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ABSTRACT 

The midcontinent of the United States has thousands of documented caves. These caves 

contain cave sediments, which are the accumulation of biological, geological, and 

anthropological debris. At this time there is no known database for trace metals of cave 

sediments of the midcontinent United States. Considering that caves host a wide variety 

of life, it is important to create a database to examine potential effects of trace metals on 

cave systems. In order to develop this baseline, 14 caves were sampled from across the 

midcontinent. Caves were selected based on geologic and hydrologic attributes. The 

sediments were analyzed for the following suite of metals: Al, As, B, Ba, Ca, Cd, Co, Cr, 

Cu, Fe, La, Mg, Mn, Ni, P, Pb, S, Sr, V, and Zn. As documented in this study, metal 

variation among caves is dictated by land use history, surficial watersheds, and geology. 

The preliminary results indicated that mineralization and anthropogenic impacts 

amplified trace metal concentrations in two caves, which were omitted to further evaluate 

the remaining 12 caves based on geologic and hydrologic factors. When geologic factors 

were examined, the geochemical variation between evaporites and carbonates resulted in 

B, Mg, S, and Sr concentrations being clearly associated with evaporites, while the 

differences between limestone and dolostone are primarily related to the mineralogy. 

When hydrologic attributes were analyzed, urban areas were more enriched with Cd, Cu, 

La, Mn, and Zn because of the multitude of potential sources available in urban areas 

over rural areas. 
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CHAPTER 1. INTRODUCTION 

 

1.0 Purpose and Objective  

The purpose of this study is to establish a trace metals baseline database of cave 

sediments of the midcontinent by analyzing for the following suite of trace metals: Al 

(Aluminum), As (Arsenic), B (Boron), Ba (Barium), Ca (Calcium), Cd (Cadmium), Co 

(Cobalt), Cr (Chromium), Cu (Copper), Fe (Iron), La (Lanthanum), Mg (Magnesium), 

Mn (Manganese), Ni (Nickel), P (Phosphorous), Pb (Lead), S (Sulfur), Sr (Strontium), V 

(Vanadium), and Zn (Zinc). All of these trace metals are naturally occurring and 

therefore will have varying quantities across earth’s surface. The question is, to what 

extent do natural and unnatural trace metal sources affect cave sediments? Considering 

that caves host a wide variety of life, it is important to create a database of trace metals 

that can be utilized to examine possible links between biota and geochemistry. However, 

at this time there is no known database for trace metals of midcontinent cave sediments. 

Thus the objective of this study is to interpret the geochemical data to achieve a greater 

understanding of midcontinent caves and metal variability by considering the following 

factors:  

1. Geologic factors, like lithology and geologic age. 

2. Hydrologic attributes connected to the surficial land use watershed. 

3. Geochemical properties that can affect metal accumulation in sediments. 

4. Other factors, like the historical uses of the cave.  
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1.1 Karst Landscapes   

Roughly 20% of the United States is covered by karst landscapes (Veni and 

DuChene, 2001), which form by the dissolution of soluble rock (i.e. limestone, dolostone, 

and gypsum). Due to the extensive physical and chemical weathering of soluble rock, 

karst landscapes are defined by caves, sinkholes, sinking streams, red clay residuum, and 

pinnacles and cutters (Palmer, 2007). Caves are natural sediment traps (Matmon et al., 

2012), as such, the sediments in these caves represent the accumulation of insoluble 

components of biological, geological, and anthropological origin. These sediments offer 

clues to the past and present of the local environment (White, 2007).  

The use of cave sediment for research has far reaching implications for many 

aspects of karst science. Forbes and Bestland (2007) were able to determine sediment 

provenance from clastic cave sediments in the Naracoorte cave system of Southern 

Australia, while Zhou et al. (2000) used cave sediments for paleoclimate reconstruction 

in China. Research by Muri et al. (2013) and Munteanu et al. (2012) documented the 

effects of land use on the geochemistry of cave sediments in karstic regions of southern 

Europe. Doughty and Johnson (2012) documented a possible link between cave sediment 

geochemistry and the abundance of aquatic cave biota. 

Missouri alone, has over 6000 documented caves, as well as 927 species 

documented in the Missouri cave life database (Elliot, 2007). This includes several 

species classified as endangered or threatened by the U.S. Fish and Wildlife Service. By 

studying cave sediments, greater insights may be gained into the unique world of karst 

environments.  
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1.2 Cave Sediments 

            White (2007) classifies cave sediments into two categories, chemical and clastic 

sediments. Chemical sediments are derived in place, like speleothems (White, 2007), 

which have a documented history for paleoclimate reconstruction due to annual growth 

lamina (Fairchild et al., 2006). Clastic sediments are composed of varying grain sizes that 

originate from the movement of material to another location via suspended load and 

bedload (Bosch and White, 2004). This study will only focus on clastic sediments, which 

account for a large portion of cave sediments. 

             Suspended load consists of medium to fine grained sediment that is transported 

by stream flow. The deposition of material is typically related to stream velocity and 

cross sectional area. Bedload material is derived from the scouring of flowing water over 

loose sediment, which can transport coarse to very fine material depending on stream 

velocity (Farrant and Smart, 2011).  

Clastic Sediments. Clastic sediments are further subdivided based on source area 

into autochthonous and allochthonous sediments (White, 2007).  Autochthonous sources 

are derived in the cave and are composed of weathered detritus, breakdown, and 

biological sediments. Weathered detritus consists of insoluble components that are left 

over after bedrock dissolution, this includes sand, silicified fossils, and chert (White, 

2007).  Breakdown material is derived from the structural collapse of the overlying 

sediment or ceiling and results in the deposition of various clast sizes (Klimchouk and 

Andrejchuk, 2002). Biological sediments are material generally derived from animal 

waste. The most common source in caves is bat guano.  
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            Allochthonous sediments have been reported for a majority of cave sediments 

(Mahler and Lynch, 1999) and are derived from external sources influenced by physical 

and chemical erosion. These sources include entrance talus, infiltrates, and aeolian 

deposits (White, 2007). The entrance talus is made of biological and anthropological 

material that form a thin layer of sediments at the entrance of the cave (White, 2007). 

Infiltrates (e.g. sinkholes, sinking streams, runoff, and recharge area) are sources of 

sediment that percolate downward into the cave through solutionally-widened fractures 

and hydrological conduits (White 2007). Lastly, aeolian sediment deposits originate from 

sand and loess being blown into the cave (White, 2007).  

Trace Elements in Sediment.  Trace elements are the accumulation of metals in 

minute quantities, generally occurring at the part per million (ppm) to part per billion 

(ppb) level. Trace metal concentrations can be affected by biologic, geologic, and 

chemical properties. As documented by Gadd (2010), microbes play a key role in the 

biosphere, which affects trace metal variability, particularly in biogeochemical cycles, 

metal and mineral transformations, and soil and sediment formation. Geologic properties 

such as grain size have been shown to increase trace element concentrations as grain size 

decreases (Horowitz and Elrick, 1987).  Cave sediments contain significant fine grained 

material and should contain ample amounts of trace metals. Cation exchange, a chemical 

property, is the ability of sediments and soils to hold positively charged ions (cations). 

Fine grained sediments, like clays, which hold a strong negative charge have the ability to 

attract and capture the positively charged cations (Drever, 1988).  

Trace elements can also be weathered out from the cave host rock.  Drever (1988) 

reported the following trace metal concentrations in limestone: Ba (10 ppm), Cr  (11 
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ppm), Cu (4 ppm), Mn (1100 ppm), Ni (20 ppm), Sr (600 ppm), Pb (9 ppm), V (20 ppm), 

and Zn (20 ppm). This commonly only accounts for minor amounts of trace metals with 

the exception of Sr and Mn. Strontium is the 15th most abundant element on Earth with 

an estimated average of 360 ppm in earth’s crust (Turekian and Wedepohl, 1961). 

Manganese is likely related to chemical absorption, as hydrous manganese has an affinity 

for trace metals, which results in high absorption capabilities in non-reducing 

environments like caves (Drever, 1988). White et al. (2009) found that stream cobbles 

coated in Fe-Mn oxides were enriched with Ba, Co, Cr, Cu, Mo, Ni, V, and Zn from the 

expected background in a karst stream.  

 

1.3 Previous Studies 

Many studies on trace elements in sediments are focused on metals contamination 

relative to surficial land use. Many of the metals may even overlap, depending on the 

land use activity. Karst landscapes are more prone to metals contamination because of 

dynamic hydrological processes which allow for direct and rapid transfer of metals 

downstream (Vesper, 2005). Metals contamination directly affects water quality, since 

karst aquifers can transport large quantities of sediment via suspended bedload (Wong et 

al., 2012).  

Trace Metals and Rural Landscapes. In rural settings, the most likely sources 

for metals are from agricultural practices, e.g. fertilizers, pesticides, and bio-waste. 

Fertilizers and pesticides can contribute Co, Cu, Fe, Mn, Mo, Ni, and Zn to supplement 

necessary nutrients for flora or for the use in pest extermination (Wuana and Okieimen, 

2011). While bio-waste can accumulate the following metals: As, Cd, Cr, Cu, Ni, Pb, Zn, 
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and others (Basta et al., 2005). Any of these metals can be spread by the actions of wind 

and water and can result in contamination miles away from the original source in karst 

landscapes. Mining activities can also contribute metals, as Loska et al. (2004) 

documented farming soil contamination by As, Cd, Hg, Sb, and Pb from a local smelter 

and coal mine. Those metals accounted for 90% of soil contamination which, if left 

unchecked, the metals could contaminate the local drinking water (Loska et al., 2004). 

Other non-conventional sources likely exist, like the burning or dumping of waste, leaky 

septic tanks, and the oxidation of sheet metal structures and automobiles. Additionally, in 

karst landscapes, a common practice is the use of sinkholes for dumping grounds. This 

practice, creates direct access for metals contamination into the subsurface. 

Trace Metals and Urban Landscapes. In urban settings, trace metals have a 

multitude of potential sources. Many metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Sn, V, and 

Zn) in urban settings are related to anthropogenic sources like smelters, heavy 

construction, and daily urban activities (Albanese and Cicchella, 2012). One general 

activity in urban settings is the daily commute to and from work. Automobile byproducts 

like gasoline, motor oil, and tires release metals like Cd, Ni, Pb, and Zn (Lagerwerff and 

Specht, 1970). This daily activity is recorded in sediments and soils beside the road, 

where concentrations of Cd, Ni, Pb, and Zn have been shown to decrease with distance 

from traffic (Lagerwerff and Specht, 1970).  

In one study, topsoil samples around urban St. Louis, Missouri had Cu and Zn 

concentrations over 10,000 ppm and Pb close to 2,000 ppm (Kaminski and Landsberger, 

2000).  In the same study at a separate site, Kaminski and Landsberger (2000) recorded 

81 ppm Cd, 340 ppm Cu, 700 ppm Pb, and 6,000 ppm Zn, half a mile downwind of a zinc 
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and copper smelter in clay soils. Vermillion et al. (2005) used Pb isotopes to document 

the prolonged effects of lead smelters in the St. Louis urban area recorded in lake 

sediment cores, with results showing that Pb concentrations steadily increased from 5 

ppm in the early 1800’s to 100-300 ppm in the early 2000’s.  

