

Deconvolution of Raman spectra with Gaussian and Lorentzian peak fitting by using 

Origin Pro 8.5.1 
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Zr atom’s displacement from its octahedral position, the presence of non-

centrosymmetric regions yield the symmetric stretching vibrations22. The sharp feature of 

the peak near 525 cm-1 indicates the high quality of the thin film. The characteristic peak  

for BZT–BCT, near 300 cm-1, is attributed to the B1 mode. This mode indicates the 

asymmetry of the TiO6 octahedra23. This band is also considered to be the Raman 

signature of the tetragonal phase. The A1g octahedral breathing mode at 800 cm-1 which is 

absent in the Raman spectra which confirm that Ca2+ resides on Ba-site not Ti-site in our 

cases24. 

A1 (LO) vibrational mode near 735 cm-1 is quite broad and shifted compared to its 

bulk counterpart. This is a characteristic feature of the tetragonal phase in thin films. The 

broadening represents the distortion in the thin film while the peak shift is related to the 

non-centrosymmetric region in the unit cell. Some of the Raman modes in our sample are 

weak due to heavily damped phonons. 

 The BZT-BCT thin films in our study were epitaxially grown on conducting 

oxide (LSMO), which was earlier grown on different substrates (Pt and LAO). The LAO 

substrate is insulating while the Pt one is conducting. So, in the sample BZT-BCT/ 

LSMO/Pt, obviously, the vibrational modes originate from the top BZT-BCT layer. Also, 

in the sample BZT-BCT/LSMO/LAO, the conducting LSMO reflects the exciting laser 

beam so that it does not enter the LAO substrate. Actually, this kind of heterostructure 

has several advantages. First, the conducting layer doesn’t allow the laser to enter into the 

substrate. Therefore, the Raman signal is exempt of the substrate. Second, the conducting 

oxide bilayer ensures the high quality epitaxial growth of the ferroelectric thin film in 

comparison to Si, sapphire substrates. Furthermore, such bilayer structures are similar to 
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those used in tunable microwave devices which make the experimental results more 

relevant to practical applications. 

Both the thin films were grown following exactly the same deposition parameters 

and both the Raman spectra denote vibrational modes of BZT-BCT. However, we found 

red shifts in each of the Raman peaks for the sample grown on Pt substrate compared to 

LAO substrate. These shifts caused by the substrate can come from several sources 

including surface charge, surface adhesion, defects, chemical environments and/or strain. 

As the same techniques were applied throughout deposition, the deviation of chemical 

composition can be ruled out. In addition, the surface charge and surface adhesion can be 

canceled due to the same oxide layer on both substrates. Therefore, the epitaxial strain 

originating from the substrate is responsible for the shifting of Raman modes. The BZT-

BCT film on LAO substrate was highly oriented along (00l) crystallographic plane 

whereas on Pt Substrate it was polycrystalline. The polycrystalline film is fully 

constrained by the Pt substrate, resulting in the large in-plane compressive strain. On the 

other hand, the (00l)-epitaxial film is almost fully relaxed. Table 5 shows the vibrational 

modes of BZT-BCT thin films grown on Pt and LAO substrates. 

The high-quality of the BZT-BCT thin films are confirmed by the well-defined 

Raman spectra. Taken together, Raman and XRD indicate the presence of non- 

centrosymmetric regions that result from the local off-centering of the titanium 

(zirconium) atoms. 

PLD-grown LSMO thin film was highly epitaxial stimulated by monocrystalline 

LAO substrate at higher deposition temperature. Figure 13(a) (red) shows the M-H curve  
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of LSMO/LAO thin film with the field applied parallel to the film plane at room 

temperature. Figure 13(b) shows the low field fragments of the hysteresis loops of Figure 

13(a). The magnetization was calculated after subtraction of a diamagnetic background 

from the substrate. The magnetization increased with increasing magnetic field until the 

saturation was reached at 500 Oe. A well-behaved M-H curve was observed for the  

 

Table 5. Peak positions and FWHM of the corresponding vibrational modes observed 

in Raman spectroscopy of BZT-BCT/LSMO thin films on Pt and LAO substrates 

Peak Position 

(cm-1) 

