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ABSTRACT 

Historical mining in the Old Lead Belt resulted in lead (Pb) contamination of floodplain 

soils for over 170 km along the Big River in southeastern Missouri.  The overall patterns 

of contamination are understood. However, Pb distribution across floodplain surfaces has 

not been investigated at the scale needed for site-level remediation planning. The goal of 

this project is to examine spatial distribution of Pb with more detail and identify the role 

of geomorphic processes. Predictive models are needed to evaluate factors affecting Pb 

distribution such as elevation, distance from the channel, and geochemistry. This study 

evaluates Pb distribution at three ~1km sites on the Big River with varying floodplain 

conditions: (1) human-altered topography, (2) narrow valley and, (3) wide valley. Surface 

soil samples were collected to quantify Pb, geomorphic maps were created using LiDAR, 

and spatial patterns were analyzed using regression models. Results show that Pb levels 

at the three sites pose an ecological problem. The most effective predictive model was 

created at the narrow floodplain site using distance from the channel, elevation, and Fe as 

independent variables. Less sensitive models were created at the two other sites which 

had more complicated geomorphological characteristics and less variability in Pb. Using 

landform/soil series associations and examining the influence of watershed-scale factors 

such as valley width and proximity to source are likely more effective approaches for 

understanding Pb distribution on Big River floodplains. 
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CHAPTER 1 - INTRODUCTION 

 

Floodplains control the spatial distribution of flood energy, sediment storage, and 

riparian habitat in river systems. They act as an intermediate step for sediment within a 

watershed, representing both a significant sediment sink by deposition, as well as a 

source by bank erosion (Jain et al., 2008; Lecce and Pavlowsky, 1997). Sediment from 

within the watershed is stored in floodplains as it gets deposited through accretionary 

processes (Nanson and Croke, 1992). Once sediment is deposited, it can remain in 

floodplain deposits for a period of decades to centuries (Macklin et al., 2006) and can 

later be remobilized through bank erosion and mast wasting (Leece and Pavlowsky, 

2001; Phillips et al., 2007; Hürkamp et al., 2009). Phillips et al., 2007 found that in the 

Waipaoa River in New Zealand, 30 to 40% of alluvium becomes remobilized from the 

floodplain within a century of deposition. Once remobilized, sediment is transported 

downstream to potentially become stored in new floodplain deposits. This process 

continues as the fine-grained sediment that dominates floodplain deposition moves 

through a watershed (Nanson and Croke, 1992). 

When anthropogenic activity within a watershed introduces contaminated 

sediment into a river, it is transported, deposited, and reworked in the same manner as 

natural sediment (Miller, 1996; Macklin et al., 2006). Historically, mining activity has 

contributed significant quantities of sediment containing high concentrations of heavy 

metals into fluvial systems (Gazdag and Sipter, 2008; Gäbler and Schneider, 1999; 

Zornoza et al., 2011). Through overbank deposition and point bar accretion, contaminants 

can accumulate on floodplain surfaces and within bank deposits where they can pose 
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serious problems to stream ecosystems and human health (Dennis et al. 2009; Macklin et 

al., 2006; Ciszewski and Turner, 2009). Bioaccumulation of metals stored in floodplains 

can then be passed through food chains in the tissue of organisms and can cause 

significant damage to riparian ecosystems (Schipper et al., 2008; Gazdag and Sipter, 

2008; Appleton et al., 2001; Thonon, 2006; Kooistra et al., 2001). Heavy metal pollutants 

do not break down in the environment and remain geochemically and biologically active. 

Consequently, even during post-mining periods the remobilization of contaminated 

floodplain sediment can represent a long-term non-point source for channel 

contamination which can damage fisheries and macroinvertebrate populations (Dennis et 

al., 2009; Lecce and Pavlowsky, 2014; Hürkamp et al., 2009; Clements et al., 2000; 

Leece and Pavlowsky, 2001). Therefore, understanding the spatial distribution of metal 

contaminants in floodplains along rivers affected by historical mining is important for 

understanding and monitoring long-term toxic risks in affected watersheds. 

A period of lead mining from 1869 through 1972 in the Old Lead Belt in the 

Ozarks has created a serious contamination problem within the Big River watershed in 

southeast Missouri (Meneau, 1997; MDNR, 2007). Through the ore milling process, 

coarse and fine-grained mine wastes were produced and dumped into large piles or stored 

in retention ponds on or near floodplains near Leadwood, Desloge, and Bonne Terre, 

Missouri. These mining wastes contained high concentrations of heavy metals including 

Pb and Zn (Smith and Schumacher, 1993).  Through erosion, runoff, and retention pond 

dam failure, large quantities of heavy metal-rich sediment were able to enter the local 

streams. Fluvial processes have since reworked contaminated sediment and distributed it 

downstream (Meneau, 1997; Mosby et al., 2009). Transportation and deposition of 



 

3 

contaminated mining sediment in the Big River has resulted in the accumulation of toxic 

levels of both lead (Pb) and zinc (Zn) along 171 river kilometers of floodplain deposits 

from the Leadwood tailings pile and Eaton Creek confluence to where the Big River 

connects with the Meramec River (Pavlowsky et al., 2010a).  

Major tailings piles contributing to Big River contamination include the Bonne 

Terre, Desloge, National, Elvins, Federal and Leadwood piles (Figure 1). The Leadwood 

and Desloge piles contaminate the Big River above the Flat River confluence. The 

Elvins, Federal, and National piles contaminate the Flat River, which then flows into the 

Big River in Desloge, MO. The Bonne Terre Pile contaminates the Big River 

downstream of the Flat River confluence near Bonne Terre, MO.  

 

 

Figure 1 – Big River tailings piles. Tailings have been show to contaminate the Big River 

and the Flat River with heavy metals. 
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In compliance with the Comprehensive Environmental Response Compensation 

Liability Act, all six major tailings piles have since been stabilized to limit contamination 

potential, however the contaminated sediment within floodplain deposits acts as a 

significant non-point source for heavy metal contamination for the watershed (Mosby et 

al., 2009; Pavlowsky et al., 2010a). 

Extensive studies and reports have been conducted on the contamination of the 

Big River in order to assess soil, ecosystem, and water quality (Pavlowsky et al., 2010a; 

Meneau, 1997; Smith and Schumacher 1993; Mosby et al., 2009; Young, 2011). While 

these reports offered detailed information about the mining contamination across the 

watershed, there is limited knowledge about the variables driving patterns of surface soil 

contamination across Ozark floodplains on a scale needed for soil remediation planning. 

This type of planning requires the examination of spatial trends in contamination through 

detailed landform mapping, as well as the quantifying and modeling of contamination 

concentrations across a study site. Specifically, this allows for the prediction of areas of 

high and low risk ecologically across floodplains (Macklin et al., 2006; Brewer and 

Taylor, 1997). Previous studies suggest factors such as floodplain elevation in relation to 

flood stage, number and pattern of secondary channels along a reach, and sediment 

composition and transport rate controls play a key role in explaining the spatial variation 

of heavy metal contamination across floodplains (Brewer and Taylor, 1997; Middelkoop, 

2000; Ciszewski and Malik, 2004; Lecce and Pavlowsky, 1997). However, in order to 

effectively develop remediation plans for Big River floodplains, more knowledge about 

how to predict the locations of contaminated floodplain soils is needed. 
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Mining-Contaminated Sediment Characteristics 

In order to understand the effects of mining activity on a fluvial system, it is 

important to characterize the associated contaminated sediment. Mining and milling 

operations in a watershed create an artificial source of sediment in fluvial systems. These 

activities typically create an influx of sediment with physical, geochemical, and 

mineralogical characteristics different than that of natural sediment (Lecce and 

Pavlowsky, 1997; Leopold, 1980). Altering the geochemistry of stream sediment can 

cause toxicological effects to the stream ecosystem and can pose a serious pollution 

problem (Schipper et al., 2008; Dennis et al. 2009; Macklin et al., 2006). Mining 

contaminated sediment, like the sediment that pollutes the Big River, is formed though 

the separation processes that mining operations use to extract heavy metals from mined 

rock. The milling process begins with crushing and grinding the rock to allow for the 

separation of the economically viable fractions of rock from the waste rock, called 

tailings (Bussiere, 2007).  

In the Old Lead Belt, three defined types of tailings were produced and are 

identified by differences in particle size. The first and coarsest is described locally as 

“chat,” which ranges from 4-16 mm in diameter and is formed through dry gravity 

milling. The next is fine-tailings which have been further crushed for separation using 

flotation processes and range anywhere from 0.06-0.20 mm in diameter. Finally, fine 

rock powders sometimes referred to as “slimes” are created during the physical crushing 

of the rock and are less than 32 µm in diameter (Pavlowsky et al., 2010a). All size 

fractions of tailings tend to contain residual heavy metal concentrations, thus becoming a 

pollutant if they are not properly managed. Weathering of tailings can release dissolved 



 

6 

metals into the environment which can then bond with very fine clay minerals and 

organic rich sediment. Consequently, the finest fraction of tailings particles tends to have 

the highest concentrations of heavy metals (Smith and Schumacher, 1993; Smith et al., 

1998). Contaminated sediment in the Big River in areas below mining sources tend to 

contain high concentrations of lead and other metals across a range of particle sizes 

related to the three types of tailings inputs (Pavlowsky et al., 2010a). 

 

Geographic Factors in Contaminant Distribution 

Once contaminated sediment enters a stream, contamination concentrations in a 

watershed are generally related to distance from the point source and physiographic 

controls (Lecce and Pavlowsky, 2001; Leece and Pavlowsky, 2014; Axtmann and 

Luoma, 1991). With mining contamination, it is important to examine the downstream 

distribution of contaminants to better understand spatial trends seen on specific 

floodplains study sites. 

Longitudinal Trends in Concentration and Sorting. Longitudinal trends in 

contamination concentrations depend on sediment inputs as well as downstream sorting. 

Natural sediment inputs from eroding hillslopes, runoff, and uncontaminated tributaries, 

causes a dilution effect in contamination concentrations within streams. This paired with 

will channel and floodplain contaminated sediment storage, will effectively reduce 

concentrations of contaminants downstream from the point source (Lecce and 

Pavlowsky, 2001; Axtmann and Luoma, 1991). Grain size also plays significant role in 

the longitudinal extent of contaminants within a river. Rivers naturally fine with 

increased distance downstream due to its ability to transport different sized sediment. 
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Fine-grained sediment will be able to remain entrained in rivers for greater distances than 

coarse-grained sediment. This means that finer fractions of contaminated sediment will 

have more downstream mobility than coarser fractions, so fine-grained floodplain 

contaminant storage would likely be more dominant downstream (Figure 2) (Axtmann 

and Luoma, 1991; Lecce and Pavlowsky, 2001; Leopold and Maddock, 1953).  

 

 

Figure 2 – General longitudinal, stratigraphic, and across-floodplain sorting trends in 

floodplain sediment. 

 

Valley Width. Physiographic characteristics such as valley width will also play a 

significant role in floodplain sedimentation rates. Valley width and the associated 

hydrologic characteristics can affect erosional and depositional trends longitudinally 

downstream. Typically, narrow valley segments of a stream favor transportation and 

erosion of sediment, whereas wide valley segments favor more deposition (Leece and 

Pavlowsky, 2014; Howard, 1996). For example, Magilligan, 1985 created a theoretical 

model examining a narrowing/widening sequence of valley width along a river and the 

resulting sedimentation trends (Figure 3). The study labeled wide valley areas above the 

constriction “Zone 1,” narrow valley areas in the constriction “Zone 2,” and wide valley 
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areas below the constriction “Zone 3.” Magilligan, 1985 found that in Zone 1, flood 

waters dam up behind the narrowing valley and increase overbank flow and deposition. 

In Zone 2, a narrow confining valley increases flow depth and velocity causing erosion 

and transportation of sediment. In Zone 3, as the valley widens, flow velocity decreases 

and sediment deposits as flood waters are able to spread out across the valley. Generally, 

wide floodplains like Zones 1 and 3 favor deposition, whereas narrow floodplains like 

Zone 2 favor transport and erosion. Due to the large surface area in wide valley 

floodplains, overbank accumulations may be thinner as they are spread across the 

floodplain, but will have a greater volume of sediment (Faulkner, 1998).  

 

 
 

Figure 3 – Valley width effects on sediment deposition and transport  

(from Magilligan, 1985). 
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In the context of contaminated sediment, this means that narrow valley segments 

of the stream will promote downstream transport of contaminants, whereas wide valley 

segments will act as significant sinks (Leece and Pavlowsky, 2001). Wider valleys also 

tend to have increased development of floodplain chutes and drainage features which can 

result in a wider spatial variation in deposition rates and resulting contamination 

(Howard, 1996; Leece and Pavlowsky, 2014). 

 

Floodplain Sedimentology and Landforms in Contaminated Environments 

Floodplains are defined differently in terms of hydrology and geomorphology. 