Trace Metals and Mineralization. Missouri has a long history of mining going 

back to the 1700’s during French colonial times (Lippmann et al., 2010). Presently there 

are four identifiable Mississippi Valley Type (MVT) deposits in Missouri.  Figure 1 

provides a map showing the following four districts: Tri-State Lead/Zinc District, Old 

Lead Belt, Central Mining District, and New Lead Belt. Mississippi Valley Type deposits 

are known to contain Pb-Zn-Cu-Fe ores and the following secondary metals: Ag, As, Ba, 

Cd, Co, and Ni hosted in carbonate rocks (Leach et al., 1995).  

Many of the mines in the Old Lead Belt and Tri State Lead/Zinc mining districts 

have since shuttered. Some of these mines have left behind tailings enriched with trace 

metals, which can end up in the local watershed by runoff or wind. A study by Gale et al. 

(2004) documented elevated concentrations of Cd, Pb, and Zn in fish in watersheds 

associated with the Old Lead Belt. A similar study was conducted on the Pearson Creek 

watershed, an area associated with the Tri-State mining district in the early 1900’s in 

Springfield, Missouri. The study found Zn stream sediment concentrations from 85-1441 

ppm based on stream geomorphology along the Pearson Creek watershed (Womble, 

2009).   
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Figure 1. Map of Missouri Mississippi Valley Type Mining Districts, (MoDNR, 2015). 

 

 



 

9 

Cave Sediments and Trace Metals. The metals trapped in cave sediments reflect 

the impacts made by both natural and unnatural causes on the local environment. A study 

conducted by Munteanu et al. (2012), found that cave sediments in Romanian karst 

recorded higher concentrations of metals in cave sediments compared to surface soils. 

Cave sediments contained 26-55 ppm Pb, 18-63 ppm Cu, and 54-96 ppm Cr, while 

surface soils contained 4-16 ppm Pb, 2.89-60 ppm Cu, and 22-121 ppm Cr (Munteanu et 

al., 2012). Miko et al. (2001) recorded high concentrations of Cu (2,869 ppm), Zn (951 

ppm), Cd (28 ppm), and light rare earth elements (REE’s) from bat guano. The original 

purpose of Miko and others (2001) study was to determine the geochemical baseline for 

the cave sediment, but the natural contributions exceeded possible anthropogenic 

impacts.  

A study by Muri et al. (2013) examined dust deposits from a Slovenian show cave 

(Postojnska Jama) with a double-track railway, high concentrations of Cu (217 ppm), Pb 

(4,940 ppm), and Zn (1,060 ppm) were documented and linked to the rail system. The 

metals observed in the study were higher than their natural abundance, which could harm 

the cave ecosystem with continued exposure (Muri et al., 2013).  Doughty and Johnson 

(2012) analyzed land use impacts on cave sediments from three caves hosted in the 

Springfield Plateau around Springfield, Missouri. The results showed that the highest 

metal concentrations (Pb, Mn, and Zn) came from Giboney (urban) cave, while the 

lowest concentrations came from the Smallin (control) cave. The results potentially 

correlated to the presence or absence of cave biota, as Smallin cave had the most diverse 

aquatic cave biota and lowest metals concentration, while Giboney with the highest 

metals concentrations was devoid of aquatic biota. 
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CHAPTER 2. GEOLOGIC SETTING OF THE STUDY AREA 

 

The midcontinent of the United States is a broad area bound by the Rocky 

Mountains on the west and Appalachian Mountains on the east. Between the Rockies and 

Appalachians almost 300 million years (542 million years ago (mya) to 251mya) of 

geologic history is recorded by Paleozoic era rock outcrops. This study only focused on 

three distinct geographic karst regions that span multiple geologic periods. Palmer (2007) 

defined these three regions as the Low Plateau (Kentucky), the Ozark Plateau (Missouri), 

and the Southern Great Plains (Oklahoma).  The Ozark Plateau has been further divided 

into the Salem and Springfield Plateaus (Peterson et al., 1995). The Low Plateau is 

covered with Mississippian age (360-325 mya) host rock. The Ozark Plateau includes 

Cambrian age (581-485 mya), Ordovician age (485-444 mya) and Mississippian age 

outcrops. Caves from the Southern Great Plains are hosted in Permian age rocks (299-252 

mya).  Figure 2 provides a karst map of the United States (Veni, 2002) and outlines the 

study area within the midcontinent. However, because the caves in this study are 

privately held, the exact locations are generalized for privacy.  Table 1 summarizes the 

caves sampled by name, county, state, and geologic age of host rock. 
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Table 1. Listing of Caves Sampled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cave Name County State Host Rock Geologic Age

Pierson Creek Greene Missouri Mississippian

Fitzpatrick Christian Missouri Mississippian

Fieldin Christian Missouri Mississippian

Breakdown Christian Missouri Mississippian

Giboney Greene Missouri Mississippian

Onondaga Crawford Missouri Ordovician

Black Fathom Ste Genevieve Missouri Mississippian

Crevice Perry Missouri Ordovician

Lloyds Ste Genevieve Missouri Ordovician

Gegg Ste Genevieve Missouri Ordovician

Crankshft pit Jefferson Missouri Ordovician

Alabaster caverns Woodward Oklahoma Permian

Owl Woodward Oklahoma Permian

Lone Star Hart Kentucky Mississippian

List of caves Sampled 
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2.0 The Low Plateau 

 

The caves of the Low Plateau underlie a broad karst landscape covered by 

sinkholes and thick red soils (Grabowski, 1986). The area is often referred to as the 

Pennyroyal Plateau, Pennyrile Plateau, or the Mississippian Plateau because the rock 

units are of Mississippian age (360-325 mya). The bedrock for the caves of the Low 

Plateau originate from a period of intensive upwarping in the Devonian period (410-360 

mya) that deposited unlithified sediments along a carbonate shelf in widespread shallow 

seas during the Mississippian period (Grabowski, 1986). These sediments lithified into 

the present day Mississippian rock outcrops shown in Figure 3. By the end of the 

Pennsylvanian period (325-290 mya), sedimentation had ceased (Grabowski, 1986).  

The caves in the Low Plateau are hosted in the Mississippian aged Ste. 

Genevieve, St. Louis, and Girken limestones (White and White, 2003). The St. Louis 

limestone is characterized as a fine-grained, moderately cherty, argillaceous and 

dolomitic limestone with fossilized corals (Grabowski, 1986).  The overlying Ste. 

Genevieve limestone is characterized as an oolitic to skeletal limestone with some 

sandstone occurrence (Grabowski, 1986). Overlying the Ste. Genevieve limestone is the 

Girken limestone, which consists of fine to medium grained, skeletal and argillaceous 

limestones with minor occurrences of oolitic limestone (Grabowski, 1986). Figure 4 

provides a generalized stratigraphy of the Mississippian Plateau. Only one sample was 

collected from the Low Plateau, Lone Star cave, which is hosted in St. Louis limestone. 

The sample was provided by the Louisville Grotto of the National Speleological Society 

and contained an abundance of clay with minor amounts of chert. 
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System Series Formation Name 
Thickness 

(Ft) 
Lithology 
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V
al
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an

-C
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te
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an
 Girken 130 

Fine to medium grained 

fossiliferous limestone 

Ste. Genevieve 200-300 

Oolitic to fossiliferous 

limestone with occasional 

sandstone/shale layers 

St. Louis 500 

Fine grained argillaceous 

dolomitic limestone with 

abundant chert layers and 

pockets of fossiliferous 

limestone 

 

Figure 4. Generalized Mississippian stratigraphic column of the Low Plateau. (After 

Grabowski, 1986) 
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2.1 Ozark Plateau 

The Ozark Plateau is an expansive area of the midcontinent, covering portions of 

Arkansas, Kansas, Missouri, and Oklahoma and includes the Springfield Plateau, Salem 

Plateau, and the Boston Mountains (Peterson et al., 1995). At the center of the Ozark 

Plateau in southeast Missouri are the Precambrian aged St. Francois Mountains (Bickford 

and Mose, 1975). The St. Francois Mountains are a structural dome made of felsic (silica 

rich) igneous rocks, which are known sources for Fe, Mn, Pb, Ag, and REE’s 

(Kisvarsanyi, 1990). Surrounding the St. Francois Mountains are Paleozoic aged 

sedimentary rocks of Cambrian, Ordovician, and Mississippian age (Bretz, 1953).   

Ozark Plateau Geologic History. Within Missouri, during the Cambrian, there 

was continual deposition of carbonate sediments in shallow marine waters, with periods 

of erosion and clastic sedimentation through the mid-Ordovician (Frezon and Glick, 

1959). From the mid-Ordovician to the Mississippian the Ozark Plateau was uplifted 

multiple times, limiting sedimentation (McCracken, 1971). Carbonate sedimentation 

resumed in the Mississippian, resulting in the deposition of limestone in warm shallow 

waters (McCracken, 1971).  After the Mississippian, the Ozark Plateau experienced more 

uplift and erosion that exposed the underlying Ordovician rocks and formed the present 

day topography of hills and valleys (McCracken, 1971).  

Ozarks Plateau Sampling. This study sampled 14 caves, of which only three 

were collected from outside Missouri. Samples were collected from three different areas 

within Missouri, each with different lithologic settings and formations. In order to 

differentiate the areas, they have been labeled A, B, and C on Figure 5.  Samples from 

area A were collected from caves within strata of the Mississippian Osagean and  
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Figure 5. Geologic Age of the Known Karst Hosting Strata of Missouri. Map created off 

Data from MoDNR (2015) 
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Kinderhookian series. These caves are generally characterized by crystalline fossiliferous 

limestone (host rock) with abundant chert and clay residuum.  Figure 6 provides the 

generalized stratigraphy of area A. Samples were collected from caves in the Burlington-

Keokuk, Pierson, and Compton limestones.   