Amount of Peak 

shift 

Vibration mode 

Pt Substrate LAO Substrate (cm-1) 

169.33 179.94 10.61 A1(TO) 

290.04 306.68 16.64 E(TO)/B1 

524.16 528.30 4.14 A1(TO) 

732.15 742.05 9.9 A1 (LO)/E(LO) 
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Figure 13. (a) Magnetization-Applied field (M-H) hysteresis loop of the LSMO/LAO 

(red), LSMO/Pt (purple) obtained at room temperature and (b) the low field fragments 

of the hysteresis loops of Figure (a) 
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LSMO thin film, which is the indication of ferromagnetism in the sample. The film  

exhibited a coercive field of 15.2 Oe and a squareness ratio of 0.34.   

On the other hand, LSMO thin film on Pt substrate was randomly oriented. Figure 

13(a) (purple) shows the M-H curve of LSMO/Pt thin film. The magnetization increases 

with increasing magnetic field until the saturation is reached at a high field of 1000 Oe. A 

well-behaved M-H curve indicates the ferromagnetism in the sample. The film exhibits a  

coercive field of 11.9 Oe and a squareness ratio of 0.2. 

The LSMO thin film on LAO substrate is superior to the film on Pt substrate for 

different applications. Both the coercive field and the squareness ratio are much larger for 

LSMO/LAO than LSMO/Pt. In addition, a high saturation field for LSMO/Pt indicated 

that the sample is magnetically hard than LSMO/LAO. 

Figure 14(a) (red) shows the M-H curve of BZT-BCT/LSMO/LAO thin films 

with the field applied parallel to the film plane at room temperature. Figure 14(b) shows 

the low field fragments of the hysteresis loops of Figure 14(a). The magnetization 

increased with increasing magnetic field until the saturation was reached at 500 Oe. A 

well-behaved M-H curve indicates the ferromagnetism in the sample. The film exhibits a 

coercive field of 4.45 Oe and the squareness ratio of 0.08.  

On the other hand, Figure 14(a) (green) shows the M-H curve of BZT-BCT/ 

LSMO/Pt thin film with the field applied parallel to the film plane at room temperature. 

The magnetization increases with increasing magnetic field until the saturation is reached 

at a high field of 5000 Oe. The film exhibits a coercive field of 2.51 Oe and the 

squareness ratio of 0.075. 
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The coercive field is much larger for BZT-BCT/LSMO/LAO than BZT-

BCT/LSMO/Pt. However, the squareness ratios are almost same. In addition, a high  

saturation field for BZT-BCT/LSMO/Pt indicates that the sample is magnetically hard 

than the other sample. Table 6 summarizes values from SQUID measurement. 

The FMR measurements were carried out using a microwave cavity at a wide 

range of frequencies with a static magnetic field applied parallel to the film plane. The 

resonance condition in this configuration is given by  
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Figure 14. (a) Magnetization-Applied field (M-H) hysteresis loop of the BZT-BCT/ 

LSMO/LAO (red), BZT-BCT/LSMO/Pt (green) obtained at room temperature and (b) 

the low field fragments of the hysteresis loops of Figure (a) 

Table 6. Static Magnetic properties derived from SQUID measurement for all the 

samples 

Sample: LSMO/LAO LSMO/Pt BZT-BCT/ 

LSMO/ 

LAO 

BZT-BCT/ 

LSMO/Pt 

Coercive field, Hc (Oe) 15.19 11.90 4.45 2.51 

Squareness Ratio, Mr/Ms 0.341 0.199 0.08 0.075 

Saturation Field, Ms(Oe) 500 1000 500 5000 
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𝑓 = 𝛾√(𝐻𝑟 + 𝐻𝑘)(𝐻𝑟 + 𝐻𝑘 + 4𝜋𝑀𝑠)  ---------------------(1) 

where f is the FMR frequency, γ is the gyromagnetic ratio, Hk is the in-plane uniaxial 

anisotropy field, 4πMs is the saturation magnetization, and Hr is the resonance magnetic 

field. The other important parameter is ‘FMR linewidth’, which is a sensitive probe for 

providing magnetic homogeneity in the thin film. The temperature independent and 

narrower linewidths are the signature of the homogeneous sample. 