The hydrologic floodplain is defined as: “the surface next to a channel that is inundated 

once during a given return period regardless of whether this surface is alluvial or not”. In 

geomorphology, a floodplain is defined in a sediment transport and deposition context as: 

“the largely horizontally-bedded alluvial landform adjacent to a channel, separated from 

the channel by banks, and built of sediment transported by the present flow-regime” 

(Nanson and Croke, 1992). This study is focused on sedimentation, thus the geomorphic 

definition is used. Knowledge of floodplain development and sediment deposition is 

critical in understanding the variables that control mining-contaminated sediment 

deposition and distribution across floodplains. Sedimentation rates and associated 

contaminant concentrations can be related to geomorphic processes that develop 

floodplain morphology and control sediment distribution (Miller, 1996; Macklin et al., 

2006; Graf, 1996). Having a detailed understanding of natural floodplain development 

can aid in understanding and predicting contamination deposition in mining districts.  
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Floodplain Deposition. The function of a floodplain is to store sediment and 

dissipate flood water energy by allowing banks to overflow and flood waters to spread 

out across it (Leopold, 1994; Wolman and Leopold, 1957). The formation of floodplains 

is driven by two main accretionary processes. First is the lateral accretion of point bars 

and channel deposits across the valley as the channel migrates (Figure 4). This occurs as 

the progressive bank cutting along the outside of meander bends is in equilibrium with 

the deposition of sediment in the lower-velocity flows found on the opposite bank. This 

simultaneous erosional and depositional progression causes the channel to move laterally 

across the valley and accrete channel sediment to build the floodplain (Wolman and 

Leopold, 1957; Leopold, 1994). There is also deposition of sediment that occurs during 

flooding events. When overbank floods occur, sediment is carried by the flow across the 

floodplain and caps channel deposits as flood waters dissipate and sediment settles 

(Figure 4) (Hupp et al., 2015; Wolman and Leopold, 1957). 

Laterally accreted channel deposits are made up of coarse-grained sands and 

gravels including lag, bed, and bar deposits. Lag deposits are the coarsest fraction, and 

are a result of the reworking of channel sediment to separate out fine material. Channel 

bed gravels are then deposited atop the basal lag, followed by the finer-gravel and sands 

of point bars. This forms a fining-upward sorting pattern within these deposits (Figure 2 

and Figure 4) (Nanson and Croke, 1992; Huggett, 2007).  

Overbank deposits can range from sand-sized sediment to clay. Sand fractions 

have a more limited mobility than finer clay and silt fractions causing them to accumulate 

close to channel margin creating a natural levee on the bank. Levees can be breached 

during large flows which can result in the deposition of a thin layer of sand called a splay 
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to be deposited greater distances from the channel. Silt and clay fractions have a greater 

ability to remain entrained in overbank flows and consequently can be deposited farther 

from the channel. This causes a fining of sediment with increasing distance from the 

channel (Figure 2 and Figure 4) (Martin, 2009; Leopold, 1994; Nanson and Croke, 1992; 

Huggett, 2007; Hupp et al., 2015).  

Due to the limits of sediment mobility within overbank flows, sediment 

deposition rates across the floodplain tend to be related to proximity to the channel. As 

flood waters dissipate, flows have a declining capacity to transport sediment which 

results in a much lower deposition rate with increasing distance from the channel. This 

means that in general, higher deposition rates are associated with levee deposits, and 

lower deposition rates are associated with distal floodplain deposits (Piegay et al., 2008). 

In the context of mining sediment deposition on floodplains, the fining trend of 

floodplain sediment in relation to proximity to the channel dictates the spatial distribution 

of different size fractions of mining waste. For example, chat will be limited to channel 

and bar deposits where gravel deposition occurs. Therefore, chat will not be a significant 

contaminant in floodplains. Sand-sized tailings associated with floatation, will be an 

important contaminant in levee and splay deposits where sand deposition dominates 

naturally. Silt and clay-sized slimes will have the most mobility, and thus can be a 

significant floodplain contamination source at distance from the channel. It is expected to 

see increased accretion of contaminated sediment closer to the channel since it is the 

direct source of contamination on a site scale (Chen et al., 2012; Middelkoop, 2000; 

Pavlowsky et al., 2010a).  
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Floodplain Landform Deposition Patterns. Floodplain landforms differ in 

elevation and will have a different flood frequency, and consequently different levels of 

contamination. Landforms at a lower elevation will have a higher flood frequency than 

landforms at a higher elevation (Leece and Pavlowsky, 2001). With an increase in flood 

frequency, there is an increase in the available sediment entrained in overbank flows, thus 

lower elevation floodplain landforms will have the ability to accrete more contaminated 

sediment in mining environments (Chen et al., 2012; Howard, 1996; Ciszewski and 

Malik, 2004; Owen et al, 2011).   

For example, if the stream is incising due to a drop in base level or a change in 

erosional capability, floodplains can be abandoned, the stream will widen, and a new 

active floodplain called a bench will begin to form (Huggett, 2007). A bench is typically 

defined as an alluvial feature with similar characteristics as the adjacent floodplain, but 

has a lower elevation (Owen et al., 2011). The bench will have a higher flood frequency 

than the floodplain, and will thus have a greater amount of sediment deposition during 

flooding events allowing for increased surface soil contamination compared to higher 

floodplains (Figure 5 and Table 1) (Howard, 1996; Lecce and Pavlowsky, 2001). Upland 

areas such as valley walls are at a higher elevation and are not flooded. Consequently, 

these areas are not alluvial landforms, and would not allow the deposition of 

contaminated sediment. (Figure 5 and Table 1) (Lecce and Pavlowsky, 2001). 

Sediment deposition is not solely based on elevation; it is also important to look at 

hydrologic variables. If a floodplain has poor drainage during flooding events, water can 

pool in depressions within the floodplain allowing for suspended sediment to settle out. 

Low elevation wetlands like this are called backswamps and can act as important areas 
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for fine-grained floodplain deposition. Gravel and sand mining is common in floodplains 

and will create poorly drained artificial depressions that can also act as sediment sinks for 

fine-grained sediment (Hupp et al., 2015; Box and Mossa, 1999; Howard, 1996). 

Conversely, if a floodplain is well-drained, drainage features or chutes can begin to 

down-cut behind levees and across the floodplain channelizing the drainage of 

floodwaters and runoff. Channelized flows such as this will have a higher velocity than 

the poorly drained backswamps, and will likely deposit less fine grained sediment and 

scour existing deposits. However, chutes can facilitate sediment transport across 

floodplains which can increase sedimentation at greater distance from the channel 

(Howard, 1996). As runoff erosion occurs on valley uplands and moves downslope to the 

floodplain, drainages features receive a mixture of alluvial and colluvial sediment which 

can dilute alluvial sediment signatures (Lecce and Pavlowsky, 2001). In mining 

contaminated systems, there would consequently be high concentrations of heavy metals 

in poorly drained depressions, and lower contamination concentrations in chutes and 

drainage features. These hydrological and topographical differences can create significant 

spatial variation in contaminant concentrations across a floodplain (Figure 5 and Table 1) 

(Schipper et al., 2008). 
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Geochemical Contamination Patterns 

Floodplain soil and mine tailing geochemistry can play a significant role in spatial 

distribution of contaminants in mining-affected areas as well. Depending on the host rock 

targeted in mining activities, tailings can have a distinct signature that can act as a 

geochemical proxy for mining sediment deposition (Pavlowsky et. al., 2010a). For 

example, dolomite mined during the Old Lead Belt mining activity, was introduced into 

the Big River after being crushed into tailings during the milling process (Smith and 

Schumacher, 1993). Dolomite (CaMg(CO3)2) is rich in calcium (Ca), so it was found that 

there is a significantly higher concentrations of Ca in soils that contain mining sediment 

than would be expected in natural sediment (Smith and Schumacher, 1993; Pavlowsky et. 

al., 2010a). Therefore Ca can be used as a proxy for tailing deposition and may be 

indicative of coarse grained floatation sands especially. Consequently, Ca concentrations 

could be used as a predictive variable in heavy metal contamination.  

Floodplain soil geochemistry can also aid in dictating contamination patterns. For 

example, high iron (Fe) content in floodplain soils can be related to the weathering of 

mine tailings which releases Fe/Mn-oxides into the fluvial system. It can then be stored in 

floodplain soils allowing Fe to be a proxy for tailings deposition in the same way Ca was 

described (Smith and Schumacher, 1993). There is also natural Fe clays from the 

weathering of residuum in Ozark uplands (USDA, 1981). Dissolved heavy metals from 

mining activity can precipitate on natural clay mineral surfaces and can be a source of 

highly-contaminated fine grained sediment (Schröder et al., 2008; Laing et al., 2009; 

Smith and Schumacher, 1993). In fact, other studies have shown due to the preferential 

precipitation of heavy metals, Fe/Mn-oxides can be beneficial in soil remediation 
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(McCann et al., 2015). This means that floodplain soils rich Fe, may likely be correlated 

with high concentrations of heavy metals in mining districts. 

 

Mapping of Floodplain Contamination 

There is a need to develop a mapping procedure and resulting maps of Pb 

contamination patterns for Big River floodplains. In order to effectively examine spatial 

variations in contamination trends and predict areas with high or low risk across 

floodplains, it is important to develop spatial relationships and models that reflect 

depositional processes, landform influence, and geochemistry. Contamination patterns 

are best mapped through a combination of sample collection, remote sensing, and 

landform mapping. Sample collection of contaminated soils allows for the quantification 

of contaminant concentrations in floodplain soils (Leece and Pavlowsky, 2014). 

Technologies such as LiDAR and historical aerial photographs allow for a continuous 

view of topography and land cover both spatially and temporally (Jones et al., 2007; 

Gilvear et al., 1995; Hohenthal et al., 2011; Notebaert et al, 2009). These remote sensing 

data types combined with geomorphic assessment and topographic surveys allows for 

detailed landform mapping which can be used to interpret sediment depositional trends 

and the resulting contamination (Jones et al., 2007).  

Contamination mapping methodologies can variety depending on the goals of the 

study. For example, in a floodplain ecology study on the Dutch River by Kooistra et al., 

2001, researchers developed a methodology for pollution mapping that focused on 

landform classification. By developing different homogeneous landform units using the 

sedimentological history and hydrologic context of the site, this study summarized 
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contamination by landform and highlighted which contained the greatest ecological risk. 

On the other hand, if spatial continuity is desired for trends across a land surface, 

interpolation techniques can be utilized. In a mining contamination study of Geul River 

floodplains in Belgium, Leenaers et al., 1989 utilized co-kriging and other interpolation 

methods to develop continuous surface maps of Zn concentrations. They found that 

interpolation methods such as this are efficient and cost effective methods for viewing 

trends in top soil contamination. Utilizing a combination of both methods to map Big 

River floodplain contamination may allow for a more detailed look at spatial trends 

across a study area to focus remediation efforts. 

 

Modeling Contamination Trends 

With a wide range of both geomorphic and geochemical variables controlling 

contamination concentrations in fluvial studies, regression can be a beneficial tool in 

developing predictive models for sediment deposition. Developing regression equations 

can aid in identifying variables that drive deposition and contamination (Lecce and 

Pavlowsky, 2004; Pavlowsky et al., 2010b; Pavlowsky, 2013; Magilligan, 1985). For 

example, in Pavlowsky et al., 2010b, Hg and Cu contamination related to mining 

activities was accurately modeled using geomorphic and sedimentological variables such 

as distance downstream and grain size. This model then offers a way in which managerial 

bodies related to the watershed protection could effectively monitor contamination trends 

within this river. Regression models such as this one could be an integral tool in 

predicting and monitoring contamination within Big River floodplains.  
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Purpose and Objectives 

The purpose of this study is to analyze the patterns of mining-related Pb 

contamination on floodplains along the Big River to better assess contamination risk on 

the scale needed for remediation planning and land management. To accomplish this, 

examining the spatial variation in Pb concentrations in surface soil on floodplains, and 

the factors that drive the variation will be necessary.  The relationships between Pb 

concentrations, landforms, valley width, longitudnal trends in contamination, elevation, 

distance to the channel, and geochemistry, are also necessary in understanding spatial 

variation. Finally, it will be necessary to take into account the toxic potential of the 

contamination within Big River floodplains in order to understand the human and 

ecological risk. This will be accomplished through the following objectives: 

1) Quantify Pb, Zn, Fe, and Ca concentrations in surface soils on floodplains along 

the Big River for three sites, one with a narrow valley, one with a wide valley, 

and one with human-modified topography. This will allow for the examination of 

contamination patterns across floodplains with varying physiographic and 

hydrologic characteristics as well as assess the effects of human-interaction on 

floodplain surfaces. Geochemical analysis will be accomplished through sediment 

sampling of floodplain top soils. 

 

2) Utilize existing LiDAR data sets for the Big River to develop geomorphic maps 

for use in contamination mapping. Understanding contamination in a 

morphological context will provide insight into the role different landforms have 

in contamination patterns, and allow for the identification of highly contaminated 

landform types. A heads-up classification of floodplain landforms based on 

changes in elevation and geomorphic interpretation will be used in development 

of these maps. 

 

3) Examine and visualize spatial trends in contaminated sediment distribution 

through interpolation mapping, which allow for a continuous view of 

contamination concentrations across a floodplain. This will be accomplished 

through inverse-distance weighted interpolation techniques. 

 

4) Identify important reach-scale variables that control Pb concentration patterns. By 

understanding important variables in spatial distribution, multiple regression 
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models can be developed that can be used to predict Pb contamination trends at 

other floodplain sites. 

 

Hypotheses 

In developing this study and examining the background literature within this field, 

there are four guiding relationships that are expected to surface: 

1) Lead concentrations will be inversely related to both elevation above the 

active bankfull floodplain and to increasing distance from the channel due to 

sedimentation controls and flood regime. 

 

2) Calcium and iron concentrations will be positively related to lead 

concentrations due to geochemical signatures of dolomite ore and the 

precipitation of Pb on the surface of Fe/Mn-oxide clays. 

 

3) Micro-topographic depressions and local lowlands will contain higher 

concentrations of Pb due to selective accumulation of finer, more 

contaminated sediment. 

 

4) Wider valleys with more variable floodplain planform and chute channel 

topography will yield a more complex pattern of contamination, have a greater 

variability in Pb concentration, and contain higher concentrations of metals, 

including Pb due to the higher rates of fine-grained deposition. 

 

Benefits  

This thesis will provide valuable insights into the geomorphic processes that 

dictate the spatial variability of mining-derived contaminated sediment on the Big River. 