Samples from areas B and C were collected from strata of the Ordovician Ibexian 

(area B) and Mohawkian (area C) series. These caves are generally characterized by 

abundant clay residuum hosted in fine to medium grained dolostones with minor 

limestone. Figure 7 provides the generalized stratigraphy of areas B and C. For area B, 

samples were collected from the Gasconade dolomite. These samples consisted of 

abundant clay with minor amounts of chert. For area C, samples were collected by the 

Southeast Missouri grotto from the Plattin group and Joachim dolomite, with one sample 

being from the Mississippian St. Louis limestone (previously described in the section 

titled “Low Plateau”). These samples were fat clays, with little to no chert.   
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Figure 6. Mississippian Stratigraphy of area A in Ozarks Plateau. Abbreviated from The 

Stratigraphic Succession in Missouri by Thompson 1995 
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Burlington-Keokuk 0-200 Medium to thick beds 

crystalline fossiliferous 

limestone. Occasionally  

cherty, weathers grey 

Elsey-Reeds Spring variable Crystalline light gray 

limestone with abundant chert 

beds 

Pierson 20 Gray-brown fossiliferous 

limestone, some chert 

K
in

d
er

h
o
o
k
ia

n
 Northview Shale < 10 Greenish siltstone-shale 

Compton 10-20 Gray-green thin bedded 

fossiliferous limestone 



 

20 

 

Figure 7. Cambrian, Ordovician, and Mississippian Stratigraphy of areas B (top) and C 

(Bottom) of the Ozarks Plateau. Abbreviated from The Stratigraphic Succession in 

Missouri by Thompson 1995 
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 Roubidoux 100-200 

Fine grained cherty dolomite to 

sandy dolomite with occasional 

sandstone layers 

Gasconade  250-300 
Light brownish-grey cherty 

dolomite 
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n
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b
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an
 Eminence 150-290 

Coarse light grey massive 

bedded dolomite with chert 

Potosi  75-300 

Finely crystalline dolomite, 

brownish grey, weathers to 

light grey, abundant Barite 
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St. Genevieve 50-100 

Oolitic to fossiliferous 

limestone with occasional 

sandstone/shale layers 

St. Louis 50-100 

Fine grained argillaceous 

dolomitic limestone with 

abundant chert layers and 

pockets of fossiliferous 

limestone 

Salem  100-160 

Sandy limestone with abundant 

chert near the top of the 

formation 
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n

 

M
o
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n
 

Plattin Group Variable 

Evenly bedded light to dark 

grey to light tan, finely 

crystalline limestone 

Joachim 50-175 

Yellowish brown argillaceous 

dolomite with interbedded 

limestone 

Dutchtown 20-150 

Medium to thinly bedded dark 

blue to grey dolomite with 

occasional hydrocarbons 

St. Peter Sandstone 60-80 

Well sorted, friable quartz 

sandstone with rounded, 

spherical grains, white when 

fresh, grey to brown weathered 
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2.2 Southern Great Plains 

 The Southern Great Plains is an expansive area that covers parts of four states, 

however, this study only focuses on the Permian-aged Nippewalla Group in western 

Oklahoma. During the late Paleozoic, the Nippewalla Group was deposited in a series of 

basins (Benison and Goldstein, 2001) that were surrounded by multiple orogenic belts, 

including the ancestral Rockies, Ouachitas, and Ozarks (Foster et al., 2014). The 

sediments that filled these basins were of a felsic-mafic mixture transported by eolian 

dust from the weathering of orogenic belts (Foster et al., 2014; Sweet et al., 2013). Felsic 

sources are silica rich, while mafic sources are iron and magnesium rich. The caves in 

this area are hosted in the Blaine Formation that formed in shallow tidal waters (Benison 

and Goldstein, 1999). The Blaine Formation is about 80 feet of interbedded rock gypsum 

and shale, with the Dog Creek Shale above it and the Flower Point Shale below (Gibson 

et al., 1969). Figure 8 provides a generalized stratigraphy of the Nippewalla Group. 

Samples were collected from the Blaine Formation at Alabaster Cavern State Park 

near Freedom, Oklahoma. The dominant karst features at Alabaster Cavern are solution 

valleys, sinkholes, and caves. These caves are generally characterized by massive selenite 

gypsum breakdown and red to grey clay residuum with coarse to silt sized insoluble 

detritus.  

.   
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Figure 8. Generalized Stratigraphy of the Nippewalla Group. Oldest on bottom and 

youngest on top. 
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Dog Creek  
Red mudstones, siltstones, 

and anhydrite  

Blaine  Anhydrite and gypsum  

Flowerpoint Shale  
Red mudstones, siltstones, 

and anhydrite 

Cedar Hills Sandstone 
Red siltstones and 

sandstones 

Salt Plain  
Red mudstones, 

sandstones, and anhydrite 

Harper Sandstone 
Red siltstones and 

sandstones 
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CHAPTER 3. METHODOLOGY 

 

3.0 Site Selection 

The greatest challenge in this study was securing cave access for sample 

collection. As a result, site selection was dependent on cave owner permission (i.e. 

individual, city, or state). The process to gain access could range from a simple hand 

shake to submitting research/sample collection forms for approval. Cave access was also 

gained by working with National Speleogical Society (NSS) grottos. These grottos 

manage or own many caves across the study area.  

 

3.1 Sample Collection  

Sample collection could consist of a combination of air, water, host rock, surface 

soils, and cave sediments within a set interval around a cave. Given the limited time and 

funding of this study, only cave sediment samples were collected. However, the process 

of building a database has to account for multiple variables. This study considered the 

effects of surficial watersheds and rock type in creating the database. However, future 

researchers should consider a more comprehensive approach to sample collection to 

better understand metal variability. 

During the course of this study, some samples were generously collected by 

members of the Southeast Missouri (SEMO) Grotto and the Louisville (Kentucky) 

Grotto. The members of these organizations were provided with sampling instruction and 

guidance via electronic mail. Samples collected by the SEMO grotto were collected using 

a random sampling technique, as this study had not yet adopted the stratified sampling 
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technique used for the remainder of the study. The stratified sampling technique was 

adopted in April 2015 to create a more consistent methodology.  This methodology 

adoption coincides with the start of summer field work when a majority of samples were 

collected. Appendix A denotes how access was granted and sampling method employed. 

 

3.2 Field Methods  

The primary field method was to collect shallow sediment samples proportional to 

total cave passage length.  For every 200-250 feet along the primary cave passage, one 

sample was collected. A range of three to twelve samples was collected from any one 

cave, with an average of 6 samples per cave. As noted, some caves were sampled by a 

random method. The collection method described below was still followed, however 

there was no set interval between sample collection sites.  

This study also utilizes bulk sampling of cave sediment. The justification for bulk 

sampling is based off a study by Peterson and Wicks (2003). Their study documented 

hydraulic conductivity values from sediments in two karst aquifers that span the range of 

carbonate rock. The hydraulic conductivity values indicate that sediment could be 

represented as one mathematical unit in flow models for karst aquifers. This allows the 

researcher the ability to perform bulk sampling over core sampling.  

Sampling Guidelines. The sediment sampling procedures used in this study are 

based off techniques used by Smith et al. 2013. However, to accommodate for sampling 

in caves, minor alterations were made for collection techniques. Sample collection in 

caves is dependent on the occurrence of sediment. The following methodology was 

developed and employed during field work:  
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1) Sediment sampling occurs in the primary cave passage 

a. A feasible effort was made to follow a primary passage that generally 

coincides with the entrance(s) of any one cave or one of the following: 

i. The longest measured passage for any one cave 

ii. The traverse of a cave/subsurface stream 

2) All samples were taken within the first six inches of the sediment horizon. 

3) Using a plastic measuring cup, one cup of sediment was collected using a 

stainless steel scoop to collect sediment at each sampling site within the cave. 

a. The number of scoops needed varied at each location depending the on 

grain size, moisture content, and distribution.  

4) At each cave, all samples were deposited into one large Ziploc bag throughout 

the collection process. 

5) Following completion of sampling, all equipment and clothing was 

decontaminated following U.S. Fish and Wildlife Service national white nose 

syndrome decontamination protocol Version 06.25.2012. 

While at each cave, a simple form was filled out to document pertinent 

information about the cave. The form included the following information: cave name, 

relative location, geologic age, cave passage length, number of samples collected, 

surficial land use, cave description, cave history, and acknowledgments. All field notes 

are summarized in Appendix B. 
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3.3 Pearson Creek Cave Laboratory Methodology 

Pearson Creek Cave was the preliminary test cave to help establish a lab 

methodology. The sampling of this cave exposed flaws that led to the creation of the 

methodology described in the next section, which is more consistent, as it accounts for 

the drying nature of clays and abundance of chert. Pearson Creek Cave was processed 

using the following methods:  

1) Air dry sample in an aluminum foil pan for a minimum of 48 hours to a maximum 

of 30 days 

2) Sieve sample using a 5/16 sieve over an aluminum foil pan to remove chert.  

a. Cleanse the sieve by rinsing with tap water, washing with deionized water, 

and leave to dry for 24 hours.  

3) Homogenize the sample using the cone and quarter technique on sterile flat 

surface. Start by pouring the sample into a cone shape. Flatten the sample out 

using a spatula and divide into four equal quarters.  Mix the two opposite quarters 

and recombine entire sample. 

4) Using a Humboldt soil crusher, pour sample into the crusher using a disposable 

plastic cup. The crusher turned the sample into powder smaller than 16 mm.  

5)  Re-homogenize sample using the cone and quarter method. 

6) Divided sample into two separate labeled Ziploc bags.  

7) Cleanse all non-disposable equipment by rinsing with tap water, washing with 

deionized water, and leaving to dry for 24 hours. Sterilize all lab surfaces using an 

antibacterial wipe.  
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3.4 Laboratory Methodology 

  The Pearson Creek sample exposed flaws in the laboratory preparation that led 

to the following methodology. After laboratory preparation, samples were sent out to 

commercial laboratories for geochemical analysis.  Geochemical analysis services were 

performed under contract by the University of Arkansas Stable Isotope Lab and ALS 

Global. Samples were prepared at Missouri State University using the following 

laboratory methodology: 

1) Air dry sample for a minimum of 48 hours to a maximum of 30 days in an 

aluminum foil pan.  

a. Disaggregate clay masses so they can pass through a 10cm x 8cm rough 

opening on the top of the Humboldt soil crusher. 

i. Wash hands before and after breaking clay masses to prevent cross 

contamination. 

2) Using a Humboldt soil crusher, pour sample into the crusher using a disposable 

plastic cup. The crusher turned the sample into a powder less than 16 mm. 

a. Samples that contain an abundance of chert (SiO2) caused the crushers exit 

screen to become blocked, which required the chert to be manually 

emptied before samples are sent for analysis.  

b. The remaining chert is placed into a separate labeled Ziploc bag for 

storage in the event it becomes relevant in interpreting the results.     

3) Place a labeled Ziploc bag under the exit screen to collect newly powdered sand-

silt sized sample.  
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4) Hand mix the powdered sample in a Ziploc bag by hand for a minimum of 1 

minute to homogenize the sample. 

a. Agitation consist of tossing, turning, flipping, shaking, and rotating bag.  

5) Divide sample into two separate labeled Ziploc bags. Each bag does not have to 

contain the same amount of sample.   

a. Most trace metal analytical equipment requires only a few grams (1-10g) 

of material. Utilizing the field methodology described above, generates a 

surplus (100+ grams) of sample that exceeds most minimal requirements.  

i. The University of Arkansas received one of the two bags for each 

sample.  

ii. ALS Global received 3 grams of weighed material in a labeled 

Ziploc bag out of the remaining samples. 

iii. MSU retained the remaining sample from step ii.      

6) Once processing is complete, sterilize all lab surfaces with an antibacterial wipe.  

Cleanse all non-disposable equipment by rinsing with tap water, washing with 

deionized water and leaving to dry for a minimum of 24 hours.     

a. Sterilization is done to prevent cross contamination, as the trace elements 

are chemically bound to each sediment sample and vary with each sample. 
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CHAPTER 4. RESULTS 

 

The following section reports the data received from ALS Global services for the 

14 cave sediment samples. ALS Global analyzed the samples by inductively coupled 

plasma - optical emission spectroscopy (ICP-OES) for a purchased suite of 35 elements. 

This project reports the findings of the following 20 elements: Al, As, B, Ba, Ca, Cd, Co, 

Cr, Cu, Fe, La, Mg, Mn, Ni, P, Pb, S, Sr, V, and Zn. A comprehensive report from ALS 

Global for all 35 elements is reported in Appendix C. All caves listed in the 

comprehensive dataset can be further grouped based on physical attributes, like geologic 

and hydrologic properties to further examine metal variability.  