Figure 15(a) shows the experimental FMR absorption derivative versus field 

profiles at integral frequencies between 7 and 9 GHz for LSMO/LAO thin film. It is 

remarkable to note that the film displays pronounced ferromagnetic resonance at room 

temperature. The FMR signal is nearly symmetric but there is a little bit distortion at the 

field far away from resonance field on both sides. Though the absorption mode strength 

was strongest near 7 GHz, the intensity does not vary so much at other frequencies. That 

means the magnetization of the sample does not affect by the microwave excitation. The 

horizontal line is the zero-mark and the resonant field (Hr) was calculated from the first 

zero-crossing of the differential power absorption before going minimum. The resonant 

fields were 1163 to 1730 Oe at different frequencies depending on the excitation source. 

It shifts towards higher values as the excitation frequency increases. The linewidths (ΔH) 

were calculated from the maximum and minimum of the absorption derivative and the 

values were 180 to 200 Oe. Figure 15(b) shows frequency dependent in-plane linewidth 

of LSMO/LAO sample. The curve shows a linear fit of the LLG approach25 described by 

the following equation: 

∆𝐻(𝑓) = ∆𝐻0 +
2𝛼

𝛾√3
𝑓                     (2) 
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where ΔH(f) is the linewidth at frequency f, ΔH0 is the linewidth offset at zero frequency 

caused by microstructural inhomogeneities and α is the Gilbert damping parameter. The  

linear fit yields a linewidth offset of 34.86 Oe, which is lower than the recently reported 

value (541.45 Oe for LSMO/STO). The small value of ΔH0 confirmed the homogeneity  

of the sample. Figure 15(c) shows the frequency dependence of FMR resonant field for a 

wide range of frequencies. The curve was fitted to the Kittel resonance equation. The 

slope of the linear fit was 0.003 which demonstrated the value of the gyromagnetic ratio 
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Figure 15. (a)FMR absorption derivative vs applied magnetic field for the sample 

LSMO/LAO at 7 GHz (black), 8 GHz (red), and 9 GHz (green). The arrow shows the 

resonant frequency and the width (orange line) shows the linewidth. (b) Frequency 

dependence of FMR linewidth and (c) FMR resonance field for the same sample. 
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of the magnetic thin film. The Gilbert damping parameter was calculated 0.037 and the 

in-plane uniaxial anisotropy field was found 1099.7 Oe. 

Figure 16(a) shows the experimental FMR absorption derivative versus field 

profiles at integral frequencies between 8 and 9.5 GHz for LSMO/Pt thin film. The film  

displays a large ferromagnetic resonance at room temperature. The FMR signal at higher 

frequencies showed some distortion. The resonant fields were 1500 to 2000 Oe at 

different frequencies depending on the excitation source. The linewidths (ΔH) of the  

absorption derivative were between 250 to 300 Oe. Figure 16(b) shows frequency 

dependent in-plane linewidth of LSMO/Pt sample. The curve shows a linear fit of the 

LLG approach described by equation (2) which yields a linewidth offset of 187.09 Oe. 

The small value of ΔH0 confirmed the homogeneity of the sample. 

 Figure 16(c) shows the frequency dependence of FMR resonant field for a wide 

range of frequencies. The curve was fitted to the Kittel resonance equation, which yields 

a value of 0.0038 for the gyromagnetic ratio. The Gilbert damping parameter was 

calculated 0.05 and the in-plane uniaxial anisotropy field was found 126.6 Oe. 