There is a gap in knowledge in examining floodplain contamination at a level necessary 

for remediation planning. It is also beneficial to assess commonly used techniques in the 

field, laboratory, and computationally in order to utilize the most effective methodology 

to yield the most useful results and models in remediation planning. By understanding the 

controls on contamination variability, this study will aid in planning projects and the 

models used can act as predictive tools to be used in similar floodplain studies. By aiding 
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in the remediation and implementation of appropriate best management practices in 

floodplain environments, ecosystems, wildlife, and people interacting with these areas 

can be protected from the toxicity of mining contaminants. 
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CHAPTER 2 - STUDY AREA 

 

Physiography and Geology 

The Big River watershed covers roughly 2,500 km2 on the Ozark Plateau in south 

eastern Missouri (Figure 6). The headwaters begin in the St. Francois mountains at 530 

meters above sea level from where the river flows 225 km north, until it flows into the 

Meremec River near Eureka, MO (Meneau, 1997; Adamski et al., 1995). The Meremec 

River then continues approximately 60 km until it meets up with the Mississippi River 

near St. Louis (Meneau, 1997). The watershed is within the Salem Plateau physiographic 

region with its headwaters in St. Francois Mountains. The St. Francois Mountains were 

formed from the upwelling of Precambrian igneous bodies, which created a structural 

dome. Dominate rock types in the mountains include granite, diabase and rhyolites.  

Headwater streams in this area have a steep gradient as they flow down from the 

mountains and create a valley form called a shut-in as they downcut into the ignous 

bedrock. This creates steep valleys and cascading waterfalls throughout this region. 

Downstream, the majority of the watershed flows is through Cambrian and Ordovician 

dolomites with local shale, limestone and sandstone units which dip away from the St. 

Francois Mountains (Figure 7 and Table 2) (Bretz, 1962; Adamski et al., 1995). Streams 

within the Salem Plateau downcut through the sedimentary bedrock creating deep valleys 

with moderately steep gradients. Stream morphology is dominated by riffle-pool 

sequences with gravely bed material (Heeren et al., 2012; Adamski et al., 1995). 

The regional ore deposits throughout southeast Missouri are a type of ore deposit 

called Mississippi Valley-type, and develop as a result of hydrothermal fluids associated 



 

24 

with orogenic belts (Bradley and Leach, 2003). The Bonne Terre formation is a key 

formation in mining activity in the area. This formation is 375-400 foot thick Cambrian 

rock composed predominately of dolomite (CaMg(CO3)2). Hydrothermal mineralization 

crystalized significant amounts of galena, or lead sulfide (PbS), as well as zinc, copper 

and silver (Gregg and Shelton, 1989) . Another important formation in local mining is a 

dolomite called the Potosi formation, which lies above the Bonne Terre stratigraphically. 

This formation is also Cambrian, predominately dolomite, and is approximately 200 feet 

thick (Figure 7 and Table 2) (Smith and Schumacher, 1993).  

 

Climate and Hydrology 

The Ozark Plateau lies within a moist continental climate. Average temperatures 

range from 32°F in the winter to 77°F in the summer. Annual average rainfall for the 

region is about 100 cm (USDA, 1981). In the spring, the area receives the highest amount 

of rain as warm, moist airmasses move morth from the Gulf of Mexico. This period of 

increased storms and rainfall usually occurs from March to June (Adamski et al., 1995).  

Southeastern Missouri has a prominent karst topography with abundant sinkholes 

and caves. This makes for a dynamic hydrology with springs, sinkholes and significant 

groundwater flow. Streams generally follow a radial pattern, emminating out from the 

ingneous highlands. In the lowlands, much of the topography is due to the downcutting of 

streams through the sedimentary substrate (Adamski et al., 1995). Beginning upstream, 

three USGS discharge gaging stations along the Big River measure median flows of 4.7 

m3/s (Irondale, MO: 07017200), 20 m3/s (Richwoods, MO: 07018100), and 23.8 m3/s 

(Byrnesville, MO: 07018500). 
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Figure 6 – Big River Watershed and tailings piles.  
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Figure 7 – Geology of the Big River Watershed. 
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Regional Soils 

The Ozark Plateau predominately is comprised of alfisols and utisols (Adamski et 

al., 1995). In the Salem Plateau physiographic region, these soils are overtop the dolomite 

bedrock which weathers to produce significant residuum (Jacobson and Primm, 1994). In 

St. Francois county, the Big River down cuts into two main soil groups called the 

Caneyville-Crider-Gasconade Association, and the Crider-Fourche-Nicholson 

Association. The first group of soils is characterized by well drained loess and clayey 

soils that vary significantly in slope and depth. Slope tends to range between 2 to 35 

percent and represents terraces and upland areas within the Big River watershed. The 

second group is composed of deep, moderate to well-drained loess and clayey soils. The 

slopes range from 2 to 14 percent and also represent high terraces and uplands. As the 

Big River incises, alluvial soils are then deposited as floodplains build. Common 

floodplain soils include the Haymond, and Horsecreek series (USDA, 1981). In Jefferson 

County, the Big River incises into the Sonsac-Useful-Moko Association. This represents 

a rocky, loess and residuum group that makes up the ridgetops and backslopes of the 

valleys. Slopes can range between 3 and 55 percent. In the valley, common floodplain 

units include the Haymond, Horsecreek and Kaintuck series (USDA, 2000). 

 

Land Use 

Before the settlement of the Ozark Plateau, praries and oak savannahs dominated. 

Deciduous and pine forests occupied valleys before settlers clear-cut for pasture and 

agriculture use. Deforestation and woodland grazing practices caused a large increase in 

valley slope erosion (Jacobson and Primm 1994; MDNR, 2007). Present day land use 



 

29 

classifcation is as follows: 68% forested, 23% grasslands, 4% urban, 3% barren and open 

water, 2% row crops (MDNR, 2007). 

 

Mining History 

Lead deposits were first discovered in this area around 1700 to the west of St. 

Francois County. Small mining operations began to operate in about 1720 to the south of 

St. Francois County. Significant early mining in The Old Lead Belt began with shallow 

open-pit mines that opened in 1742 as mining activity moved north more into St. 

Francois County and Washington County (Smith and Schumacher, 1993). These small 

scale operations mined large galena crystals from shallow pits until more organized 

mining began in the mid 1800’s. The first large-scale mines to open were in the area 

surrounding Bonne Terre, MO around 1904. It is estimated that as many as 15 mines 

were operational during the late 1800s to the early 1900s. Mining in the Old Lead Belt 

peaked in 1942 and continued until 1972, when the majority of mining operations moved 

to the Vibernum Trend for more economic deposits (Pavlowsky et al., 2010a; Smith and 

Schumacher, 1993).   

Early operations accumulated large chat piles as waste gathered from gravity 

milling through the 1930s. Beginning in 1917, froth and floatation milling techniques 

were implemented which resulted in the increased production of fine-grained tailings. 

These tailings were stored in impoundments as a slurry. Fine-grained impounded slurries 

and course chat piles together make up about 227 million Mg of tailings produced from 

mining within the Old Lead Belt (USFWS, 2008). The Missouri Department of Natural 

Resources estimates that tailings piles cover as much as 12 km2 in the Old Lead Belt. 
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Remediation efforts have stabilized these tailings piles to limit the leaching and erosion 

of contaminated sediment, however, a large amount of contamination from before 

remediation efforts remains in the river systems, stored in both channel and floodplain 

deposits (Pavlowsky et al., 2010a; Smith and Schumacher, 1993). 

 

Study Site Characteristics  

Three study sites along the Big River were chosen to examine contamination 

trends. Sites were chosen based on variations in valley width, degree of human 

interaction, distance from tailings piles, and floodplain area to assess contamination 

patterns in relation to these factors. Summarized characteristics of each site can be found 

in Table 3. Characteristics of USDA mapped soil series at each site can be found in Table 

4. 

Big River/Flat River Confluence. The first field site chosen for this study is at 

the confluence of the Big River and the Flat River (BR/FR) (Figure 8 and Table 3). This 

site is the furthest upstream site along the Big River, about 155 river kilometers above the 

Meramec River confluence and about 16 river kilometers downstream from the tailings 

piles in Bonne Terre. This site represents a relatively wider valley with a width of about 

370 meters on the meander bend. The river is confined by bedrock bluffs on the east side 

of the stream with a large floodplain to the west. Significant human influence has altered 

the natural planform of the floodplain at this site. There is evidence of soil mining 

excavation as well as the dumping of a fill dirt to build a road across the property. The 

road runs parallel to the Big River channel and sits at a higher elevation than the 

floodplain on either side of it.  
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The primary floodplain soil series at this site is the Haymond silt loam (Figure 9 

and Table 4). It is a frequently flooded soil and is anywhere from 30 to 60 inches deep 

with a slope ranging from 0-2%. The Haymond is predomiately formed from alluvium 

washed downhill from nearby loess deposits and till plains (USDA, 2011). Higher 

terraces at this site are made up of a silt loam called the Horsecreek silt loam. This series 

is only occasionally flooded during larger floods. The Horsecreek is a deep soil reaching 

more than 80 inches thick and has a slope anywhere from 0-5%. It is a mixture of 

primarily loess alluvium with some residuum from local sedimentary units (USDA, 

2002). Upland soils include the Crider silt loam, the Caneyville silt loam, and the 

Gasconade-Rock outcrop complex (USDA, 2002). Pavlowsky et al. 2010a found that 

floodplain soils contained Pb levels as high as 4,000 ppm within core samples. 

The Environmental Protection Agency, in conjunction with the U.S. Army Corp 

of Engineers is working on a remediation project at this site funded through the 

Comprehensive Environmental Response Compensation Liability Act (CERCLA). 

Construction on a riffle and basin sediment catchment project was completed in late 

2015. 
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Table 3 - Study site characteristics. Measurements and landcover were estimated from 

aerial photographs and LiDAR data. 

 

  BR/FR SFSP WSP 

River-km 155 140.5 102 

Drainage Area (km2) 1 821 1,008 1,363 

Valley Width (m) 370 80 430 

Valley Slope 0.00088 0.00050 0.00050 

Active Channel Width (m) 40 35 45 

Sampling area (m2) 160,238 30,901 121,319 

% Grass  48% 35% 67% 

% Road  3% 19% 5% 

% Forest  49% 46% 28% 

1 Pavlowsky et al., 2010a  
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Figure 8 – The Big River/Flat River Confluence, Missouri. 
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Figure 9 – Soil series at the Big River/Flat River Confluence. 
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St. Francois State Park. St. Francois State Park (SFSP) is about 140.5 river 

kilometers above the Meramec River confluence with the Big River, and about 30.5 river 

kilometers below the Leadwood tailings pile (Figure 10 and Table 3). The valley is about 

80 meters wide at the study site and the channel is confined by a narrow valley with 

bluffs to the west and a rapid rise in landscape to the east. This results in a relatively 

smaller floodplain with less variability in planform. St. Francois State Park represents 

more natural floodplain with minor human influence on topography. A road, parking lots, 

and park buildings with small footprints are built on the upper floodplain.  

The floodplain soil series at this site are the same as at the Big River/Flat River 

Confluence (Figure 11 and Table 4). Lower bench units are the Haymond silt loam, and 

upper floodplains and terraces are the Horsecreek silt loam. Upland soils include the 

Ogborn silt loam, the Goss very cobbly silt loam, the Fourche silt loam, the Crider silt 

loam, and the Caneyville silt loam. None of the upland units are flooded (USDA, 2002; 

USDA, 2011;USDA, 2012). Pavlowsky et al., 2010a reported that floodplain soils 

contained Pb levels as high as 5,500 ppm within core samples.  
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Figure 10 – St. Francois State Park, Missouri. 
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Figure 11 –Soil series at St. Francois State Park. 
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Washington State Park.  Washington State Park (WSP) is the furthest site 

downstream at about 102 river kilometers above the Meramec River confluence with the 

Big River (Figure 12 and Table 3). This site has a wide valley of about 430 meters. A 

large floodplain extends south away from the channel until it meets the toe of a steep 

valley bluff. Washington State Park represents a more natural floodplain as well with 

minor human influence on topography. A road, parking lot, and small outhouse are the 

only structures built on the floodplain.  

The floodplain contains two main soil series at this site (Figure 13 and Table 4). 

The first is the Kaintuck fine sandy loam. It is a frequently flooded soil and is reaches 

more than 60 inches thick with a slope ranging from 0-3%. It is a coarse-loamy alluvium 

that is well drained. The second frequently flooded soil series is the Haymond silt loam. 

Upland soils that make up the valley bluff include the Moko-Rock outcrop complex and 

the Sonsac gravelly silt loam (USDA, 2006; USDA, 2001; USDA, 2000).  
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CHAPTER 3 - METHODS 

 

Contamination mapping and the analysis of spatial variability in geochemical 

studies are most effectively done with a combination of field, laboratory, and Geographic 

Information Systems (GIS) methods. Sample collection and laboratory methods allow for 

geochemical analysis (Leece and Pavlowsky, 2001), while GIS analysis allows for spatial 

relationships to be examined and mapped efficiently (Kooistra et al., 2001). This study 

utilizes existing LiDAR-derived digital elevation models (DEM) and aerial photographs 

to classify planform, field sediment sampling and GPS data collection, GIS to compile 

data and develop maps, and statistical analysis to examine trends and develop predictive 

models.  

 

Field Sampling  

Soil sampling for spatial variability studies needs to be a balance between cost-

effectiveness and coverage (Andronikov et al., 1999). Many contamination spatial 

analysis studies develop a regular grid to sample locations at equal intervals across the 

study area (Liu and Yang, 2007; Andronikov et al., 1999; Fleming et al., 2000). While 

this is effective in achieving uniform coverage of the study site, it does not account for 

landform variations. This study examines contamination with respect to landform, so it is 

important to ensure sufficient sample numbers are collected within each distinct 

topographic difference. With this in mind, sample collection was conducted along 

adjacent transects to develop a rough grid across each study site for sufficient coverage. 