A preliminary set of samples was sent to the University of Arkansas Stable 

Isotope Lab. These samples were analyzed by inductively coupled plasma - mass 

spectroscopy (ICP-MS). However, these results were preliminary and do not reflect the 

entire dataset. All geochemical data received from University of Arkansas is recorded in 

the Appendix D.  

As stated, the 14 caves can be grouped based on geologic properties. This study 

sampled caves hosted in Ordovician-aged, Mississippian-aged, and Permian-aged rock. 

The five caves sampled in Ordovician-aged rock were: Onondaga cave, Crevice cave, 

Lloyds cave, Gegg cave, and Crankshaft Pit. The seven caves sampled from 

Mississippian- aged rock were: Pearson Creek cave, Fitzpatrick cave, Fieldin cave, Black 

Fathom cave, Lone Star cave, Giboney cave, and Breakdown cave. Alabaster Cavern and 

Owl cave represent the two Permian aged caves.  
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When grouped by hydrologic properties, the caves sampled are broken up into 

urban (5 caves), rural (6 caves), and state park (3 caves) watersheds. The following five 

caves sampled were considered urban: Pearson Creek cave, Fitzpatrick cave, Fieldin 

cave, Giboney cave, and Breakdown cave. The following six caves sampled were 

considered rural: Black Fathom cave, Crevice cave, Lloyds cave, Gegg cave, Crankshaft 

Pit, and Lone Star cave. The following state parks were sampled: Onondaga cave, 

Alabaster Cavern, and Owl cave, which is located on the property of Alabaster Cavern. 

Table 2 summarizes the 20 elements of interest for each of 14 caves sampled. The 

mean, median, and standard deviation of each element are reported within Table 2. 

Metals with a less than symbol are considered below detection limit, for statistical 

analysis these metals were evaluated using the detection limit reported by ALS Global. 

Due to time and cave access limitations it was not feasible to sample enough caves to 

utilize the median as the baseline. Therefore, the mean is primarily used for all dataset 

baselines because it generates an overall average score for the 14 caves sampled in this 

study and in many instances is similar to the median. However, it is important to 

acknowledge that mean takes into account high or low anomalies that skew the data. 

Hopefully, future researchers will expand the database to improve the statistical data.  

 Preliminary examination of Table 2 shows Pearson Creek cave and Crankshaft 

Pit are clearly more enriched in metals in comparison to the other caves. Figures 9 and 10 

show the enrichment of metals in comparison to the elemental medians presented in 

Table 2. These two caves, along with the rest, are fully examined in the next chapter to 

assess geologic factors, hydrologic factors, and other factors that might affect trace metal 

concentrations.   
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Table 2. Comprehensive trace metal dataset. In total 14 caves were sampled and analyzed 

for 20 metals of interest. Dataset includes mean, median, and standard deviation. 

 

 

Cave Name 

Al As B Ba Ca Cd Co Cr Cu Fe

Fitzpatrick 15000 4.0 10.0 180.0 63000 0.9 8.0 63.0 69.0 14000

Pearson Creek 30000 14.0 10.0 190.0 62000 5.7 9.0 78.0 36.0 29000

Fieldin 23000 6.0 10.0 160.0 172000 1.4 10.0 70.0 22.0 19000

Onondaga 16000 6.0 10.0 120.0 34000 0.7 9.0 81.0 60.0 18000

Black Fathom 11000 4.0 <10 110.0 7000 <0.5 10.0 47.0 16.0 16000

Crevice 9000 2.0 <10 150.0 3000 <0.5 5.0 58.0 12.0 11000

Lloyds 9000 5.0 10.0 310.0 44000 0.8 6.0 47.0 29.0 12000

Gegg 8000 3.0 <10 100.0 2000 <0.5 6.0 58.0 12.0 11000

Crankshaft Pit 34000 19.0 10.0 200.0 19000 0.5 20.0 39.0 40.0 48000

Alabaster 17000 3.0 30.0 120.0 37000 <0.5 6.0 62.0 15.0 16000

Owl 13000 2.0 40.0 50.0 120000 <0.5 4.0 26.0 7.0 13000

Lone Star 17000 5.0 10.0 190.0 15000 0.5 8.0 52.0 14.0 17000

Giboney 8000 4.0 <10 180.0 178000 6.0 13.0 70.0 35.0 21000

Breakdown 15000 4.0 10.0 120.0 34000 0.7 7.0 42.0 19.0 14000

Mean (N = 14) 16071.4 5.8 15.0 155.7 56429 1.9 8.6 56.6 27.6 18500

Median (N = 14) 15000.0 4.0 10.0 155.0 35500 0.8 8.0 58.0 20.5 16000

Stdev (N = 14) 7456.6 4.5 9.9 57.5 55123 2.0 3.8 14.5 17.5 9068

La Mg Mn Ni P Pb S Sr V Zn

Fitzpatrick 30.0 1000 1155.0 18.0 1690 31.0 800 34.0 28.0 95.0

Pearson Creek 70.0 3000 1250.0 51.0 6000 348.0 300 48.0 48.0 994.0

Fieldin 40.0 2000 953.0 35.0 520 26.0 300 31.0 38.0 164.0

Onondaga 20.0 14000 374.0 30.0 2780 30.0 200 60.0 35.0 114.0

Black Fathom 20.0 1000 782.0 17.0 420 18.0 100 14.0 30.0 57.0

Crevice 20.0 2000 665.0 14.0 320 8.0 200 119.0 23.0 34.0

Lloyds 20.0 2000 1270.0 31.0 6720 9.0 1000 63.0 22.0 129.0

Gegg 20.0 1000 565.0 12.0 280 13.0 200 10.0 22.0 30.0

Crankshaft Pit 30.0 5000 1930.0 90.0 1210 51.0 200 41.0 59.0 571.0

Alabaster 10.0 14000 302.0 18.0 610 9.0 23000 256.0 26.0 61.0

Owl 10.0 14000 187.0 13.0 560 3.0 10000 695.0 18.0 30.0

Lone Star 20.0 2000 1060.0 16.0 640 17.0 600 55.0 29.0 63.0

Giboney 40.0 1000 4760.0 62.0 600 45.0 600 50.0 23.0 951.0

Breakdown 30.0 1000 790.0 17.0 2760 17.0 200 20.0 26.0 87.0

Mean (N = 14) 27.1 4500.0 1145.9 30.3 1794 44.6 2693 106.9 30.5 241.4

Median (N = 14) 20.0 2000.0 871.5 18.0 625 17.5 300 49.0 27.0 91.0

Stdev (N = 14) 14.5 4935.3 1060.6 21.5 1986 82.6 5975 180.3 11.3 338.5

Element Concentrations in PPM

Comprehensive Trace Metal Dataset
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Figure 9. Pearson Creek cave trace metal concentrations. Cave is compared to study 

elemental median concentrations. 
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Figure 10. Crankshaft Pit metal trace metal concentrations. Cave is compared to study 

elemental median concentrations. 
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CHAPTER 5. DISCUSSION 

 

The initial review of data indicates that two caves can be classified as anomalies. 

These caves continually recorded high metal concentrations in the top quartile for any 

single trace metal of the 20 metals reported in the comprehensive dataset. The two caves 

are Pearson Creek cave and Crankshaft Pit, which are examined in the first section of this 

chapter using the data recorded in Table 2. The second section of this chapter analyzes 

trace metal variation across the remaining caves after removing Pearson Creek cave and 

Crankshaft Pit to create a new baseline. Interpretation of all trace metal concentrations in 

each cave is based off field notes, history, and geochemical properties that could affect 

metal accumulation. The third section examines the effects of geologic attributes, while 

the final section examines the effects of hydrologic attributes on trace metal variability. 

  

5.0 Pearson Creek Cave and Crankshaft Pit  

Pearson Creek Cave is located in southeast Greene County within the city limits 

of Springfield, Missouri in an urban watershed. This area, as documented by Womble 

(2009), is associated with the Tri-State lead/zinc mining district. The cave is hosted in 

Mississippian aged limestone that has been mineralized by Mississippi Valley Type 

(MVT) associated metals. The primary metals for MVT deposits are Pb, Zn, Cu, and Fe 

with Ag, As, Ba, Cd, Co, and Ni occurring as secondary metals (Leach et al., 1995). The 

results indicate that Tri-State lead/zinc mineralization has affected the rocks in Pearson 

Creek Cave and therefore the sediments in the cave. Lead was recorded at 348 ppm, four 

standard deviations above the project median of 17.5 ppm. Samples from Paleozoic 
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carbonate rock considered as non-mineralized generally have a mean of about 25 ppm 

lead, whereas samples from areas of active mining and milling have an average of 393 

ppm lead (Leach et al., 1995).  The data from Pearson Creek cave almost mirrors the 

findings of Leach et al. (1995). Womble (2009) documented zinc concentrations from 85-

1441 ppm in the Pearson Creek watershed that were related to mine tailings. This study 

recorded zinc at 994 ppm, within the range reported by Womble (2009). Lead and zinc 

are commonly found in the Tri-State mining district and fit documented levels indicative 

of mineable deposits. Therefore the sediments in Pearson Creek cave are considered 

atypical and will be removed from further discussion or comparison datasets in this 

project.  

Crankshaft Pit is hosted in Ordovician aged dolostone in a rural watershed of 

Jefferson County, Missouri. This cave, as the name might suggest, has something to do 

with automobiles. At the bottom of this pit entrance are several Model T era car parts. 

Jaradat et al. (2005), found that an automobile scrapyard contained higher concentrations 

of metals (Al, Cd, Cu, Fe, Mn, Pb, and Zn) compared to the surrounding areas. 

Crankshaft Pit in essence is a scrapyard, where auto parts have had roughly a century to 

oxidize in a damp environment. The oxidation of car parts has released many metals into 

the environment. Theses metals include Al, As, Co, Fe, Ni, Pb, V, and Zn, which are 

common for automobiles, past or present. Because of the presence of auto parts and the 

occurrence of these metals in the findings of Jaradat et al. (2005), Crankshaft Pit is 

considered atypical and will be removed from further discussion or comparison datasets 

in this project.  
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5.1 Revised Cave Dataset 

In order to create a natural baseline for cave sediments of the midcontinent, 

Pearson Creek cave and Crankshaft Pit have been removed from the dataset due to 

reasons described in the previous section. Removing these anomalies results in Table 3, a 

revised baseline for cave sediments. A graphical representation of the revised 

comprehensive dataset can be found in Appendix E.  However, many of the remaining 12 

caves have individual anomalies that can be discussed relative to geologic and hydrologic 

factors. These anomalies are highlighted in red (high anomaly) and green (low anomaly) 

on Table 3. Only Black Fathom cave, Crevice cave, Lone Star cave, and Breakdown cave 

had all of their metal concentrations fall within one standard deviation above or below the 

median. Therefore this section explores the metal variation among the remaining caves.  

Gegg Cave. Gegg cave is a narrow rubble filled cave hosted in Ordovician 

dolostone in a very rural watershed that was depleted in Al, P, Sr, and Zn. Gegg cave 

contains coarser sediment, which as documented by Horowitz and Elrick (1987) results in 

lower metals accumulation. Gegg cave also floods often and Van Gundy and White 

(2009) documented complete sediment flushing of cave sediments by flood waters. 