 Figure 17(a) shows the experimental FMR absorption derivative versus field 

profiles at integral frequencies between 7 and 9 GHz for BZT-BCT/LSMO/LAO thin 

film. The film displays a large ferromagnetic resonance at room temperature but shows 

some distortion far away from resonance. The resonant fields were 1300 to 2000 Oe at 

different frequencies. The linewidths of the absorption derivative were between 115 to 

145 Oe. Figure 17(b) shows the frequency dependent in-plane linewidth of BZT-BCT/ 

LSMO/LAO sample. The curve shows a linear fit of the LLG approach described by 

equation (2) which yields an offset of 48.17 Oe. The small value of ΔH0 confirmed the  
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homogeneity of the sample. Figure 17(c) shows the frequency dependence of FMR 

resonant field for a wide range of frequencies. The curve was fitted to the Kittel 

resonance equation, which yields a value of 0.00169 for the gyromagnetic ratio. The 

Gilbert damping was calculated 0.02883 and the uniaxial anisotropy field was found 

347.1 Oe. 

Figure 18(a) shows the experimental FMR absorption derivative versus field 

profiles at integral frequencies between 7 and 9 GHz for BZT-BCT/LSMO/Pt thin film. 
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Figure 16. (a) FMR absorption derivative vs applied magnetic field for the sample 

LSMO/Pt at 7 GHz (black), 8 GHz (red), and 9.5 GHz (blue). The arrow shows the 

resonant frequency and the width (orange line) shows the linewidth. (b) Frequency 

dependence of FMR linewidth and (c) FMR resonance field for the same sample 
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The film displays some distortion at all frequencies. The resonant fields were 400 to 1800 

Oe at different frequencies. The linewidths (ΔH) of the absorption derivative were 

between 290 to 360 Oe. Figure 18(b) shows the frequency dependent in-plane linewidth 

of BZT-BCT/LSMO/Pt sample. The curve shows a linear fit of the LLG approach 

described by equation (2) which yields a linewidth offset of 120.9 Oe. The small value of 

ΔH0 confirmed the homogeneity of the sample. Figure 18(c) shows the frequency 

dependence of FMR resonant field for a wide range of frequencies. The curve was fitted   
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Figure 17. (a)FMR absorption derivative vs applied magnetic field for the sample 

BZT-BCT/LSMO/LAO at 7 GHz (black), 8 GHz (red), and 9 GHz (green). The arrow 

shows the resonant frequency and the width (orange line) shows the linewidth. (b) 

Frequency dependence of FMR linewidth and (c) FMR resonance field for the same 

sample. 
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to the Kittel resonance equation that yields a value of 0.00338 for the gyromagnetic ratio. 

The Gilbert damping parameter was calculated 0.0376 and the in-plane uniaxial 

anisotropy field was found 23.3 Oe. 

For the sample LSMO/LAO the linewidth-offset, Gilbert damping parameter, and 

saturation magnetization are quite small compared to LSMO/Pt sample. In addition, a  

high squareness ratio and high in-plane anisotropy field for the LSMO/LAO sample 

confirmed its superiority than LSMO/Pt. 
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Figure 18. (a) FMR absorption derivative vs applied magnetic field for the sample 

BZT-BCT/LSMO/Pt at 7 GHz (black), 8 GHz (red), and 9 GHz (green). The arrow 

shows the resonant frequency and the width (orange line) shows the linewidth. (b) 

Frequency dependence of FMR linewidth and (c) FMR resonance field for the same 

sample. 
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For the sample, BZT-BCT/LSMO deposited on LAO substrate, the linewidth-

offset, Gilbert damping parameter, and saturation magnetization is quite small compared 

to film on Pt substrate. In addition, the high in-plane anisotropy field for the BZT-

BCT/LSMO/ LAO sample confirmed its superiority than BZT-BCT/LSMO/Pt. However, 

the squareness ratio was almost same for both the sample. 

The effect of an FE layer capping to the sample LSMO/LAO can be revealed 

from the above FMR absorption derivatives. After capping with an FE layer the 

linewidth-offset increases a little bit whereas the Gilbert damping parameter, squareness 

ratio, and anisotropy field decrease. On the other hand, the saturation magnetization of 

LSMO capped with an FE layer increases a lot indicating that a high field is necessary to 

reorient the magnetic field. However, after capping with an FE layer all the parameters 

except the saturation magnetization decreased. The saturation magnetization increases 

almost three times indicating that a high field is necessary to reorient the magnetic field. 

All the calculated values from the FMR measurements were presented in Table 7. 