Spacing between samples was estimated using pacing to try and keep the distance 
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between samples relatively consistent. While walking a transect, whenever a change in 

elevation that could represent a rise to a different landform surface was noted (i.e. the rise 

from a bench to a floodplain surface), careful consideration was taken to collect multiple 

samples within each landform. This ensured that there was sufficient spatial coverage 

with the rough grid, while gathering enough samples within each landform to effectively 

characterize the geochemistry. Grid spacing varied based on the size of the study site. 

Collecting top soil was done using a hand trowel to carefully dig under vegetation 

or litter cover, and collect roughly a fist-sized amount of soil from the top 10 centimeters 

(Andronikov et al. 1999; Xiao et al., 2011). Samples were then bagged and labeled with a 

name, date, and transect number. Careful consideration to clean excess soil off of the 

trowel was ensured to avoid inter-sample contamination. At each sample site, a GPS 

point was collected using a handheld Trimble unit and labeled with the sample name. The 

Big River/Flat River Confluence had a total of 174 top soil samples, St. Francois State 

Park had a total of 140 samples, and Washington State Park had a total of 154 samples. 

Samples at the Big River/Flat River confluence were collected on November 20, 2014, 

and samples at St. Francois State Park and Washington State Park were collected on July 

7, 2015. The Missouri Department of Natural Resources permit for sampling can be 

found in Appendix A. 

 

Laboratory  

Samples were processed at Missouri State University in the geomorphology 

laboratory. They were first placed in an oven to dry at 60 degrees Celsius. Next, they 

were sieved using a 2 mm sediment sieve and placed into a small lead-free plastic bag for 
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use on the X-ray fluorescence (XRF) instrument according to Environmental Protection 

Agency XRF analysis protocol (EPA, 2007). A handheld XRF was used in a benchtop 

stand to collect elemental concentrations for Pb, Zn, Ca, and Fe. The XRF was set to 

collect data for 90 seconds per sample and create an output with elemental content in 

parts per million (ppm). Twenty samples were run at a time, including one duplicate 

sample. Geochemistry for all samples can be found in Appendix B. 

Accuracy is a measurement of the “closeness of agreement between a test result 

and the true value” (ISO, 2011). Assessment of accuracy is important to ensure 

laboratory instruments are yielding reliable results that reflect true values. Calculations 

for accuracy in XRF analysis are done by analyzing a known standard, and assessing the 

difference between the true value and the instrument reading. For this study, a USGS 

standard (Jasperoid, GXR-1) was analyzed with a known Pb concentration of 856 ppm. 

Then, by comparing the value read by the XRF to the known standard, accuracy could be 

quantified (EPA, 2007). For the samples from the confluence site (n = 174), the accuracy 

for Pb was -3.45%, for Zn was -7.63%, for Fe was -1.34%, and for Ca was -1.80%. For 

the samples from Washington State Park and St. Francois State Park (n = 294), the 

accuracy for Pb was -1.34%, for Zn was -8.37%, for Fe was -3.19%, and for Ca was -

4.02%. 

Precision is also an important measurement for laboratory instruments because it 

assesses the consistency of the results allowing for the identification of systematic error. 

Precision is defined as “the closeness of agreement between independent 

test/measurement results obtained under stipulated conditions” (ISO, 2011). Precision 

was calculated for this XRF analysis by running duplicate samples to compare the results 
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of the same sample (EPA, 2007). At the Big River/Flat River confluence site (n = 174), 

the precision values were -0.88% for Pb, -2.78% for Zn, -0.46% for Ca, and 0.93% for 

Fe. At St. Francois State Park and Washington State Park (n = 294), the precision values 

were 0.89% for Pb, -1.70% for Zn, 0.50% for Ca, and 0.85% for Fe. 

 Fifteen subsamples selected from the three sites were then sent to ALS Chemex 

Laboratories, Sparks, Nevada for aqua-regia digestion and ICP analysis (Appendix C). 

Aqua-regia extracts metals from sediment samples using a mixture of hot nitric and 

hydrochloric acids. It is not a total digestion of the sample, but the metals that are 

extracted represent the environmentally mobile fraction (EPA, 2007) Regression 

equations that compare XRF to ICP results indicate a strong linear relationship between 

the two analytical methods. In order to maintain absolute variability of the XRF analysis 

among all samples in the data set, ICP: XRF ratios were used to correct the XRF results 

to equivalent aqua-regia concentrations (EPA, 2007). The ratios were as follows: Pb = 

0.82, Zn = 0.88, Ca = 1.00, Fe = 0.77 (Appendix C). 

 

Geospatial and Computational 

Base Maps and Cross Sections. In order to create maps needed for the study site, 

aerial photographs and LiDAR data were needed. Georeferenced aerial photographs from 

2010, collected as part of the National Agriculture Imagery Program (NAIP), were 

obtained from the Ozarks Environmental and Water Institute (OEWRI) database at 

Missouri State University. LiDAR data with 1 meter resolution, collected between 

December 10, 2010 and April 6, 2011, was downloaded from the Missouri Spatial Data 

Information Service (MSDIS) at the University of Missouri. LAS point data was 
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classified by MSDIS and a digital elevation model (DEM) was available for download. In 

Arcmap 10.2.2, hillshade basemap layers were created using the tools within the Spatial 

Analyst toolbox, and were used for topographic visualization. Geochemical data was then 

matched with the corresponding GPS points and mapped on the hillshade basemap in 

ArcMap. By extracting DEM data, elevation values were attributed to each GPS point as 

well. The distance from each point to the channel was also calculated using a distance 

algorithm tool in ArcMap called Near. This measured the shortest distance to the channel 

for each point and added the value to the attribute table.  

Cross sections were also created by extracting elevation data from the DEM using 

the Extract Values to Points tool within the Spatial Analyst toolbox. Cross-sectional data 

was then be plotted in Excel to view elevation changes across the study site. Each cross 

section was drawn in close proximity to a sample transect so geochemical concentration 

data could be plotted across a representative cross section at each site to examine 

topographical/geochemical relationships. 

Landform Classification and Mapping. Landform mapping was then conducted 

using a methodology similar to Jones et al. (2007) in which landforms were defined by 

breaks in slope visualized using LiDAR data, in a similar manner as field geomorphic 

mapping. Utilizing geomorphic background knowledge about floodplain morphology as 

outlined in Chapter 1, along with field observations and LiDAR elevation maps, heads-up 

digitization of distinct landforms was performed. A total of eight landform classes were 

developed over the three sites based on characteristic fluvial landforms outlined in 

Chapter 1. Sand bars within the channel were identified by elevated surfaces within the 

bankfull channel. The bank was classified as the rise from the channel including the 
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natural levees. Floodplains were broken up into two classes when distinct surfaces could 

be identified. Lower surfaces were classified as benches, and higher surfaces were 

classified as a floodplain. Low areas within the floodplain were classified as either 

disturbed area/backswamps or drainages features/chutes. The drainage feature/chute 

classification was used when clear channelization could be seen in the topography. These 

areas either show evidence of runoff drainage or connectivity to the main channel. The 

disturbed low areas at the Big River/Flat River confluence site were classified as a 

backswamp due to fine grained sediment deposition and lack of channel form which 

would promote the pooling of flood waters unlike chutes and drainages. An additional, 

unnatural classification was created for the excavation fill dirt present at the Big 

River/Flat River confluence. Finally, the rise in the river valley was classified as the 

upland.  

Landform Flood Frequency. Once landforms were classified, recurrence 

intervals of the floods that inundate bench and floodplain landform surfaces were 

calculated in order to better understand the frequency of the overbank events that 

promote deposition. This was accomplished through the measurement of cross sectional 

geometry of the channel and floodplain landforms and the quantification of flows with 

USGS gage data.  

Peak surface flows from the last 30 years were collected from the three USGS 

gaging stations on the Big River. The data was then analyzed in PEAKFQ, a program 

created by the USGS. This program used gaging records to calculate the probability and 

discharge of different magnitude floods. Probability from PEAKFQ was then converted 

to recurrence intervals (RI) of 1.05, 1.25, 1.5, 2, and 5 years for each gage station (RI = 
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1/probability of flood). Regression equations were then developed for each of the five 

recurrence intervals to relate the drainage area of each station to the discharge associated 

with each RI. Then, using the drainage area of each of the three study sites, the expected 

discharge of the 1.05, 1.25, 1.5, 2, and 5 year floods could be calculated. 

Next, cross sections from all three study sites from surveys conducted by OEWRI 

were used to measure channel geometry for different flow heights that correspond to the 

inundation of benches and floodplains. With the channel geometry, flow velocity was 

calculated using the Manning equation. This equation is: 

V = (1.5/n) R2/3 S1/2  

Where V is velocity, n is a roughness coefficient, R is the hydraulic radius defined by 

cross sectional area divided by the wetted perimeter, and S is the slope of the stream. 

Discharge can then be calculated by multiplying the velocity by the cross sectional area 

(Ward and Elliot, 1995). Using a program called Hydraflow Express, cross sectional area, 

wetted perimeter, and width were measured for different flow heights that correspond to 

the inundation of floodplains and benches. The measured area and perimeter were then 

used to calculate R. Then, using LiDAR data, stream slope was calculated by dividing 

rise over run for the change in elevation across a 1 km section of the stream at each study 

site. Finally, n was estimated based on the surface roughness of different river stages. 

Ward and Elliot, 1995 lists recommended n values for different surface and channel 

types. Calculated velocity for each flow of interest was then multiplied by the area to 

yield a discharge (Ward and Elliot, 1995). 

Discharges calculated using the Manning equation for benches and the floodplains 

were then correlated with the discharges for the five different recurrence intervals 
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calculated from USGS gage data. This allowed for the flooding events that represent the 

inundation of the benches and floodplains to be attributed with a recurrence interval. An 

additional flood recurrence interval was calculated at the Big River/Flat River confluence 

site to estimate how often floods overtop the road.  

Interpolations. Using inverse distance weighted interpolations (IDW), rasters 

showing continuous surfaces for Pb, Zn, Fe, and Ca were created. Inverse distance 

weighted interpolations are a simple technique that can be calculated without knowledge 

about the spatial structure of the data, and with any sample size (Kravchenko, 2003). The 

IDW calculation interpolates unknown areas using sample values weighted by distance 

from the unknown point in question (Gotway et al., 1995). Interpolation techniques work 

under the assumption that points in closer proximity to one another are more related than 

points farther from each other. Inverse distance weighting estimates an unknown point in 

space by using this assumption to assign a weight to neighboring known points. Known 

points closer to the unknown point will have a higher weight, and consequently have a 

greater effect on the interpolated unknown value. The number of closest known points 

used in the prediction will affect the smoothness of the resulting interpolation. A larger 

neighborhood will yield a smoother result than a smaller neighborhood. An exponent 

value determined based on the variation within a data set is used to adjust the effect of 

each known point. The resulting equation for IDW calculations is: 

zj=
∑ zi

dij

ni∑ 1
dij

ni

 

Where zj is an unknown point to be estimated, zi is a known control point, dij is the 

distance to the known point, and n is an exponent affecting the weighting. Using the 
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number of control points defined, unknown points across a surface are calculated and a 

continuous raster is created (Franke, 1982; O’Sullivan and Unwin, 2010). 

The goal of creating interpolated contamination maps is to visualize the spatial 

trends and draw qualitative conclusions based on patterns. In an accuracy study by 

Kravchenko, 2003, it was found that despite the simplicity, the difference in accuracy 

between IDW and other methods such as Kriging is minimal. Gotway et al., 1995 found 

that when conducting IDW interpolations, if the data set has a coefficient of variation less 

than 25%, a higher order power produces better accuracy. If the coefficient of variation is 

greater than 25%, accuracy is increased with a lower power. For each element at each 

site, the coefficient of variation value was calculated and the appropriate power was used 

in the IDW tool within the Spatial Analyst toolbox in ArcMap 10.2.2. The search radius 

was set to use the twelve closest points to interpolate unknown areas across the study 

sites with a smooth surface. Since this study is focused on floodplain contamination, bar 

samples were not used in interpolation calculations 

The study site at the Big River/Flat River confluence is split by a road that runs 

parallel to the river. Based on the elevation of the road above the surrounding areas, 

continuity of sediment deposition between the bench to the east and the floodplain to the 

west could not be assumed. To address this, interpolations will be conducted on both 

sides of the road independently.  

 

Statistical  

Descriptive statistics for geochemical data at each site were calculated for each 

site as well as by landform. This includes measures of central tendency (mean and 
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median), measures of variability (standard deviation, inter-quartile range and coefficient 

of variation), and range. This study focuses on floodplain variability, so besides general 

descriptive statistics, bar samples were excluded from other statistical analyses. 

Pearson correlation matrices were then created to look at relationships between 

geochemical variables and physical variables for each sample point. Correlation was 

assessed for all samples at a site, as well as for a subsample including only samples in the 

floodplain landform classes. This was done to see if correlations varied if landform was 

kept constant. Next, simple linear regression models between Pb and geochemical and 

physical variables were developed and residual plots were created. Residuals are defined 

as the difference between the expected value from the model, and the observed value 

from sampling. Residual plots were then used to identify any samples with anomalously 

high residuals and consider the possibility of outliers. Finally, a multiple linear regression 

analysis was conducted. Regression analysis allows for the quantification of relationships 

between Pb and geochemical and physical variables, and the development of a predictive 

model in spatial trends (Rogerson, 2010; Pavlowsky et al., 2010b).  