Therefore, it is possible that any given storm event could flush Gegg cave with runoff 

from the surrounding rural area. Due to the isolated location of the cave, the metals 

common in rural runoff (Co, Cu, Fe, Mn, Mo, Ni, P, and Zn - from Wuana and Okieimen, 

2011) are less prevalent. Combined, the flooding and rubble make metal accumulation 

difficult, which could also explain why Gegg cave is depleted in P, Sr, Zn and has 

generally low metal concentrations overall.  
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Table 3. Revised comprehensive trace metal concentration dataset. Only includes 

remaining 12 caves.  

 

 

Cave Name

Al As B Ba Ca Cd Co Cr Cu Fe

Fitzpatrick 15000 4.0 10.0 180.0 63000 0.9 8.0 63.0 69.0 14000

Fieldin 23000 6.0 10.0 160.0 172000 1.4 10.0 70.0 22.0 19000

Onondaga 16000 6.0 10.0 120.0 34000 0.7 9.0 81.0 60.0 18000

Black Fathom 11000 4.0 <10 110.0 7000 <0.5 10.0 47.0 16.0 16000

Crevice 9000 2.0 <10 150.0 3000 <0.5 5.0 58.0 12.0 11000

Lloyds 9000 5.0 10.0 310.0 44000 0.8 6.0 47.0 29.0 12000

Gegg 8000 3.0 <10 100.0 2000 <0.5 6.0 58.0 12.0 11000

Alabaster 17000 3.0 30.0 120.0 37000 <0.5 6.0 62.0 15.0 16000

Owl 13000 2.0 40.0 50.0 120000 <0.5 4.0 26.0 7.0 13000

Lone Star 17000 5.0 10.0 190.0 15000 0.5 8.0 52.0 14.0 17000

Giboney 8000 4.0 <10 180.0 178000 6.0 13.0 70.0 35.0 21000

Breakdown 15000 4.0 10.0 120.0 34000 0.7 7.0 42.0 19.0 14000

Mean (N = 12) 13417 4.0 16.3 149.2 59083 1.6 7.7 56.3 25.8 15167

Median (N = 12) 14000 4.0 10.0 135.0 35500 0.8 7.5 58.0 17.5 15000

Stdev (N = 12) 4236 1.2 10.7 59.5 58288 1.7 2.3 13.5 18.3 2957

La Mg Mn Ni P Pb S Sr V Zn

Fitzpatrick 30.0 1000 1155 18.0 1690 31.0 800 34.0 28.0 95.0

Fieldin 40.0 2000 953 35.0 520 26.0 300 31.0 38.0 164.0

Onondaga 20.0 14000 374 30.0 2780 30.0 200 60.0 35.0 114.0

Black Fathom 20.0 1000 782 17.0 420 18.0 100 14.0 30.0 57.0

Crevice 20.0 2000 665 14.0 320 8.0 200 119.0 23.0 34.0

Lloyds 20.0 2000 1270 31.0 6720 9.0 1000 63.0 22.0 129.0

Gegg 20.0 1000 565 12.0 280 13.0 200 10.0 22.0 30.0

Alabaster 10.0 14000 302 18.0 610 9.0 23000 256.0 26.0 61.0

Owl 10.0 14000 187 13.0 560 3.0 10000 695.0 18.0 30.0

Lone Star 20.0 2000 1060 16.0 640 17.0 600 55.0 29.0 63.0

Giboney 40.0 1000 4760 62.0 600 45.0 600 50.0 23.0 951.0

Breakdown 30.0 1000 790 17.0 2760 17.0 200 20.0 26.0 87.0

Mean (N = 12) 23.3 4583 1072 23.6 1492 18.8 3100 106.9 30.5 241.4

Median (N = 12) 20.0 2000 786 17.5 605 17.0 450 49.0 27.0 91.0

Stdev (N = 12) 9.1 5285 1116 13.2 1743 11.1 6342 193.9 5.7 255.3

Trace Metal Concentrations in PPM
1

Revised Cave Dataset

1: Red indicates high anomaly, green indicates low anomaly 
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Lloyds Cave. Lloyds Cave is hosted in Ordovician aged dolostone in a rural 

watershed in Ste. Genevieve County, Missouri. This was the only cave to record high 

levels of P and Ba, as seen in Table 3. Phosphorous was recorded at 6720 ppm, which is 

10 times higher than the median of 605 ppm. As noted by Miko et al. (2001), bat guano 

can increase metal concentrations for P, Cd, Cu and Zn. Coincidentally, of the remaining 

12 caves, Lloyds cave recorded the fourth and third highest concentration of Cu and Zn 

respectively. Figure 11 ranks the caves in terms of Cu and Zn concentrations to show the 

elevated levels in Lloyds cave. Copper was at 29 ppm, above the median of 17.5 ppm. 

Zinc was 129 ppm, above the median of 91 ppm. The cave also receives some 

agricultural runoff, which is known to contain P, Cu, and Zn as documented by Wuana 

and Okieimen (2011). Either of these sources, bat guano, runoff, or both could explain 

why P levels are so high in Lloyds cave compared to the other caves.  

Barium was recorded at 310 ppm, about three standard deviations above the 

median of 135 ppm. The Ba might be related to the cave’s proximity to the Washington 

County (Missouri) Barite District (Leach et al., 1995), one county to the west. Figure 12 

shows the district in proximity to Ste. Genevieve County, marked with a star, where 

Lloyds cave is located. There are many abandoned mines, tailings, and smelters, which 

can transport metals miles away by wind or water, as shown by Kaminski and 

Landsberger (2000) and Gale et al. (2004). Barium could also be scavenged by the cation 

exchange capacity of clays. The samples from Lloyds cave were fat clays. Clays have a 

high cation exchange capacity, which has been proven to increase metals concentrations 

by Carroll (1959).  
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Figure 11. Ranking of Llyods cave Cu and Zn metal concentrations. Lloyds cave is 4th in 

Cu and 3rd in Zn, in terms of highest concentrations of the remaining 12 caves. 
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Figure 12. Map of Missouri Barite District in Proximity to Ste. Genevieve County 

(marked with red star) where Llyods cave is located (map from MoDNR, 2015). 
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Fitzpatrick Cave. Fitzpatrick cave is located in south Springfield, Missouri. The 

cave is along the banks of the James River and prone to frequent flooding. Fitzpatrick 

cave recorded the highest Cu concentration of the study at 69 ppm compared to the 

median of 17.5 ppm. The James River receives urban runoff from multiple tributaries 

within Greene county Missouri that originate from commercial, residential, and industrial 

neighborhoods (Fredrick, 2001). This also includes runoff from a power plant, which are 

known sources for trace metals, including Cu (Mandal and Sengupta, 2006). Considering 

that the James River floods often, the Cu could be backwashed into the cave with any 

flood event.  

However, it is interesting that Breakdown cave had a Cu concentration of 19 ppm. 

Breakdown cave is around 100 feet upstream of Fitzpatrick cave and about 40 feet uphill 

from the James River. Breakdown cave is also less prone to flooding compared to 

Fitzpatrick cave because of the elevation difference. Fitzpatrick cave is more likely to 

flood on regular basis which could accumulate more Cu in comparison to Breakdown. 

 It is also possible that paleo-hydrology contributes to different metal results. 

Breakdown cave at one point was fully connected to Fitzpatrick cave. In the past water 

would flow from breakdown to Fitzpatrick to the James River. That process is now 

reversed. Due to the current hydrology of Fitzpatrick, it likely receives more Cu from 

flooding of the James River because Fitzpatrick floods before Breakdown. But it is also 

possible that Breakdown cave could have similar Cu concentrations if substantial 

flooding occurs, like a 100 year flood event.  
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Giboney Cave. Giboney cave was the most enriched of the remaining 12 caves, 

with 10 elements more than one standard deviation above the respective median. Giboney 

cave is hosted in Mississippian Burlington-Keokuk limestone and located in Doling Park 

in Springfield, Missouri in an urban watershed. This cave, as reported by Doughty and 

Johnson (2012), was used as an open sewer by the city of Springfield and as a show cave. 

The cave is also less than a mile from major roadways to the north (I-44) and south 

(Route 66). Lagerwerff and Specht (1970) documented a direct correlation between 

distance from roads and metal concentrations for Cd, Ni, Pb, and Zn. Giboney cave 

recorded very high concentrations of Cd, Ni, Pb, and Zn in comparison to the other caves, 

as seen in Figure 13.  

Because Giboney cave is in an urban watershed, the urban runoff could 

potentially contribute to the metals accumulation in the cave. During storm events, 

surficial runoff bolsters trace metal concentrations (Liebens, 2001). Giboney cave is 

prone to flooding and could explain why Co was enriched in Giboney cave compared to 

the other caves. Albanese and Cicchella (2012) noted that Co is by-product of glass and 

ceramics, which were found in the sediment samples from Giboney cave. This was also 

the only cave where Mn coatings were well pronounced over extensive portions of the 

cave. The pronounced Mn staining on passages of Giboney cave likely explain why Mn 

was recorded at 4760 ppm, the highest concentration recorded for the study and about 

four standard deviations above the median. However, Manganese coatings also have the 

potential to amplify trace metal concentrations (Cd, Co, Ni, Pb, and Zn) as documented 

by White et al. (2009), which could also explain some of the metal concentrations for 

Giboney cave. 
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Figure 13. Graph of the enrichment of Cd, Ni, Pb, and Zn in Giboney Cave. 

 

 

 

 

0

200

400

600

800

1,000

F
it

zp
at

ri
ck

F
ie

ld
in

O
n

o
n

d
ag

a

B
la

ck
 F

at
h

o
m

C
re

v
ic

e

L
lo

y
d

s

G
eg

g

A
la

b
as

te
r

O
w

l

L
o

n
e 

S
ta

r

G
ib

o
n

ey

B
re

ak
d

o
w

n

P
P

M

Zn

0

10

20

30

40

50

60

70

F
it

zp
at

ri
ck

F
ie

ld
in

O
n

o
n

d
ag

a

B
la

ck
 F

at
h

o
m

C
re

v
ic

e

L
lo

y
d

s

G
eg

g

A
la

b
as

te
r

O
w

l

L
o

n
e 

S
ta

r

G
ib

o
n

ey

B
re

ak
d

o
w

n

P
P

M

Ni

0

10

20

30

40

50

F
it

zp
at

ri
ck

F
ie

ld
in

O
n

o
n

d
ag

a

B
la

ck
 F

at
h

o
m

C
re

v
ic

e

L
lo

y
d

s

G
eg

g

A
la

b
as

te
r

O
w

l

L
o

n
e 

S
ta

r

G
ib

o
n

ey

B
re

ak
d

o
w

n

P
P

M

Pb

0

1

2

3

4

5

6

7

P
P

M

Cd



 

44 

Fieldin Cave.  Giboney cave and Fieldin cave are both hosted in the 

Mississippian aged Burlington-Keokuk limestone and both had oddities of Al and Ca. 

Aluminum, is one of the most abundant element in earth’s crust (Erickson, 1973). Fieldin 

cave located in Ozark, Missouri (satellite city of Springfield, Missouri) in Burlington-

Keokuk limestone on the property of Smallin cave had an Al concentration at 23,000 

ppm, about two standard deviations above the median (14,000 ppm). However, Giboney 

cave was depleted in Al (8000 ppm) and is also in the Burlington-Keokuk limestone. This 

discrepancy is interesting considering the caves are only separated by 20 miles and they 

share similar geologic and hydrological attributes. Hydrologically, they both receive 

urban runoff, but Fieldin cave receives some rural runoff.  