 

Table 7. Dynamic magnetic properties of all the samples calculated from FMR 

Sample: LSMO/LAO LSMO/Pt BZT-BCT/ 

LSMO/LAO 

BZT-BCT/ 

LSMO/ Pt 

Linewidth offset, Δ𝐻0 (Oe) 34.86 187.09 48.17 120.9 

Gilbert damping parameter, 𝛼 0.037 0.05 0.02883 0.0376 

Gyromagnetic ratio,(GHz/Oe) 0.003 0.0038 0.00169 0.00338 

Saturation magnetic field, Oe 500 1000 500 5000 

Uniaxial anisotropy, 𝐻𝑘 (Oe) 1099.7 126.6 347.1 23.3 
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Conclusions 

Both the BZT-BCT and LSMO thin films on LAO were highly oriented 

stimulated by the monocrystalline substrate. On the other hand, the pseudo-crystalline Pt 

substrate yield randomly oriented thin films. The red shifts of the Raman vibrational 

peaks of BZT-BCT originate from the strain of Pt/LSMO interface. The well-behaved M-

H hysteresis loops confirm the ferromagnetic behavior of all the LSMO thin films. The 

observed right shift of the hysteresis loops of LSMO in presence of an FE top layer may 

be an indication of the desired magnetoelectric coupling between the FE and FM layers. 

The advanced applications depend upon this kind of coupling between two different 

materials. Thin films on Pt substrate are magnetically hard than the films on LAO 

substrate. However, FMR data reveal the dynamic magnetic properties of PLD grown 

thin films. Thin films deposited on LAO substrate show the lowest linewidth offset 

compared to the films on Pt substrate. The Gilbert damping parameter and the 

gyromagnetic ratio are smaller for the thin films on LAO substrate indicating possible 

applications mentioned in the earlier sections such as MRAM, data storage, high-speed 

switching sensors, actuators etc. Moreover, the in-plane anisotropy fields are much higher 

for the films on LAO than the films on Pt indicating strong anisotropy in LSMO/LAO. 

On the other hand, the dynamic behavior of LSMO/LAO thin film is quite similar to the 

same thin film with the top ferroelectric layer. But, the dynamic properties of LSMO/Pt 

change a lot with FE top layer. So, we can conclude that LSMO thin film can be joined 

with another ferroelectric layer for device applications when the insulating substrate or 

some insulating layer is necessary for isolation. More study on interface behavior and 

charge transport mechanism are needed to bolster above statements. 
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CONCLUSIONS 

 

I have successfully deposited heterostructure of ferroelectric BZT-BCT and 

ferromagnetic LSMO thin films, which shows the expected magnetoelectric coupling 

between them. The BZT-BCT ferroelectric thin film shows polarization switching 

behavior with a large remnant polarization of 93.3 μC/cm2, a coercive field of 159.89 

kV/cm, and a large dielectric constant with negligible loss. The well-behaved M-H 

hysteresis loop at room temperature confirms the ferromagnetic nature of all the LSMO 

thin films with high saturation and remnant magnetization. The observed right shift of the 

hysteresis loops of LSMO in presence of an FE top layer is an indication of the desired 

magnetoelectric coupling between the layers. Moreover, temperature dependent 

magnetization confirmed a high Curie temperature of 360K which was very close to the 

bulk sample. FMR data demonstrate that the thin films deposited on LAO substrate show 

the lowest linewidth offset compared to the films on Pt substrate. The Gilbert damping 

parameter and the gyromagnetic ratio are smaller for the thin films on LAO substrate 

indicating possible applications mentioned in the earlier sections such as MRAM, data 

storage, high-speed switching sensors, actuators etc. Moreover, the in-plane anisotropy 

field is much higher for the films on LAO than the films on Pt indicating strong 

anisotropy in LSMO/ LAO. On the other hand, the dynamic behavior of LSMO/LAO thin 

film is quite similar to the same thin film with the top ferroelectric layer. However, the 

dynamic properties of LSMO/Pt change a lot with FE top layer. So, we can conclude that 

LSMO thin film can be joined with another ferroelectric layer for device applications 

when the insulating substrate or some insulating layer is necessary for isolation. 
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