A stepwise selection of the independent variables was utilized to develop 

regression equations. This method adds independent variables that are most highly 

correlated with the dependent variable to the equation in an attempt to explain the 

variability, so long as they have a significant positive effect on the R2 value. As new 

variables are added to the equation, previous variables are reassessed for significance and 

removed if they are not beneficial in the equation. With each variable added and 

removed, the analysis conducts an F-test. If the p-value of a variable is less than 0.05, it is 

added to the equation. If the p-value of any variable in the equation is more than 0.10, it 
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is removed. This analysis goes through iterations of this process until it identifies the 

most important variables in determining the variability (Rogerson, 2010). Then, to avoid 

multicollinearity between similar variables, an assessment of the variance inflation factor 

(VIF) was needed. If the VIF value is above five for any independent variable, there is 

significant overlap with another independent variable, and the variable cannot be used in 

the equation (Rogerson, 2010). Through step-wise analysis and assessment of 

multicollinearity, regression models with the highest R2 values were determined to 

describe spatial variability in Pb. Independent variables used were elevation, distance 

from the channel, Ca concentration, and Fe concentration. Variables were converted to a 

logarithmic scale to be used in regression analysis as well. A combination of logarithmic 

and arithmetic variables were combined to form the best models. Hypothesis testing for 

each variable in the model was conducted to ensure statistical significance using a t-test. 

Possible outliers identified in the residual plots were removed to see if any improvement 

of model fit could be seen (Rogerson, 2010). All analysis was conducted in IBM SPSS 

Statistics 23.  
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CHAPTER 4 – RESULTS AND DISCUSSION 

 

The purpose of this chapter is to present and discuss the results of landform 

classification, flood frequency calculations, geochemical analysis, and interpolation 

mapping. Results are discussed for each study site individually. Tables for landform 

classification area (Table 5), flood frequency (Table 6), and geochemistry (Appendix D) 

include information about all sites for comparison. This chapter will also evaluate large-

scale geographic controls such as valley width and distance from the source, and 

determine the effects of these controls on contamination patterns. It will then examine 

relationships between the spatial distribution on a site-scale of Pb, and geochemical and 

spatial variables such as elevation, distance from the channel, and Ca and Fe 

concentrations. Next, simple linear regression models comparing Pb to these variables to 

will be developed to further investigate relationships, and identify outliers to be removed 

for multiple linear regression models. Using both geochemical and spatial variables, 

multiple linear regression models for Pb distribution are developed and assessed. Finally, 

management implications in regards to findings are discussed. 

 

Big River/ Flat River Confluence  

Landform Classification. The relatively wide valley and the human-altered 

landscape create unique geomorphic and hydrologic characteristics at this site. There are 

five distinct floodplain landform classes created at this site (Figure 14 and Table 5). The 

study site is divided into two areas: the disturbed area where excavation and soil mining 

history have created a topographic low, and the undisturbed are near channel that has 
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been less affected by human-influence. The road is the boundary between the disturbed 

and undisturbed areas separating them due to its high relative elevation to the 

surrounding area. In the undisturbed area, the rise from the channel including the levee 

represents the bank class. Adjacent to this is a lower depositional floodplain surface that 

was called a bench. There is an upper floodplain unit higher than the bench located in 

both the disturbed and undisturbed areas. The excavated disturbed area is a local lowland 

cut into the upper floodplain unit that is connected by a small channelized area to the Big 

River at the southern end of the study area. Within this channelized area, there is 

abundant sand splay deposition across the road. This channelized area feeds into a basin 

with significant mud deposition towards the north end of the disturbed area. Due to the 

ability for the sediment to pool in the basin, the whole disturbed area was classified as a 

backswamp. Near the road, there is an area of fill dirt and gravel that was dumped during 

excavation activity. 

Flood Inundation Frequency. At the Big River/Flat River confluence site, the 

bench was found to have a recurrence interval of less than a year indicating frequent 

inundation (Table 6). The floodplain inundation was calculated for the disturbed area 

near the chute connecting to the disturbed area at the southern end. The disturbed area 

recurrence interval was between 1.05 and 1.25 years. This suggests that the disturbed area 

does inundate frequently, but not as regularly as the bench. Both of these landforms 

would be expected to have significant alluvial deposition potential with the high 

frequency of overbank events. For the road dividing the undisturbed and disturbed areas, 

the recurrence interval was 1.5-2 years indicating that larger floods are needed for the 

mixing of flood waters and sediment between the two areas.  
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Table 5 – Area of mapped landforms at BR/FR, SFSP, and WSP. 

 

Landforms BR/FR   SFSP   WSP 

Bank 7,406 4%   3,963 5%   11,614 9% 

         

Bench 9,844 5%  8,578 12%  NA NA 

         

Floodplain 96,084 53%  50,919 69%  78,781 63% 

         

Backswamp 53,035 29%  NA NA  NA NA 

         

Drainage/Chute NA NA  4,588 6%  29,487 23% 

         

Road 4,879 3%  5,948 8%  6,231 5% 

         

Fill 11,248 6%   NA NA   NA NA 

         

Total 182,496 100%  73,996 100%  126,113 100% 

 

 

Table 6 – Flood frequency for benches and floodplains at BR/FR, SFSP, and WSP. 

 

Landform Site 
Recurrence 

Interval (yr) 

Approx. 

Landform 

Elevation (m) 

Stage 

from  

Bed (m) 

Discharge  

(m2/s) 

Bench BR/FR < 1 year 201 2.21 86 

 SFSP 1.25 - 1.5 194 5.64 309 

 WSP NA NA NA NA 

      

Floodplain BR/FR 1.05 - 1.25 202 2.87 134 

 SFSP 1.5 - 2 196 7.16 365 

 WSP 1.05 - 1.25 172 5.79 212 

      

Road BR/FR 1.5 - 2  205 6.13 445 

 SFSP NA NA NA NA 

  WSP NA NA NA NA 
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Figure 14 – BR/FR landform and Pb map.  
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Geochemistry. At the Big River/Flat River confluence, 174 samples were 

collected and each sample was attributed a landform classification based on location, and 

descriptive statistics for Pb, Zn, Ca, and Fe data was summarized for the whole site 

(Table 7). Bar samples were not included. Mean value of Pb concentration for all of the 

samples is 1,257 ppm, with the maximum mean concentration found in the bench, and the 

minimum in the backswamp. The mean for Zn is 1,118 ppm, with the maximum mean 

concentration in the bench, and the minimum in the floodplain. Mean calcium was 47,744 

ppm, with maximum mean concentrations found in the bank, and the minimum in the 

backswamp. Mean Fe was 17,534 ppm, with highest concentrations found in the bank, 

and the lowest in the backswamp. The coefficient of variation was 29%, indicating a low 

variability in Pb between all samples. Landform concentrations and variability are 

summarized in Appendix D and Figures 15 and 16. Analysis of variance test showed a 

significant difference (α = 0.05) in mean Pb concentrations between the backswamp and 

the bench. 

 Samples were split between the disturbed area and the undisturbed area and 

compared. Samples in the undisturbed area have a higher mean lead (1,371 ppm), zinc 

(1,200 ppm), and calcium (60,942 ppm) concentrations than the disturbed area (1,124, 

1,022, and 32,237 ppm respectively). Iron is relatively uniform in both the disturbed 

(17,224 ppm) and undisturbed (17,799 ppm) areas. The differences between these sample 

groups are within one standard deviation, indicating there is not significant variability 

between the two sample groups. 

 

 



 

58 

Table 7 – Big River/Flat River Confluence geochemistry. 

 

Element 

  Arithmetic   Logarithmic  

 
Mean 

(ppm) 

St. 

Dev. 

(ppm) 

CV  

(%) 
 

Mean  

(ppm) 

St. 

Dev. 

(ppm) 

CV  

(%) 

Pb  1,257 365 29  3.08 0.15 4.9 

Zn  1,118 362 32  3.02 0.16 5.1 

Ca  47,744 30,904 65  4.60 0.27 5.9 

Fe   17,534 1,966 11   4.24 0.05 1.1 

n = 174         

 

The geochemical cross section at this site displays 20 samples from the bank 

through the undisturbed and disturbed areas (Figure 14 and Figure 17). Moving from the 

channel inward beginning at the bank, lead is slightly lower near the channel, but rapidly 

rises on the bench. Moving across the road away from the bench into the disturbed area, 

lead drops off significantly between samples 11 and 12. Concentrations continue to fall in 

the chute that leads into the disturbed area. Throughout the remainder of the lower 

disturbed area, concentrations remain relatively high. Finally they tail off at samples 2 

and 1 as elevation increases moving toward the upland. Zinc follows a similar trend with 

lower concentrations near the channel, high concentrations in the bench that tail off into 

the chute, and finally higher concentrations towards the uplands. The lead/zinc ratio 

shows increases in zinc in relation to lead on the margins of the chute as noted by the 

decrease in the ratio. Within the chute, however, Pb concentrations are higher. On the 

bench in the undisturbed area below the confluence, lead concentrations are also higher. 
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Interpolations. Interpolated Pb maps indicate higher values of Pb are on the 

undisturbed floodplain and bench landforms closest to the channel (Figure 18). In the 

disturbed floodplain, there are lower concentrations of Pb, but they show clear 

topographical trends. Higher interpolated concentrations are found in the disturbed area 

in the backswamp. Near the road and the floodplain unit, concentrations are still high, but 

tend to be significantly less than these lowlands.  

Sediment sources can be differentiated between Flat River and the Big River 

when looking at Zn patterns (Figure 19). The highest concentrations of Zn are found 

around the south end in the small chute leading to the disturbed area. Zinc-rich sediment 

is able to be transported through the chute during flooding events. The undisturbed 

floodplain areas below the Flat River confluence show less Zn than the areas above the 

confluence.  

Above the confluence and in the disturbed area, the Pb/Zn interpolation shows 

much lower ratios indicating more zinc relative to lead (Figure 20). The ratio gets bigger 

after the confluence along the undisturbed bench, after the confluence with the Flat River. 

The variation is due a difference in the geochemical signature of the sediment supplied 

from the Big River above the confluence, and the sediment that is added as Flat River 

joins the Big River. Mining contaminated sediment from the Flat River has a different 

geochemical signature than contaminated sediment from the Big River. Leadwood 

tailings are found to have Zn concentrations more than twelve times higher than tailings 

from National or Federal, and lead concentrations are similar between these piles. The 

lead/zinc ratio for the National, Federal, and Leadwood tailings are 6.9, 6.8 and 0.4, 

respectively (Smith and Schumacher, 1993; Pavlowsky et al, 2010a). Therefore, areas 
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above the Flat River confluence will have high zinc concentrations from Leadwood 

tailings. Below the confluence, the influx of sediment from the Flat River with high lead 

and low zinc concentrations dilutes the high zinc concentration from the Leadwood. 

Because of this, areas below the confluence tend to have lower concentrations of zinc, 

than areas above. Therefore, areas such as the disturbed backswamp will have more Zn, 

whereas such as the undisturbed area below the confluence will likely be diluted in Zn.  

High calcium concentrations are typically found close to the channel in the 

undisturbed area, and near the chute in the disturbed area (Figure 21). The increased Ca 

near the channel is likely related to the coarse grained floatation sands that would 

accumulate in the proximal channel areas. Iron concentrations are lowest in the low 

disturbed backswamp and highest in areas close to the upland (Figure 22). Natural 

sediment input from upland erosion may be driving this pattern. 
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Figure 18 –Pb interpolation at the BR/FR site. 
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Figure 19 – Zn interpolation at the BR/FR site. 
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Figure 20 – Pb/Zn interpolation at the BR/FR site. 
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Figure 21 – Ca interpolation at the BR/FR site. 
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Figure 22 – Fe interpolation at the BR/FR site. 
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St. Francois State Park 

 Landform Classification. The confining valley at St. Francois State Park creates 

a narrow floodplain that rises rapidly with distance from the channel. There are four 

distinct landform classes created at this site (Figure 23 and Table 5). The channel and 

floodplain are separated by steep banks that rise to a sand-rich levee. Across the levee is 

the bench that extends until it meets the road that runs atop the initial rise of the 

floodplain unit. A drainage channel has been cut by park management along the road in 

the floodplain for runoff and is connected to the river by deep cuts through the bank. The 

floodplain has a relatively steep rise as it moves out toward the narrow valley margin.  

Flood Inundation Frequency. At St. Francois State Park, the bench was found to 

flood every 1.25-1.5 years (Table 6). A stage of 5.64 m above the thalweg is needed in 

order for the river to overtop the levees due to the tall, steep banks. For the flood waters 

to reach the road where the higher floodplain unit begins, a larger flood with a recurrence 

interval of 1.5-2 years is needed. Therefore, alluvial sedimentation would be expected to 

be much less on the higher floodplain surface. 

 



 

70 

 
Figure 23 – SFSP landform and Pb map. 
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Geochemistry. Descriptive statistics were calculated for Pb, Zn, Ca, and Fe 

concentrations for the 140 samples collected (Table 8). Bar samples were omitted from 

the data set. Mean Pb concentration for all of the samples is 820 ppm, with the maximum 

mean concentration found in the bench, and the minimum in the floodplain. The mean for 

Zn is 326 ppm, with the maximum mean concentration in the bench, and the minimum in 

the higher floodplain as well. Mean calcium was 26,118 ppm, with maximum mean 

concentrations found in the bank, and the minimum in the floodplain. Mean Fe was 

16,030 ppm, with highest concentrations found in the bench, and the lowest in the 

floodplain. The coefficient of variation was 55%, indicating significant variability in Pb 

between all the samples. Landform concentrations and variability are summarized in 

Appendix D and Figures 15 and 16. Analysis of variance test showed a significant 

difference (α = 0.05) in mean Pb concentrations between the drainage feature and the 

bench, and between the floodplain and the bench. 