The Al anomaly could be explained by the aluminum guard rail leading into the 

Fieldin cave. The Al could have been deposited in the sediments by soldering or grinding 

during installation or maintenance work associated with property upkeep. However, both 

samples could be affected by grain size differences, which are known to affect metal 

concentrations. Giboney cave had coarser sediments in comparison to Fieldin cave, 

which tends to result in lower concentrations. It could also be because Al is one of the 

most abundant elements on earth. 

It is also interesting that Giboney cave and Fieldin cave recorded Ca 

concentrations over 170,000 ppm. The median for the study was 35,500 ppm. Both of 

these caves are hosted in the Burlington-Keokuk limestone. Limestone is a Ca rich rock, 

which makes it hard to explain why these two caves have such high readings compared to 

all other caves.  
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State Park Tourism Caves. Onondaga cave and Alabaster cavern are both state 

park tourism caves. Onondaga recorded a high Cu concentration about half a standard 

deviation above the mean. It should also be noted that Ni, Pb, and Zn had elevated 

concentrations, but were within one standard deviation of the median. This is interesting 

because Muri et al. (2013) documented a tourism cave enriched with Cu, Pb, and Zn. 

Coincidentally Alabaster cavern, another tourism cave recorded higher metal 

concentrations of Cr, Mn, Pb, and Zn in comparison to Owl cave (non-tourism cave), 

which is located on the same property. Figure 14, compares tourism caves to non-tourism 

caves and the difference between them. Even though Onondaga and Alabaster cavern are 

hosted in different rock types, Figure 14 supports the conclusion of Muri et al. (2013) that 

tourism caves have higher metal readings. These caves also recorded other elemental 

oddities that are likely related to other factors that are further discussed at length below.  

Onondaga Cave. Onondaga Cave State Park is located in the Ordovician 

Gasconade dolomite in Crawford County, Missouri along the Meramec River. The cave 

is open to the public for tours and has a history dating back to the late 1800’s. The cave 

has been used for many purposes, including onyx mining, private show cave, and even a 

dance hall. Onondaga cave recorded the highest Cr content in the study at 81 ppm, which 

is about two standard deviations above the median of 58 ppm. It is hard to explain why 

the Cr content is so high compared to all other caves. However, with a hundred plus years 

of human usage, it very plausible that Cr has increased overtime due to anthropogenic 

impacts related to the history of the cave.  
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Figure 14. Comparison of tourism versus non-tourism cave metal concentrations. The 

non-tourism caves selected for comparison were chosen due to similar geologic age and 

rock type. 
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Onondaga cave also recorded the highest Mg concentration (14,000 ppm). When 

compared to the other caves in Ordovician rock the Mg content is excessively high, but 

this might be explained by lithologic differences. Onondaga is in the Gasconade 

dolomite, while Gegg, Lloyds, and Crevice cave are primarily in the Joachim dolomite. 

The Joachim dolomite contains interbedded limestone and this lithological variation 

indicates two environments of deposition. Any geochemical variation in the environment 

of deposition at the time of formation could have resulted in higher Mg concentrations for 

the Gasconade dolomite. Magnesium was also found at 14,000 ppm in caves hosted in 

Permian strata, but these concentrations are discussed in the next section on Alabaster 

cavern and Owl cave. 

Alabaster Cavern and Owl Cave. Alabaster cavern and Owl cave are both hosted 

in Permian aged rock gypsum (CaSO4· 2H2O) near Freedom, Oklahoma. Both of these 

caves share the same high anomalies of B, Mg, S, Sr. These metals were marked with red 

bars on the comprehensive dataset (Figure 7) and are likely related to the geologic 

setting. The sulfur content is likely from the fact that gypsum is a sulfate mineral, which 

makes it a natural sulfur source. Boron tends to be found in arid to semi-arid 

environments (Kistler and Helvaci, 1994), like conditions that were present at the time of 

bedrock formation in the Permian (Foster et al., 2014). Magnesium, at first glance does 

not make sense because the cave is hosted in rock gypsum. However, the sediments that 

make the bedrock of the cave originate from a felsic-mafic mixture (Foster et al., 2014). 

Mafic material is high in Mg and would have originated from the weathering of the 

ancestral Rockies (Sweet et al., 2013). Strontium is an alkali earth metal, number 38 on 

the periodic table. Calcium is number 20 on the periodic table, which means that 
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strontium can mimic the chemical properties of calcium. Strontium is also the 15th most 

abundant element on Earth, with an estimated average of 360 ppm (Turekian and 

Wedepohl, 1961). The discrepancy between Alabaster (256 ppm) and Owl (695 ppm) in 

Sr could be related to construction that removed sediment from Alabaster Cavern to 

install a new lighting system. Owl Cave could also have an abundance of Celestite 

(SrSO4), a sulfate mineral in the sediment that is common with evaporite deposits.  

Both caves also recorded some of the lowest concentrations of the study, in 

particular Owl cave, which was depleted in Ba, Co, Cr, Mn, Pb, and Zn. These metals 

were at least one standard deviation below the median for each element. The depletion 

could be related to numerous factors. First, the bedrock of the cave is derived from the 

weathering of orogenic belts (Sweet et al., 2013), which might have been depleted in 

metals from weathering. Second, Owl cave is not a tourism cave, which have been shown 

to have higher metal concentrations, as noted by Muri et al. (2013). Last, Owl cave has a 

lot of breakdown (large grain size), which has been documented to reduce metal 

concentrations (Horowitz and Elrick, 1987).  

Summary. This section explored the revised cave dataset by looking at caves 

with only a few anomalies, which made identifying a possible contamination source 

difficult. As the section progressed, it started to become more evident that geologic and 

hydrologic factors were affecting these caves. For example, the metals in Alabaster 

cavern and Owl cave appeared to be affected by the geologic setting, while it appeared 

that land use watershed affected Giboney cave. The following two sections further 

explore metals variability based on the geologic and hydrologic attributes. 
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5.2 Geologic Attributes  

It is important to assess the potential effects of geologic properties (e.g. lithology, 

host rock age, and geochemistry) on the trace metal concentrations. The data in this 

section is analyzed into two subsets. First, a comparison of evaporite rock (Permian) 

versus carbonate rock (Ordovician and Mississippian). Second, a comparison of 

Ordovician dolostone against Mississippian limestone. In order to assess any effects, the 

remaining 12 caves are grouped based on host rock age and shown Table 4. A graphical 

representation of Table 4 is provided in Appendix F.   

Evaporite versus Carbonate. The mineralogy between evaporites and 

carbonates is vastly different between the two groups, which affects trace metals 

accumulation. The difference between the two is recorded by B, Mg, S, and Sr. Figure 15 

shows the recorded variation of B, Mg, S, and Sr between evaporites and carbonates. 

These same metals were identified and interpreted in the Alabaster cavern and Owl cave 

section, which are both evaporite hosted caves. To recap the Alabaster cavern and Owl 

cave section, Boron accumulation occurs in arid to semi-arid environments (Kistler and 

Helvaci, 1994). At the time of host rock formation, the Southern Great Plains were in an 

arid environment (Foster et al., 2014). The evaporites in this study are made of rock 

gypsum, which is a sulfur rich mineral. Strontium has the ability to mimic Ca chemical 

attributes, which allows for Sr to be scavenged by cation exchange. Magnesium is from 

the sediments that make the bedrock of the caves Southern Great Plains. The sediments 

were derived from a felsic-mafic mixture that originates from the weathering of orogenic 

belts (Sweet et al., 2013). Mafic material is high in Mg and likely originated from the 

ancestral Rockies (Sweet et al., 2013), which explains the high Mg levels.  
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Table 4. Comprehensive geologic attribute database. Caves grouped by geologic age and 

rock type into Mississippian limestones, Ordovician dolostone, or Permian gypsum. 

 

 
 

 

 

 

 

 

 

 

 

Al As B Ba Ca Cd Co Cr Cu Fe

Ordovician        10500 4.0 10 170.0 21000 0.8 6.5 61.0 28.3 13000

Mississippian     14833 4.5 10 156.7 78167 1.9 9.3 57.3 29.2 16833

Permian         15000 2.5 35 85.0 78500 <0.5 5.0 44.0 11.0 14500

La Mg Mn Ni P Pb S Sr V Zn

Ordovician        20.0 5000 718.5 21.8 2525 15.0 400 63.0 25.5 76.8

Mississippian     30.0 1333 1583.3 27.5 1105 25.7 433 34.0 29.0 236.2

Permian         10.0 14000 244.5 15.5 585 6.0 61500 475.5 22.0 45.5

Al As B Ba Ca Cd Co Cr Cu Fe

Ordovician        9000 4.0 10 135.0 19000 0.8 6.0 58.0 20.5 11500

Mississippian     15000 4.0 10 170.0 48500 0.9 9.0 57.5 20.5 16500

Permian         15000 2.5 35 85.0 78500 0.5 5.0 44.0 11.0 14500

La Mg Mn Ni P Pb S Sr V Zn

Ordovician        20.0 2000 615.0 22.0 1550 11.0 200 61.5 22.5 74.0

Mississippian     30.0 1000 1006.5 17.5 620 22.0 450 32.5 28.5 91.0

Permian         10.0 14000 244.5 15.5 585 6.0 61500 475.5 22.0 45.5

1: Geologic Attributes Comprised of Ordovican Dolostone (N = 5), Mississippian Limestone (N = 6), 

and Permain Gypsum (N = 2)

Median Concentration

Comprehensive Geologic Trace Metal Baseline 

Mean Concentration Geologic Attribute
1 
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Figure 15. Comparison of B, Mg, S, and Sr concentrations in evaporites and carbonates. 
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Ordovician and Mississippian carbonates, on the other hand, recorded higher 

mean concentrations of Ba, Cd, Cr, Cu, Fe, P, Pb, and Zn, as seen throughout the 

comprehensive geologic dataset (Table 4). As noted in geologic setting for the Ozark 

Plateau in chapter 2, there are many areas of Mississippi Valley Type (MVT) 

mineralization. Many caves sampled in this study are in proximity to the Tri-State Pb-Zn 

district or Old Lead Belt, which are generally considered as primary sources for Pb-Zn-Fe 

and secondary sources of Ba-Cd-Cr-Cu (Leach et al., 1995). Mining activities like ore 

transportation or smelting can increase trace metal concentrations in soils and sediments 

as noted by Loska et al. (2004) and Kaminski and Landsberger (2000). Surface watershed 

could also contribute Ba, Cd, Cr, Cu, Fe, P, Pb, and Zn or any of the other metals. 

However, hydrologic factors will be explored in depth in chapter 5.4. 