The geochemical cross section displays total of 12 samples from the bank into the 

upper floodplain (Figure 24). Concentrations of these metals started relatively low near 

the channel in the lower bank deposits. On the other side of the levee on the bench, 

concentrations rise quickly to the highest levels in the study area. As elevation increases 

toward the road and the higher floodplain unit, concentrations begin to tail off. Increasing 

elevation with distance from the channel shows a clear decrease in Pb and Zn into the 

floodplain landform. Overall, the zinc concentration are much lower than the lead 

concentrations, but they follow the same trend in contamination across the landforms. 

Lead/zinc ratios do not show a clear trend because the contamination patterns are very 

similar. 
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Table 8 –St. Francois State Park geochemistry. 

 

Element 

  Arithmetic   Logarithmic  

 
Mean 

(ppm) 

St. 

Dev. 

(ppm) 

CV  

(%) 
 

Mean 

(ppm) 

St. 

Dev. 

(ppm) 

CV  

(%) 

Pb  820 451 55  2.83 0.31 11.1 

Zn  326 169 52  2.44 0.28 11.7 

Ca  26,118 23,741 91  4.22 0.47 11.0 

Fe   16,030 3,050 19   4.20 0.07 1.8 

n = 140         

 

Interpolations. Lead and zinc interpolation maps indicate that distance from the 

channel and elevation appear to be strongly related to heavy metal concentrations. 

(Figure 25 and Figure 26). With increased distance from the channel, Pb and Zn 

concentrations fall quickly across the study area. In the coarse, sandy levee deposits that 

are part of the bank deposition, concentrations are lower than the adjacent finer-grained 

bench. Any increase in elevation above the bench towards the road is related to a drastic 

decrease in heavy metal contamination. Across the road, very limited contamination 

exists, likely related to infrequent flooding and limited deposition.  

As for calcium, the highest concentrations are limited to areas close to the 

channel, such as the levee, where sand deposition is more common (Figure 27). Iron 

trends are similar to the other elements with high concentration across the bench, and 

much lower concentrations in the floodplain (Figure 28). This could be related to fine-

grained tailing input in the bench. 
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Figure 25 – Pb interpolation at the SFSP site. 
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Figure 26 – Zn interpolation at the SFSP site. 



 

76 

 
Figure 27 – Ca interpolation at the SFSP site. 
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Figure 28 – Fe interpolation at the SFSP site. 
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Washington State Park 

Landform Classification. Washington State Park is characterized by a wide 

valley and relatively uniform floodplain, and a prominent chute and drainage feature. 

There are three distinct landform classes at this site (Figure 29 and Table 5). The 

floodplain elevation is between 171 and 172 m above sea level, and is limited in 

topographic variation. The elevation across the floodplain does not vary more than about 

a meter. Since there is only one distinct topographical surface, there is no differentiation 

between a higher floodplain and a lower bench unit. The bank shows limited levee 

development based on LiDAR data, likely due to the increased distance from the mining 

sources. Therefore, there is likely a more limited availability of sand-sized sediment for 

levee formation. On the eastern end of the study site, the bank is steep as it rises from the 

channel. To the west, there is a public access area where the bank in has a much 

shallower slope that leads into a large bar. There is a chute that cuts across the floodplain 

from the channel and connects with a prominent drainage feature at the toe of the 

confining bluff on the southern end of the study area. The drainage feature at the base of 

the bluff drains the upland runoff as clearly seen by erosional cuts on the slope. The chute 

allows for floodwaters to be channelized across the floodplain and flow along the base of 

the bluff in the drainage feature until they connect back into the Big River on the west 

end of the study site. The road is at a lower elevation than the floodplain it is built on, 

causing it to look inset into the floodplain. This suggests possible high deposition rates on 

this floodplain building up around the road. Since the road is at a lower elevation, park 

management has cut a drainage channel that connects the road to the main channel, 

preventing water from pooling in the road. 
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Flood Inundation Frequency. At Washington State Park, only one recurrence 

interval was calculated for overbank floods (Table 6). The single floodplain landform 

was found to flood every 1.05-1.25 years. When this overbank flood occurs, the more 

uniform and flat topography at Washington allows flood waters to spread across 

floodplain to the valley wall. Flood water transport into the farther reaches of the 

floodplain may be facilitated by the chute channel. Wide valley width paired with low 

recurrence intervals indicates this site may have the ability to accumulate a significant 

amount of sediment. 

Geochemistry. Descriptive statistics were calculated for Pb, Zn, Ca, and Fe 

concentrations for the 154 samples collected (Table 9). Bar samples were again omitted. 

Mean Pb concentration for all of the samples is 1,915 ppm, with the maximum mean 

concentration found in the floodplain, and the minimum in the bank. The mean for Zn is 

543 ppm, with the maximum mean concentration in the floodplain, and the minimum in 

the bank as well. Mean calcium was 28,802 ppm, with maximum mean concentrations 

found in the bank, and the minimum in the chute/drainage feature. Mean Fe was 19,012 

ppm, with highest concentrations found in the floodplain, and the lowest in the bank. The 

coefficient for Pb is 21% indicating an overall lack in variability in concentrations. 

Landform concentrations and variability are summarized in Appendix D and Figures 15 

and 16. Analysis of variance test showed a significant difference (α = 0.05) in mean Pb 

concentrations between the chute/drainage and floodplain, and between the bank and 

floodplain. 
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Table 9 –Washington State Park geochemistry. 

 

Element 

  Arithmetic   Logarithmic  

 
Mean 

(ppm) 

St. 

Dev. 

(ppm) 

CV  

(%) 
 

Mean 

(ppm) 

St. 

Dev. 

(ppm) 

CV  

(%) 

Pb  1,915 407 21  3.26 0.17 5.2 

Zn  543 111 20  2.72 0.14 5.1 

Ca  28,802 8,978 31  4.44 0.15 3.4 

Fe   19,012 2,464 13   4.27 0.08 1.8 

n = 154         

  

The geochemical cross section at this site displays a total of 15 samples from the 

lower bank to the hillslope (Figure 30). Lead and zinc followed the same trend across the 

cross section with zinc levels much lower than lead. The lowest concentrations for both 

lead and zinc were found near the channel. Concentrations rise significantly atop the 

levee and floodplain. Across the floodplain, the concentrations of lead stay consistently 

high between 1,500 and 2,250 ppm, and zinc stays between 450 and 610 ppm. Point 2 is 

within the channelized drainage feature near the hillslope and there is a significant 

decrease in both lead and zinc. Point 1 is no longer in the channel and concentrations are 

more consistent with the rest of the floodplain. Overall there are high concentrations of 

heavy metals across the whole floodplain unit, even at distance from the channel. 

 

 

 

 





 

83 

Interpolation. Interpolation maps show high and relatively uniform Pb 

concentrations across the floodplain (Figure 31). Unlike St. Francois, there does not 

appear to be an inverse relationship between distance from the channel and 

concentrations. The little variability seen across the floodplain that does exist can be 

attributed to the channelized chutes and drainage features where lower concentrations 

occur. Areas in and around the bank tend to have lower Pb concentrations, likely related 

to the coarser grained deposition typically in these areas.  

Zinc however does not show the same pattern as Pb (Figure 32). Chutes do not 

appear to correlate visually with lower concentrations. High concentrations of Zn seem to 

concentrate more in the west end of the study site where the drainage feature leads. 

However, it is important to note that the pattern variations may be a factor of magnitude. 

Concentration values for Zn are significantly less than that of Pb, so variations on the 

order of a 100 ppm visually look more significant for Zn than would for Pb.   

Calcium is again limited to areas close to the channel where sand deposition 

likely dominates (Figure 33). Calcium will be significantly limited because Washington 

is much farther downstream than the other two sites, so coarser-grained mining sediment 

likely will not be readily transported this far downstream.  

Iron is concentrated near the bluff and decreases closer to the channel (Figure 34). 

It is likely that Fe concentrations could be related to areas where natural sediment such as 

weathered residuum is eroding off of the uplands is being deposited on the floodplain. 

This may have an effect on the relationship between Pb and Fe. 
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Geographic Trends 

Effects of Source and Proximity to Source. As discussed in chapter one, the 

general trend in contamination in fluvial systems is a downstream decay in concentrations 

with increased distance from the source. This is attributed to dilution, tributary input, and 

storage of sediment in channels and floodplains (Lecce and Pavlowsky, 2001; Axtmann 

and Luoma, 1991). However, upon looking at contamination trends in floodplains in the 

Big River, it becomes apparent that there are more factors affecting longitudinal trends 

than strictly distance from the source.  

Among the three sites examined for this study, there is not a consistent pattern of 

decay of Pb as expected (Figure 35). Beginning at the Big River/Flat River confluence 

site and moving approximately 14.5 river kilometers downstream to St. Francois State 

Park, there is a 34% decrease in mean Pb concentration in floodplain surface soils. This 

shows expected downstream decrease; however, in another 38.5 river kilometers 

downstream at Washington State Park, there is a 134% increase in mean Pb 

concentration. Recalling Washington State Park had the highest average lead 

concentrations of any of the three sites, and is the farthest away from the source.  

Since mining tailings in the Old Lead Belt contain both zinc and lead (Smith and 

Schumacher 1993), it would be expected to see the same longitudinal trends between the 

two elements. Zinc concentrations do decay between the confluence and St. Francois 

State Park, and then increase at Washington State Park (Figure 35). Concentrations 

decrease 71% from the Big River/Flat River confluence to St. Francois State Park, then 

increase to a smaller degree from St. Francois State Park to Washington State. Unlike 

with lead, Washington State Park does not have the highest Zn concentrations; there is a 
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Effects of Downstream Sorting. Grain size is an important factor in the 

distribution trends of these elements. Fine-grained sediment has: more downstream 

mobility than coarse sediment, the highest concentrations of Pb in mining contaminants, 

and more lateral mobility across floodplains making it important in surface soil 

contamination (Axtmann and Luoma, 1991; Lecce and Pavlowsky, 2001). Since fine- 

grained materials can remain entrained within the river for greater distances, significant 

mining sediment with high Pb concentrations, can be transported the as far downstream 

as Washington State Park and spread across the floodplain during floods. The ability for 

fine-grained sediment to remain entrained within the stream, allows for a large 

longitudinal extent of heavy metal contamination. This mobility of fine-grained materials, 

paired with the large floodplain area for sedimentation, allows for high concentrations to 

accumulate at Washington State Park. 

Conversely, coarser fractions of mining sediment will be limited in mobility, and 

consequently remain in the upstream segments of the stream. This paired with the 

proximity to the source is the reason mean Ca concentrations are so much higher at the 

Big River/Flat River confluence than downstream. Sand deposition from the coarser 

mining sediment is high in Ca, and represents the main source of Ca for the stream. High 

Ca concentrations will be more limited longitudinally due to the limits on the streams 

ability to transport this coarser fraction, hence the significant decay.  

Effects of Valley Width. St. Francois State Park has significantly lower 

concentrations in Pb than both Washington State Park and the Big River/Flat River 

confluence, and it is located in between the two sites. This can best be explained by 

valley width. St. Francois State Park has a valley width more than four times smaller than 





 

92 

Spatial and Geochemical Variables and Pb Concentrations 

On a smaller scale, there are variations in geochemistry seen across floodplain 

landforms. Contamination is summarized by landform in Chapter 4, but in order to 

quantify the spatial patterns of Pb concentrations across a study site, it is important to 

examine the physical and geochemical characteristics of the landscape in order to look 

for correlation between them and Pb concentration. Correlation matrices between Pb and 

elevation, distance from the channel, Ca and Fe were created for two sample groupings. 

One grouping included all samples at a study site, and the other was a subsample of only 

samples in the floodplain class to see if correlation coefficients varied with the largest 

landform kept constant. At the Big River/Flat River confluence, the floodplain and 

disturbed classes were combined for the subsample. Pearson coefficients relating Pb 

concentrations to these variables are displayed in Figures 37, 38, and 39. Floodplain 

subsamples showed the same trends as the grouping with all the samples at all sites for all 

variables except distance from the channel at Washington State Park. In general, 

correlation coefficients were stronger at St. Francois State park where variability is 

higher (CV = 55%), than at the Big River/Flat River Confluence (CV = 29%) and 

Washington State Park (CV = 21%). 
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sediment (Chen et al., 2012; Howard, 1996; Ciszewski and Malik, 2004). Lower 

elevation landforms would conversely be inundated more frequently, and an increased 

deposition of contaminated sediment would be expected. Therefore, elevation 

theoretically should be inversely related to Pb concentrations on Big River floodplains.  

At the Big River/Flat River site, the correlation is negative as expected, but is not 

significant, likely due to the variation of hydrologic conditions at similar elevation 

landforms. The small channelized area that connects the Big River excavated/disturbed 

basin to the channel is at a similar low elevation to the basin in the disturbed area. The 

channelized flows will likely scour and prevent significant deposition, whereas the ability 

for sediment to settle in the disturbed basin will allow for increased deposition (Howard, 

1996). The variable flows will likely cause a difference among Pb contaminant 

concentrations at similar elevations, thus weakening the elevation-Pb relationship by 

adding spatial variability. At St. Francois State Park, the negative correlation is highly 

significant. This is likely related to the rapid elevation rise in the narrow valley limiting 

sediment deposition in the upper floodplain. At Washington State Park, the correlation 

between these variables is positive and opposite of what was expected from the literature. 

Higher landform elevations were correlated with an increase in Pb concentrations. This is 

likely due to the chute/drainage influence at this site. These areas occur at the lowest 

elevations within the study site and have lower concentrations of Pb than floodplain 

surfaces. This could be due to channelized scouring in the chute during inundation 

(Howard, 1996), and the dilution of contaminants from upland erosion by the drainage 

off nearby hillslopes (Lecce and Pavlowsky et al, 2001). Higher, non-channelized 
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floodplains at this site will allow for sediment to settle out under lower velocity 

conditions, and thus there is higher concentrations in the higher elevation floodplain unit.  

Distance to the Channel Correlation. Distance from the channel shows a 

significant negative relationship with Pb concentrations at St. Francois State Park and the 

Big River/Flat River confluence. At Washington State Park, coefficients for the grouping 

with all of the samples is insignificant and negative, and the coefficient for the floodplain 

grouping shows an insignificant positive trend. 

It is expected that the soil metal concentration would be highest at locations closer 

to the river and decrease away due to deposition losses and dilution from valley slope 

sediment. Overbank flows will lose sediment transport capacity as they flow over a 

floodplain, so increased deposition and the resulting higher concentrations are expected 

to be closer to the channel (Chen et al., 2012; Middelkoop, 2000). Therefore, Pb 

concentration should be inversely related to distance from the channel.  

At the Big River/Flat River site, distance from the channel is significantly 

negatively correlated with soil Pb concentrations (Figure 37). The bench has a recurrence 

interval of less than a year, meaning it has the potential to receive contaminated sediment 

more frequently than higher areas. The road, which is inundated with larger floods of 1.5-

2 year recurrence intervals, would limit access of sediment transport in overbank flows to 

the disturbed area/floodplain. As discussed in earlier, the majority of sediment deposited 

in the disturbed area/floodplain would occur when the southern end of the study area is 

inundated every 1.05-1.25 years. These factors would likely cause the declining 

contamination seen with distance from the channel. At St. Francois State Park, the strong 

inverse relationship is likely related to the narrow valley (Figure 38). Contaminated 
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sediment would be limited to areas closer to the channel because of the valley 

confinement (Howard, 1996; Leece and Pavlowsky, 2014). Finally, at Washington State 

Park, the weak correlations are likely due to the general lack of variability in Pb 

concentrations across the study site (Figure 29) (CV = 21%). High concentrations across 

the site, likely related to the increased deposition rates associated with a wide valley, tend 

to mask the small variability making correlations largely insignificant.  

Geochemical Correlations. Coefficients for Ca and Pb concentrations at all sites 

for both groupings are positive and significant. Coefficients for Fe and Pb concentrations, 

the Big River/Flat River confluence show a significant positive relationship when all 

samples are used, but a significant negative relationship when only floodplain samples 

are used (Figure 37). St. Francois State Park has high coefficients in both subgroups for 

Fe (Figure 38), and Washington State Park does not show any significant correlation for 

either subgroup (Figure 39).   

Calcium content in the Big River is related to dolomite tailings containing 

significant amounts of Pb (Smith and Schumacher, 1993). Therefore, Ca content can 

likely be a proxy for tailings deposition on floodplains. Iron can be related to both natural 

Fe/Mn-oxides and clays which can absorb heavy metals (Laing et al., 2009; Schröder et 

al., 2008; Smith and Schumacher, 1993). Therefore, positive relationships are expected 

between Pb and both Ca and Fe in mining affected environments.   

At the Big River/Flat River confluence, Ca shows a significant positive 

relationship with Pb as expected, likely related to the high availability both coarse and 

fine-grained tailings due to the proximity to the tailings piles. With Fe, the expected 

positive relationship is observed and was and significant. This is likely related to fine 
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grained deposition in the disturbed area. A more detailed chemical analysis of Fe is 

needed for a better understanding of this relationship. At St. Francois St. Park, the 

relationships are as expected and strong. This is likely to Fe/Mn-oxides and clays in the 

bench. At Washington State Park, the relationship for Ca was significant, again likely due 

to mine tailing deposition close to the channel as previously noted. With Fe, the 

insignificant relationship may be due to both input of Fe from upland erosion, and the 

general lack of variability discussed in the last section.  

Overall, these correlations indicate that with increased complexity in floodplain 

morphology, comes an increased complexity in floodplain hydrology and consequently 

contaminated sediment deposition patterns. Narrow valley floodplains such as St. 

Francois State Park produce the expected relationships, while wider floodplains like the 

Big River/Flat River confluence and Washington State Park tend to have a more complex 

planform with chutes and drainage features causing weaker relationships. 

 

Stepwise Regression Analysis 

Since no single variable accurately explains the variation in Pb contamination, 

multiple linear regression analysis was conducted in order to determine if multiple 

variables together could explain the Pb variability. The most significant models were 

developed by evaluating results using multiple variables in both logarithmic and 

arithmetic forms. The best model had the highest Pearson R2 value with a small standard 

estimate of error, an α value less than 0.05 for each variable, and no significant 

multicollinearity problems. Table 10 displays preliminary models with all samples and 

Table 11 displays results with the removal of possible outliers (Rogerson, 2010). 
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At the Big River/Flat River confluence, spatial variables were not significant in 

the distribution Pb concentrations. This is likely due to the anthropogenic alteration of 

landscape in the disturbed areas, as well as the complexity of floodplain planform 

including the development of chutes, and the two different sources of contaminated 

sediment (Hupp et al., 2015; Pavlowsky, et al., 2010a; Howard, 1996). The best model 

still only accounted for 41% of the variability using Ca and Fe indicating geochemistry as 

a proxy for tailings and fine-grained sediment may provide some explanation for Pb 

distribution.  

At St. Francois State Park, a much more significant model was created for Pb 

contamination. As expected, due to the narrow confining valley, elevation and distance 

from the channel were important variables (Magilligan, 1985; Leece and Pavlowsky, 

2001). The rapid rise in elevation away from the channel significantly controlled the 

deposition of contaminated sediment in the areas farther from the channel. By adding in 

Fe, this model was further improved. When looking at both Pb (Figure 25) and Fe (Figure 

28) interpolation maps, it is clear that the highest concentrations of both elements were 

found in the bench in a very similar looking spatial distribution, indicating the possible 

correlation between Fe/Mn-oxides or Fe tailings signatures correlating with Pb. It is 

possible that significant clay content may be present in the bench, and could be 

investigated further in future studies (Smith and Schumacher, 1993; Schröder et al., 2008; 

Laing et al., 2009). 

At Washington State Park, the best model included all variables, both 

geochemical and spatial. As seen in the correlation analysis, distance and elevation were 

positively related to Pb, as well as Ca and Fe. Each variable was significant and no 
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multicollinearity problems were found, but overall the model only explained 46% of the 

variability. This is likely due in part to the presence of the chutes and drainage features 

adding complexity to the deposition patterns (Hupp et al., 2015; Howard, 1996), as well 

as the overall high contamination across the floodplain that result in weak relationships 

between Pb and these variables. High concentrations were fairly uniform across the 

whole floodplain, making it difficult to model the subtle changes.  

 Stepwise Analysis with Possible Outliers Removed. Linear regression 

equations for Pb versus elevation, distance from the channel, Ca, and Fe were developed 

for each site. Residuals were then plotted in order to further examine relationships 

between Pb and these variables, and identify possible outliers that may affect the fit of the 

model. (Rogerson, 2010). Any sample that had a residual that looked much larger than 

other samples on the plot was considered a possible outlier, and equations were run with 

and without this sample to see if model fit improved (Table 11).  

Three outliers at the Big River/Flat River confluence site were removed based on 

anomalously high or low values yielding large residuals. One sample was located in the 

excavation fill, one in the disturbed area, and one in the upland. At St. Francois State 

Park, no outliers were identified. At Washington State Park, two outliers stood out in 

residual plots for elevation, distance from the channel, and Ca were removed. One sample 

was in the bank, and the other was in the drainage feature/chute. 

Without the outliers, the models for the Big River/Flat River confluence and 

Washington State Park were not improved. The R2 value for the Big River/Flat River 

confluence decreased by 0.026, and the R2 value at Washington State Park decreased by 

0.013. However, the standard error of the estimate at each site was improved, indicating 
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Implications of Findings 

The extent and concentration of Pb concentrations found in this study can pose a 

significant ecological and health risk to the area. According to the Toxic Substance 

Control Act, the Pb threshold for soils is 400 ppm where children may be present (EPA, 

2015). According to a 2014 report by Stratus Consulting on Missouri mining districts, Pb 

concentrations above 345 ppm in soils have a reasonable likelihood to cause 

physiological damage to local songbirds. All three sites studied show Pb contamination 

concentrations well above these standards with averages of 1,257 ppm at the Big 

River/Flat River confluence, 820 ppm at St. Francois State Park, and 1,915 ppm at 

Washington State Park. The excessive Pb in the soil and the potential harm it can cause to 

wildlife demonstrates the need for effective remediation planning.  

Landform concentration summarized by site in Figure 16 also showed how 

classified landforms differ in contamination concentrations at different study sites. 

Landform mapping and flood frequency calculations in this study showed that benches 

and floodplains inundate at < 2 year recurrence intervals and are typically contaminated 

with Pb to higher levels than other landform classes. Similar findings were found at all 

three sites in this study, which indicates bench and floodplain landforms throughout the 

Big River may contain relatively high concentrations of contaminants. Therefore project 

managers could utilize landform maps with summarized geochemistry to focus 

remediation efforts on bench and floodplain classifications. These results support 

findings of Pavlowsky et al., 2010a which reported floodplain Pb contamination for 171 

river kilometers from Leadwood to Eureka where the Big River flows into the Meramec 

River.  
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Stepwise linear regression results indicated that it was difficult to use selected 

spatial and geochemical variables to effectively model the variability across the Big River 

floodplains. This is likely due to the general lack of variation in the highly contaminated 

floodplains, as indicated by the low coefficients of variation. In using the selected 

variables for modeling, planform and hydrologic complexity (i.e. chutes and drainage 

features) caused significant variation from expected relationships between Pb and 

selected spatial variables for modeling (elevation, distance from the channel). Natural 

inputs of Fe which dilute mining input of Fe, and complex relationships between Pb and 

Ca that are not fully understood, also make geochemical variables used in this study less 

effective than anticipated.  

This study suggests that localized “hot spots” of Pb do not occur in surface soils 

on the Big River floodplains. Contaminated soil areas appear to be extensive and 

widespread. Therefore, focused remediation planning through floodplain mapping, 

landform classification, and risk assessment is needed. The use of USDA soil series maps 

can allow for the general display of contamination extent on the Big River. As described 

in Pavlowsky, et al, 2010a, Kaintuck, Haymond, Wilbur, and Sturkie soil series are 

contaminated with heavy metals. Contaminated soil samples in this study were 

predominately located within mapped Kaintuck and Haymond series, and unmapped 

Wilbur series areas. In the 171 river kilometers of Big River floodplain, mapped 

Haymond and Kaintuck series cover an area of approximately 25 and 8 km2 respectively. 

If these series are assumed to be contaminated to a similar extent as what was found in 

this study, these soils represent 36 km2 of contaminated soil area. While this study did not 

collect samples mapped as the Wilbur or Sturkie series, Pavlowsky et al., 2010a 
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described these soil series as high floodplains and low terraces, respectively. If these soils 

represent the same landforms as the landforms sampled in this study, then it can be 

assumed these series are highly contaminated as well. This means that between the 

Kaintuck, Haymond, Wilbur, and Sturkie soil series, there is a total of approximately 39 

km2 of contaminated soils may be located on Big River floodplains below the tailings 

piles in St. Francois, Washington, and Jefferson Counties, Missouri. The use of landform 

maps and soil series in conjunction can provide a preliminary indicator of mining-related 

contamination.  
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CHAPTER 5 – SUMMARY AND CONCLUSIONS 

 

Lead contamination in the Big River from historical mining activity has been 

extensively studied in order to quantify the extent of contamination (Pavlowsky et al., 

2010a; Meneau, 1997; Smith and Schumacher 1993; Mosby et al., 2009; Young, 2011). 

Large volumes of contaminated sediment were discharged into the Big River by historical 

mining activities since 1892, where it has been transported downstream, reworked by 

fluvial processes, and deposited in floodplain and channel areas. Floodplains are a 

significant sink for fine-grained contaminated sediment and can pose a serious long-term 

pollution problem to streams. Floodplains along the Big River have been found to contain 

significant concentrations of heavy metals for 171 kilometers downstream of Leadwood, 

MO (Pavlowsky et al., 2010a). Ongoing remediation efforts have been underway to 

mitigate the ecological damage. However, more information on site-scale trends in heavy 

metals across floodplain surfaces is needed to be studied in order to develop the most 

effective remediation plans.  

Elevation data and field observations were used to develop geomorphic maps of 

floodplain landforms at three approximately 1 kilometer long sites along the Big River. 

One site was at the Big River/Flat River confluence, 16 km downstream of the Leadwood 

tailings pile, and represents a moderately wide floodplain with a human-altered 

floodplain through excavation. The second study site was at St. Francois State Park, 30.5 

kilometers downstream of the Leadwood tailings pile, and represents a narrow floodplain 

with a confining valley. The last study site was at Washington State Park, 69 kilometers 

downstream of the Leadwood tailings pile, and represents a wide valley and floodplain. 
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Lead concentrations were quantified for each study site by collecting and analyzing 468 

top soil samples. Geochemical data was then used to develop interpolation maps for the 

examination of spatial trends of contaminants.  

Using correlation and regression analysis, spatial and geochemical variables were 

used to model Pb concentrations across each site. Elevation, distance from the channel, 

calcium concentrations, and iron concentrations were used to model variations in Pb at all 

three sites. Based on previous studies, an increase in elevation, and an increase in the 

distance from the channel should be related to a decrease in Pb (Chen et al., 2012; 

Howard, 1996; Ciszewski and Malik, 2004; Owen et al, 2011; Middelkoop, 2000). 