Mississippian Limestone versus Ordovician Dolostone. The primary 

mineralogical differences between limestone (calcium carbonate) and dolostone 

(calcium-magnesium carbonate) resulted in limestone being enriched with Ca and 

dolostone in Mg, as seen in Figure 16. Barium was also enriched in the Ordovician, 

which could be due to the proximity to the Washington County Barite District (refer to 

Figure 12) in relation to the caves sampled. Three of the four Ordovician caves were 

sampled in watersheds downstream of this area. Samples from Ordovician rock caves 

also recorded higher concentrations of P, as shown in Figure 16. The caves in the 

Ordovician were primarily located in rural areas with sizable bat communities present. As 

noted by Miko et al. (2001) and Wuana and Okieimen (2011), bat guano or agricultural 

practices have been shown to increase P concentrations.  
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Figure 16. Metal variability in Mississippian limestone and Ordovician dolostone. 
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Strontium, however, is the hardest to explain because the Ordovician mean was 

double the Mississippian mean and there is no identifiable source for Sr. The most likely 

explanation is related to geochemical properties because Sr, Mg, Ca, and Ba are alkaline 

earth metals, which means they mimic each other chemically. Alkaline earth metals have 

the same number of electrons in their outer shell, which when shed, creates a cation 

charge of plus two. Weathering of the rock then releases Sr into the environment until Sr 

is potentially captured by cation exchange. The greater the cation charge, the more likely 

it is to be captured by cation exchange (Carroll, 1959). Clays have a high cation exchange 

capacity (Drever, 1988). The samples from the Ordovician were fat clays in comparison 

to the cherty to sandy clay from the Mississippian samples. Slight grain size differences 

can affect trace metal accumulation, as noted by Horowitz and Elrick (1987) and this 

might explain the differences between the limestones and dolostones.  

The Mississippian limestone hosted caves had higher concentrations of Fe and 

Mn compared to the Ordovician caves, likely because of Fe and Mn oxides. These oxides 

were most notably seen in the Mississippian hosted Giboney cave. White et al. (2009) 

noted that Mn oxides can amplify trace metals in karst settings. This could also explain 

why the Mississippian was enriched with a mean of 236 ppm Zn, compared to 76.8 ppm 

for the Ordovician, as shown in Figure 16 previously. The concentrations for Zn in this 

study hint that other factors amplify trace metals, as Drever (1988) reported an average 

background concentration of 20 ppm for Zn in limestone.  
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5.3 Hydrologic Attributes  

This last section assesses the potential impacts of urban and rural watersheds on 

metal variability. State park watersheds were planned to be assessed along with urban and 

rural watersheds. However, preliminary analysis indicated that state park watersheds 

were enriched with B, Mg, S, and Sr and depleted in Ba, La, Mn and P. These are the 

same metals documented for the Permian aged evaporite caves of Alabaster cavern and 

Owl cave. Because the data is skewed towards the evaporites, Alabaster Cavern and Owl 

cave are omitted to accurately assess watershed metal variation. The remaining state park, 

Onondaga cave is best grouped to the rural watersheds. Table 5 shows the baseline for the 

remaining 10 caves based on surficial urban or rural watershed land use. A graphical 

representation of Table 5 is provided in Appendix G. 

Urban. This study found that Ca, Cd, Cu, La, Mn, and Zn recorded higher 

concentrations of metals in urban caves compared to rural caves. Figure 17 shows the 

trace metal accumulation of urban watersheds in comparison to rural watersheds. 

Lagerwerff and Specht (1970) related Cd, Cu, and Zn to automobile sources, which is 

likely the main source of these metals. Lanthanum is a rare earth element that is 

commonly used in electronics and as an additive to glass (Albanese and Cicchella, 2012). 

Glass was found in the sediment samples from Giboney cave and Fitzpatrick cave. 

Manganese is common in heavy manufacturing, ceramics and glass, and automobiles as 

noted by Albanese and Cicchella (2012). All the caves sampled in urban areas were 

located near roadways or other anthropogenic structures. The presence of anthropogenic 

structures/sources is an unavoidable reality when sampling in urban areas and likely 

contributes to metal enrichment. Considering that rural areas generally have less  
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Table 5. Comprehensive hydrologic attribute database. Caves grouped by surficial land 

use watershed into either urban or rural watershed continued. Alabaster caverns and Owl 

cave omitted due to data skewing. 

 

 

 

 

 

 

 

 

Al As B Ba Ca Cd Co Cr Cu Fe

urban 15250 4.5 10.0 160.0 111750 2.3 9.5 61.3 36.3 17000

rural 11667 4.2 10.0 163.3 17500 0.7 7.3 57.2 23.8 14167

La Mg Mn Ni P Pb S Sr V Zn

urban 35.0 1250 1914.5 33.0 1392.5 29.8 475.0 33.8 28.8 324.3

rural 20.0 3667 786.0 20.0 1860.0 15.8 383.3 53.5 26.8 71.2

Al As B Ba Ca Cd Co Cr Cu Fe

urban 15000 4.0 10.0 170.0 117500 1.2 9.0 66.5 28.5 16500

rural 10000 4.5 10 135 11000 0.7 7 55 15 14000

La Mg Mn Ni P Pb S Sr V Zn

urban 35.0 1000 1054.0 26.5 1145.0 28.5 450.0 32.5 27.0 129.5

rural 20 2000 723.5 16.5 530 15 200 57.5 26 60

1: Based on Surficial watershed, dataset is comprised of Urban (N = 4) and Rural (N = 6) watersheds

Median Concentration 

Comprehensive Hydrologic Attribute Database

Landuse watershed
1                           Mean Concentration
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Figure 17. Comparison of urban versus rural concentrations of Cu, La, Mn, and Zn. 
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anthropogenic influence, it likely explains why rural areas were depleted in Cd, La, Mn, 

and Zn compared to urban areas. Urban caves were hosted in Ca rich limestone, which 

could explain why Ca levels were so high. It is also possible that Ca could be from the 

de-icing agent calcium chloride, which has been shown to increase Ca in groundwater by 

Pollock and Toler (1973).  

Rural. Rural landscapes were enriched with Mg, P and Sr compared to urban land 

uses. The rural caves were mostly hosted in dolostone, which is likely why rural caves 

were enriched with Mg. As noted in the geologic attributes section 5.3, Sr could originate 

from the geochemical properties of alkaline earth elements.  In rural watersheds Sr was 

double the concentration of the urban caves, just like the results noted in the geologic 

attributes section. Phosphorous is likely related to agricultural practices or bat guano, 

both known sources for P (Wuana and Okieimen, 2011 and Miko et al., 2001). As seen in 

Table 5, rural areas had lower metal concentrations overall. This is likely because there 

were fewer anthropogenic sources present in comparison to urban areas.  
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

 

6.0 Summary 

The purpose of this study was to build a trace metal baseline of cave sediments of 

the midcontinent United States. Cave sediments are the insoluble detritus of biologic, 

geologic, and anthropologic origin. Caves were selected using multiple factors which 

included: urban or rural cave drainage basins, host rock formation age, rock type, and 

other characteristics. This study was primarily anchored in the Mississippian aged and 

Ordovician aged carbonate rocks of Missouri. However, to establish a larger baseline 

database of the midcontinent, some samples were collected from Mississippian aged 

limestone of Kentucky and the Permian aged selenite of Oklahoma. 

Samples from 14 caves were analyzed for the following suite of metals: Al, As, B, 

Ba, Ca, Cd, Co, Cr, Cu, Fe, La, Mg, Mn, Ni, P, Pb, S, Sr, V, and Zn. The results indicated 

that a variety of factors affect cave sediments. The comprehensive data set (table 2) 

documented two caves, Pearson Creek cave and Crankshaft Pit with high concentrations 

for many metals. These metals were related back to environmental factors that included 

Pb-Zn mineralization for Pearson Creek Cave and anthropologic impacts from Model T 

era car parts for Crankshaft Pit. These caves were removed from the comprehensive 

dataset to construct a revised baseline (Table 3). Using the new dataset, the remaining 

caves were analyzed based on geologic and hydrologic attributes. Through the 

interpretation of the data, the following results were documented: 
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1. Tourist caves contain higher levels of Cr, Cu, Ni, Pb, and Zn. These metals are 

commonly associated with urban sources (Jaradat et al. 2005 and Lagerwerff and Specht 

1970).  

2. Trace metals in cave sediments are affected by geologic attributes of the karst region or 

host rock mineralogy. 

a. Samples from Ozarks Plateau carbonates were enriched in Ba, Cd, Cr, Cu, Fe, 

Pb, and Zn. These metals have been associated with Mississippi Valley Type 

mineralization (Leach et al., 1995) 

b. Samples from Mississippian limestone and Ordovician dolostone are 

geochemically different, which results in Ca enrichment of Mississippian 

limestone and Mg enrichment of Ordovician dolostone.  

c. Samples from Mississippian limestone were enriched in Fe, Mn, and Zn. The 

exact source of enrichment is unknown but could be from Fe-Mn oxides 

which were more abundant in Mississippian caves or local watershed as the 

Mississippian caves were primarily sampled from an urban setting, which can 

amplify metal levels.  

d. Samples from the Ordovician dolostone were enriched with Ba and P. The 

exact source of enrichment is unknown but could be from local environmental 

factors like runoff or bat guano. 

3. Urban caves were enriched with Cd, Cu, La, Mn, and Zn. Cadmium, Cu, and Zn have 

been related to urban sources like glass production, electronics, vehicles, and other daily 

urban activities by Albanese and Cicchella (2012).  
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4. Rural areas are enriched with Ba and P. Barium is likely because of the Washington 

County Barite District. Phosphorous enrichment might be related to agricultural practices 

or bat guano, as both can supply high amounts of P (Miko et al., 2001 and Wuana and 

Okieimen, 2011).  

 

6.1 Future Work 

Science is about continual discovery and the improvement of pre-existing 

knowledge. This study created a database of trace metal concentrations of midcontinent 

caves and in the process, generated many new questions that merit attention, as well as 

technical aspects that could improve the dataset. Future research should consider the 

following unresolved facets: 

1.   Expansion of the dataset to create better parity of samples. 

2. The effects of seasonality on trace metal concentrations in cave sediments. 

3. The effect of metal concentrations on cave species. 

4.   The potential effect of microbes on trace metal accumulation.  

 

6.2 Conclusions 

Overall, this study sampled 14 caves out of 10,000 plus caves that span the United 

States’ extensive karst landscapes. Hopefully this study has led to a better understanding 

of the value of cave sediments to karst science. Future researchers must consider the 

findings of this study along with similar studies of cave sediments if a better 

understanding is to be achieved. Caves are home to many unique species, many of which 

are classified as threated or endangered by the U.S. Fish and Wildlife Service. If left 
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unchecked, metals contamination could potentially destroy the karst ecosystem. As 

Doughty and Johnson (2012) noted, the presence or absence of aquatic biota might be 

dependent on metals accumulation. By establishing a baseline, future researchers may use 

the baseline to monitor environmental change, which will hopefully be used to preserve 

this truly unique ecosystem.  
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APPENDICES 

 

Appendix A: Chart of How Access was Gained and Sampling Methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cave Name Access Granted By
Sampling Method 

Used

Pearson Creek Springfield Plateau Grotto Random

Fitzpatrick Springfield Plateau Grotto Stratified

Fieldin Smallin Cave Stratified

Breakdown Springfield Plateau Grotto Stratified

Giboney
Springfield-Greene County 

Parks Board 
Stratified

Onondaga
Missouri Department of    

Natural Resources 
Stratified

Black Fathom SEMO Grotto Random

Crevice SEMO Grotto Random

Lloyds SEMO Grotto Random

Gegg SEMO Grotto Random

Crankshft pit SEMO Grotto Random

Lone Star Louisville Grotto Stratified

Alabaster Caverns 

and Owl

Oklahoma Tourism and 

Recreation Department
Stratified

List of Owners and Sampling Methods Employed  
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Appendix B: Summation of Field Notes. 

 

Note: All passage lengths rounded for simplicity  

 

Pearson Creek Cave 

Location: Greene County, Missouri 

Host Rock Age: Mississippian 

Watershed: Urban 

Passage Length: 800 ft. 

Notes: Tri-State Pb-Zn mining area in 1900’s. Used by homeless/college students until 

gating. 

  

Fitzpatrick Cave 

Location: Christian County, Missouri 

Host Rock Age: Mississippian 

Watershed: Urban 

Passage Length: 650 ft. 

Notes: Along James River, prone to flooding, Endangered Species present and Paleo-

Indian site.  

 

Fieldin Cave 

Location: Christian County, Missouri 

Host Rock Age: Mississippian 

Watershed: Urban 

Passage Length: 400 ft. 

Notes: Show cave, Paleo-Indian Site, used during Civil War, located in dense vegetation 

stream valley. 

  

Breakdown Cave 

Location: Christian County, Missouri 

Host Rock Age: Mississippian 

Watershed: Urban 

Passage Length: 2000 ft. 

Notes: Along James River, Occasional flooding, Loess Deposit within, belly-crawl 

entrance. 

 

Giboney Cave 

Location: Greene County, Missouri 

Host Rock Age: Mississippian 

Watershed: Urban 

Passage Length: 1000 ft. 

Notes: was an open sewer for city of Springfield, show cave, beside I-44 to north and 

Route 66 to the south, salvage yard to east. 

 

Onondaga Cave 

Location: Crawford County, Missouri 
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Host Rock Age: Ordovician 

Watershed: State Park 

Passage Length: 9100 ft. 

Notes: Lighted show cave, sizeable bat community, onyx mining in past, along Meramec 

River, 100 plus years of known history  

 

Crevice Cave 

Location: Perry County, Missouri 

Host Rock Age: Ordovician 

Watershed: Rural 

Passage Length: 31 mi. (only portion sampled) 

Notes: Longest in state of Missouri, prehistoric campsite. 

 

Black Fathom Cave 

Location: Ste. Genevieve County, Missouri 

Host Rock Age: Mississippian 

Watershed: Rural 

Passage Length: 7 mi. (only portion sampled) 

Notes: sinkhole lake entrance, easily floods, relatively new discovery.  

 

Lloyd’s Cave 

Location: Ste. Genevieve County, Missouri 

Host Rock Age: Ordovician 

Watershed: Rural 

Passage Length: 1900 ft.  

Notes: High Canyon cave, very rural 

 

Gegg Cave 

Location: Ste. Genevieve County, Missouri 

Host Rock Age: Ordovician 

Watershed: Rural 

Passage Length: 1900 ft.  

Notes: sinkhole entrance, floods easily, sizeable bat community  

 

Crankshaft Pit 

Location: Jefferson County, Missouri 

Host Rock Age: Ordovician 

Watershed: Rural 

Passage Length: 1900 ft.  

Notes: sink entrance, Model T era car part dump  
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Alabaster Cavern 

Location: Woodward County, Oklahoma 

Host Rock Age: Permian 

Watershed: State Park 

Passage Length: 3500 ft.  

Notes: lighted show cave, surrounded by cattle grazing land.  

 

Owl Cave 

Location: Woodward County, Oklahoma 

Host Rock Age: Permian 

Watershed: State Park 

Passage Length: 700 ft.  

Notes: sink entrance, abundant breakdown, surrounded by dense vegetation  

 

Lone Star Cave 

Location: Hart County, Kentucky  

Host Rock Age: Mississippian 

Watershed: Rural 

Passage Length: 1000 ft. 

Notes: mushroom farming and saltpeter mining in past, road passes over portion of cave 
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Appendix C: ALS Global Geochemical Analysis Results  

 

 
 

 

Ag Al As B Ba Be Bi Ca Cd Co Cr Cu

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Pierson Creek <0.2 23000 14 10 190 1.6 <2 62000 5.7 9 78 36

Fitzpatrick <0.2 15000 4 10 180 0.8 <2 63000 0.9 8 63 69

Fieldin <0.2 16000 6 10 160 1 <2 172000 1.4 10 70 22

Onondoga <0.2 11000 6 10 120 0.8 <2 34000 0.7 9 81 60

Black Fathom 0.7 9000 4 <10 110 0.7 <2 7000 <0.5 10 47 16

Crevice <0.2 9000 2 <10 150 <0.5 <2 3000 <0.5 5 58 12

Lloyds 0.2 8000 5 10 310 0.5 <2 44000 0.8 6 47 29

Gegg <0.2 17000 3 <10 100 <0.5 <2 2000 <0.5 6 58 12

Crankshaft Pit <0.2 13000 19 10 200 2.3 <2 19000 0.5 20 39 40

Alabaster <0.2 17000 3 30 120 0.7 2 37000 <0.5 6 62 15

Owl <0.2 8000 2 40 50 0.5 2 120000 <0.5 4 26 7

Lone Star <0.2 15000 5 10 190 0.8 2 15000 0.5 8 52 14

Giboney <0.2 15000 4 <10 180 0.8 2 178000 6 13 70 35

Breakdown <0.2 1.47 4 10 120 0.8 <2 34000 0.7 7 42 19

Fe Ga Hg K La Mg Mn Mo Na Ni P Pb

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Pierson Creek 29000 10 <1 2500 70 2500 1250 3 200 51 6000 348

Fitzpatrick 14000 <10 <1 2100 30 1000 1155 1 100 18 1690 31

Fieldin 19000 10 <1 2400 40 2000 953 1 100 35 520 26

Onondoga 18000 <10 <1 1700 20 14000 374 1 100 30 2780 30

Black Fathom 16000 <10 <1 1000 20 1000 782 1 100 17 420 18

Crevice 11000 <10 <1 1700 20 2000 665 1 300 14 320 8

Lloyds 12000 <10 <1 2400 20 2000 1270 2 2200 31 6720 9

Gegg 11000 <10 <1 1100 20 1000 565 1 100 12 280 13

Crankshaft Pit 48000 10 1 4600 30 5000 1930 4 200 90 1210 51

Alabaster 16000 <10 <1 3900 10 14000 302 1 800 18 610 9

Owl 13000 <10 <1 2800 10 14000 187 1 300 13 560 3

Lone Star 17000 <10 <1 2100 20 2000 1060 1 100 16 640 17

Giboney 21000 <10 <1 500 40 1000 4760 2 100 62 600 45

Breakdown 14000 <10 <1 2300 30 1000 790 1 100 17 2760 17
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S Sb Sc Sr Th Ti Tl U V W Zn

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Pierson Creek 300.0 2 8 48 <20 200 <10 <10 48 <10 994

Fitzpatrick 800.0 <2 3 34 <20 200 <10 <10 28 <10 95

Fieldin 300.0 <2 4 31 <20 200 <10 <10 38 <10 164

Onondoga 200.0 <2 4 60 <20 200 <10 <10 35 <10 114

Black Fathom 100.0 <2 3 14 <20 200 <10 <10 30 <10 57

Crevice 200.0 <2 2 119 <20 400 <10 <10 23 <10 34

Lloyds 1000.0 <2 2 63 <20 200 <10 <10 22 <10 129

Gegg 200.0 <2 2 10 <20 200 <10 <10 22 <10 30

Crankshaft Pit 200.0 <2 9 41 <20 100 <10 <10 59 <10 571

Alabaster 23000.0 <2 3 256 <20 200 <10 <10 26 <10 61

Owl 10000.0 <2 2 695 <20 100 <10 <10 18 <10 30

Lone Star 600.0 <2 3 55 <20 100 <10 <10 29 <10 63

Giboney 600.0 <2 2 50 <20 100 <10 <10 23 <10 951

Breakdown 200.0 <2 3 20 <20 200 <10 <10 26 <10 87
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Appendix D: University of Arkansas Geochemical Analysis Results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ag As Ba Be Cd Ce Co Cr Cu Ga

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Black Fathom 0.8 2.8 109.1 1.5 1.0 38.8 10.7 9.9 7.5 2.9

Lone Star 0.8 3.8 191.1 1.6 1.1 36.5 8.9 9.3 9.5 3.2

Onondaga 0.9 3.1 93.9 1.3 1.3 31.5 7.3 8.7 36.0 3.0

Owl 0.8 3.0 33.3 1.2 0.7 11.5 4.5 7.1 5.0 2.8

Alabaster Cavern 0.8 3.2 51.7 1.2 0.8 17.1 5.0 7.6 7.9 3.0

Crankshaft Pit 0.8 5.6 141.4 2.3 0.9 66.3 11.7 8.5 15.3 3.6

Gegg 0.8 2.8 81.5 1.3 0.8 25.2 7.1 6.6 6.9 2.4

Lloyds 1.0 4.1 332.7 1.2 1.4 27.3 7.5 8.2 20.4 2.5

Crevice 0.8 2.6 121.0 1.1 0.8 25.7 6.6 6.3 7.6 2.5

Fieldin 1.5 4.5 106.8 1.5 2.0 30.1 8.9 11.8 5.5 3.4

Pearson Creek 0.8 5.9 162.4 1.9 6.3 70.0 9.0 15.3 25.4 4.5

Fitzpatrick 0.8 3.4 145.5 1.5 1.3 37.5 9.3 8.8 12.4 2.9

La Ni Pb Rb Se Th Tl U V Zn

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Black Fathom 18.9 11.7 13.2 7.8 0.8 5.4 0.7 1.2 17.3 37.2

Lone Star 18.2 9.0 15.7 9.9 0.9 4.8 0.8 1.6 13.7 43.9

Onondaga 20.9 10.3 25.5 6.3 0.9 4.6 0.8 1.2 14.0 105.3

Owl 5.0 9.2 2.9 5.8 0.8 2.9 0.7 1.8 9.2 21.0

Alabaster Cavern 7.5 9.8 6.2 5.8 1.5 3.6 0.7 1.4 10.9 33.7

Crankshaft Pit 21.4 47.1 36.6 10.8 1.1 11.1 1.2 1.6 18.8 305.7

Gegg 10.8 7.5 11.9 5.0 0.7 3.8 0.7 1.2 12.0 20.6

Lloyds 14.6 26.3 8.3 9.1 1.2 4.3 0.8 3.5 12.9 121.0

Crevice 11.7 10.2 8.5 5.6 0.8 4.2 0.8 1.1 11.0 29.4

Fieldin 36.1 18.8 16.1 9.7 1.0 4.8 0.9 1.0 17.9 109.9

Pearson Creek 69.8 26.9 295.9 11.1 2.1 8.2 0.9 1.7 17.6 827.9

Fitzpatrick 21.5 11.2 27.4 8.5 1.2 4.3 0.7 1.1 13.4 67.0
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Appendix E. Graphical Representation of Revised Comprehensive Cave Dataset. 

Metals arranged by increasing PPM concentrations. Red is a high anomaly and green a 

low anomaly. 
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Appendix F. Graphical Representation of Comprehensive Geologic Attribute 

Dataset. Metals arranged by increasing PPM concentrations. 
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Appendix G. Graphical Representation of Comprehensive Hydrologic Attribute 

Dataset. Metals arranged by increasing PPM concentrations. 
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