Increases in Ca and Fe should be related to an increase in Pb in sediment related to the 

tailing input in the Big River (Smith and Schumacher, 1993; Pavlowsky et al., 2010a).  

Average lead concentrations at the Big River/Flat River confluence, St Francois 

State Park, and Washington State Park were 1,257, 820, and 1,915 ppm respectively. 

Variation at the Big River/Flat River confluence and Washington State Park was small 

with coefficients of variation of 29% and 21% respectively. At St. Francois State Park, 

significantly more variation in Pb was found, with a coefficient of variation of 55%. At 

all three sites, benches and floodplains were found to have high concentrations of Pb, 

while chutes and drainage features were found to have low concentrations. 

Geographic and physiographic controls such as distance from the source and 

valley width played a more important role in explaining the degree of contamination at a 

site compared to site-specific controls. While variation was minimal at a single site, 

notable differences in mean Pb concentrations at the three different sites were found (CV 

= 21 to 55%). Much of the variation between sites was interpreted to be a result of valley 
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width (Howard, 1996). Narrow valleys such as St. Francois State Park tend to transport 

contaminated sediment downstream and deposit less on floodplain surfaces. Wider 

valleys, such as Washington State Park and the Big River/Flat River confluence, act as 

significant sinks for contaminants and consequently have much higher concentrations of 

Pb (Howard, 1996; Leece and Pavlowsky, 2001).  

Using elevation, distance from the channel, Ca, and Fe as independent variables, 

it proved difficult to develop effective models that explained the variability in Pb across a 

floodplain using stepwise regression. Much of this difficulty can be explained by the lack 

of variation in Pb concentrations at a site. With the low CV values at the Big River/Flat 

River confluence and Washington State Park, models only accounted for 41% and 46% 

of the variation in Pb concentrations respectively. The limited variation in dependent 

variables, paired with hydrologic and geomorphic complexities associated with the 

development of chutes and drainage features made it difficult to create effective 

predictive models. Ultimately, the spatial distribution of floodplain contamination was 

relatively uniform making within-site modelling largely ineffective using methods of this 

study.  

United State Department of Agriculture soil series which correlate with areas 

sampled in this study, and areas related to landforms mapped in this study suggest that an 

estimated 39 km2 of floodplain soils along 171 river kilometers of the Big River may be 

highly contaminated with Pb to a level of serious risk to both riparian ecosystems and 

human health (EPA, 2015; Stratus, 2014). 
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Key Findings  

The key findings of this study include: 

1) Top soil deposits along the Big River are highly contaminated with heavy 

metals from historical mining activity. The Environmental Protection Agency 

threshold for lead in soils where children are present is 400 ppm, and mean Pb 

concentrations found at three different floodplain sites ranged from 820-1915 

ppm, indicating a significant threat to human and riparian ecosytem health; 

 

2) Low floodplain surfaces such as benches contain some of the highest 

concentrations of Pb measured in this study. Increased flood frequency of 

these surfaces allow for more contaminated sediment to be deposited in these 

areas, and consequently tend to be the most contaminated; 

 

3) The development of chute and drainages features, as well as human influence 

on topography, create complex hydrology and geomorphology patterns which 

affect the spatial distribution of contaminated sediment across a floodplain. 

Specifically, chute and drainage features where flow velocity is high can 

cause scour and dilution of contaminated sediment, causing a decrease in 

contamination in these areas; 

 

4) Valley width controls that affect sedimentation rates on floodplains also 

similarly affect contamination levels and variation among sites. Wider valleys 

in general have a tendency to accrete more sediment, consequently sites with 

wider valleys accumulate higher concentrations of contamination, whereas 

sites with narrow valleys tend to transport more contamination downstream; 

 

5) Low variability of Pb concentrations across floodplains studied made 

significant linear regression modeling difficult, especially in wide-valley 

floodplains; 

 

6) The best regression models for sites with a wider floodplain, Washington 

State Park and the Big River/Flat River confluence, yielded models with R2 

values of 0.46 and 0.41 respectively. However, at the narrow floodplain site at 

St. Francois State Park, models were more effective in describing the 

variability (R2 = 0.84); 

 

7) Soil series associated with contamination concentrations found in this study 

are mapped on Big River floodplains for 39 km2 and could likely represent 

areas of significant contamination. Using soils series maps and floodplain 

maps, a better understanding of contamination distribution may be estimated. 
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Future Work 

This study provided a more detailed analysis of the spatial trends and the factors 

controlling contaminant distribution along Big River floodplains. However, it is 

important to assess the methodology used in this study and discuss future work that needs 

to be conducted in order to better understand the ecological risks surrounding Big River 

floodplain contamination. Interpolation maps used in this study allowed for the 

visualization of contamination trends across the study site. This was a beneficial 

technique to qualitatively view geochemical variations at a site for the purpose of 

interpreting geomorphic controls. However, if spatial continuity with higher accuracy is 

desired, comparison of interpolated concentration values to collected control values needs 

to done. This can be accomplished through cross validation techniques. Samples 

collected would be divided into two subgroups. One subgroup would be used to run the 

interpolation calculation, and the other subgroup would be used to compare to 

interpolated values. This allows for the calculation of the error between the predicted 

sample from the interpolation and a known control point (O’Sullivan and Unwin, 2010; 

Kravchenko, 2003; Gotway et al., 1995). Future studies should consider the use of cross 

validation to ensure accuracy to the degree desired. Previous studies have shown a 

relationship between grain size and contamination (Pavlowsky et al., 2010b; Axtmann 

and Luoma, 1991). Models in the Big River may be improved by adding the grain size as 

an independent variable in regression analysis, and should be considered in future studies. 

Other geospatial modelling methods could also be explored such as geographically 

weighted regression (GWR). Geographically weighted regression allows for the 

development of models with a consideration of spatial heterogeneity (Zhang et al., 2009; 
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Brunson et al., 1996). Exploring these ideas may improve the results of this study to 

better understand and model distribution of heavy metals in Big River floodplain 

surfaces. 
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Appendix B - Sample Geochemistry 

 

 

Appendix B-1 - Big River/Flat River Confluence Samples 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

BRDH-1 1,618 1,378 49,169 17,031 

BRDH-2 1,560 1,129 42,823 18,040 

BRDH-3 1,524 1,181 35,713 19,351 

BRDH-4 1,958 1,066 43,492 20,497 

BRDH-5 1,639 1,253 48,976 19,226 

BRDH-6 1,414 825 27,329 18,646 

BRDH-7 698 727 122,316 15,402 

BRDH-8 698 569 189,746 20,735 

BRDH-9 1,392 1,310 86,757 19,394 

BRDH-10 1,397 958 52,772 17,169 

BRDH-11 1,240 902 26,103 16,502 

BRDH-12 1,384 951 22,730 18,281 

BRDH-13 1,453 1,048 28,378 18,375 

BRDH-14 1,672 1,111 29,703 19,396 

BRDH-15 1,786 1,382 67,943 18,057 

BRDH-16 1,078 1,008 95,710 16,295 

BRDH-17 1,484 1,165 58,129 18,759 

BRDH-18 1,454 1,193 41,523 17,430 

BRDH-19 1,536 1,037 39,005 18,594 

BRDH-20 1,323 954 37,047 17,551 

BRDH-21 1,541 899 35,538 17,468 

BRDH-22 1,829 1,261 25,192 16,106 

BRDH-23 1,798 1,121 39,287 21,010 

BRDH-24 1,502 1,302 28,014 18,379 

BRDH-25 1,086 898 26,164 17,686 

BRDH-26 1,088 952 19,563 16,952 

BRDH-27 952 875 23,060 18,611 

BRDH-28 1,237 1,164 30,286 16,279 

BRDH-29 1,908 1,767 164,359 23,978 

BRDH-30 1,645 1,413 39,326 18,334 

BRDH-31 1,826 1,151 54,944 20,491 

BRDH-32 1,689 1,050 48,854 18,514 

BRDH-33 1,574 1,085 42,215 19,236 

BRDH-34 1,070 896 17,854 19,614 
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Appendix B-1 Continued   

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

BRDH-36 1,557 1,394 36,356 16,704 

BRDH-37 936 865 19,150 17,983 

BRDH-38 1,243 1,164 28,149 18,544 

BRDH-39 736 557 18,530 17,348 

BRDH-40 1,382 1,250 123,841 21,216 

BRDH-41 1,323 1,576 77,619 15,877 

BRDH-42 1,269 1,482 65,672 17,071 

BRDH-43 2,203 2,446 29,446 20,235 

BRDH-44 1,684 1,754 44,186 17,650 

BRDH-45 1,700 1,017 66,076 19,355 

BRDH-46 1,298 986 39,414 15,103 

BRDH-48 1,159 948 58,754 16,761 

BRDH-49 1,367 1,044 35,842 18,324 

BRDH-50 1,561 1,012 28,281 18,300 

BRDH-51 1,829 1,397 45,955 18,836 

BRDH-53 1,109 693 26,248 17,588 

BRDH-54 928 722 19,053 16,156 

BRDH-55 1,272 1,096 18,691 20,119 

BRDH-56 1,130 1,060 23,661 16,989 

BRDH-57 1,902 1,978 28,854 17,966 

BRDH-59 1,387 1,237 26,063 17,291 

BRDH-60 146 172 5,491 17,355 

BRDH-61 1,003 790 15,608 18,525 

BRDH-62 858 700 14,684 18,572 

BRDH-63 1,174 937 72,875 16,010 

BRDH-64 1,580 1,631 60,757 18,666 

BRDH-65 1,337 1,300 57,213 16,353 

BRDH-66 1,281 1,262 53,182 15,433 

BRDH-67 1,388 1,175 50,598 16,957 

BRDH-68 982 994 25,153 14,508 

BRDH-69 1,400 1,025 30,436 18,480 

BRDH-70 1,353 1,444 51,231 15,640 

BRDH-71 813 961 76,861 14,443 

BRDH-72 795 624 19,248 16,749 

BRDH-73 681 524 25,030 14,953 

BRDH-74 1,230 1,276 41,142 16,272 

BRDH-75 826 1,214 64,412 14,185 

BRDH-76 1,383 1,219 36,076 17,163 
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Appendix B-1 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

BRDH-78 1,308 1,192 34,274 16,384 

BRDH-79 1,320 1,110 27,366 17,929 

BRDH-80 869 702 14,194 15,836 

BRDH-81 371 263 7,225 13,790 

BRDH-82 1,164 950 102,370 18,810 

BRDH-83 1,454 1,464 135,038 19,787 

BRDH-84 1,017 924 105,812 16,095 

BRDH-85 1,777 1,283 57,182 18,949 

BRDH-86 1,291 1,503 56,381 16,209 

BRDH-87 1,476 1,174 48,427 17,825 

BRDH-88 1,352 964 29,268 17,849 

BRDH-89 913 858 39,709 20,391 

BRDH-90 1,142 936 41,981 17,507 

BRDH-91 850 552 35,952 14,789 

BRDH-92 1,178 1,039 36,597 16,703 

BRDH-94 1,225 1,171 29,530 17,206 

BRDH-95 1,259 1,137 27,282 18,448 

BRDH-97 1,494 947 30,753 16,783 

BRDH-98 237 233 4,298 23,159 

BRDH-99 882 649 108,181 24,334 

BRDH-100 1,110 490 141,518 19,748 

BRDH-101 1,811 1,363 113,602 21,632 

BRDH-102 1,394 1,086 57,509 17,832 

BRDH-103 1,193 1,298 33,542 16,403 

BRDH-104 1,276 1,334 44,074 16,142 

BRDH-106 1,123 883 26,031 17,471 

BRDH-107 1,122 920 40,002 17,449 

BRDH-108 3,264 1,459 126,898 26,514 

BRDH-109 926 1,094 31,826 14,853 

BRDH-110 1,382 1,243 36,875 15,951 

BRDH-111 1,476 1,292 29,843 18,023 

BRDH-112 1,269 1,064 30,968 16,401 

BRDH-113 1,274 1,141 25,892 17,502 

BRDH-114 1,149 1,020 26,235 18,261 

BRDH-115 1,141 979 21,513 18,245 

BRDH-117 1,268 1,118 41,432 16,375 

BRDH-118 1,470 1,158 31,351 17,178 

BRDH-119 1,333 1,001 59,559 18,887 
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Appendix B-1 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

BRDH-121 1,107 990 73,839 15,857 

BRDH-122 1,190 1,485 72,019 17,022 

BRDH-123 1,314 1,742 57,271 17,504 

BRDH-124 1,262 1,190 55,343 16,428 

BRDH-125 1,290 1,394 56,277 16,514 

BRDH-126 827 1,023 71,391 15,072 

BRDH-127 1,374 1,380 48,664 15,657 

BRDH-128 1,314 1,340 46,326 15,457 

BRDH-129 1,243 1,060 40,429 15,669 

BRDH-130 1,066 1,061 25,667 17,297 

BRDH-131 1,316 1,180 25,842 17,816 

BRDH-132 1,129 896 22,474 18,267 

BRDH-133 1,091 902 15,134 18,955 

BRDH-134 598 510 8,969 19,724 

BRDH-135 2,323 1,076 81,870 16,067 

BRDH-136 1,184 1,520 117,393 21,695 

BRDH-137 1,556 1,236 119,925 18,576 

BRDH-138 1,141 992 29,273 17,725 

BRDH-139 1,369 1,175 47,033 17,518 

BRDH-140 1,532 1,465 43,500 19,416 

BRDH-141 999 1,038 47,222 15,519 

BRDH-142 1,150 1,040 39,247 16,567 

BRDH-143 1,354 1,251 35,966 17,909 

BRDH-146 535 488 9,526 18,223 

BRDH-147 485 452 9,039 17,643 

BRDH-148 1,109 752 118,107 21,344 

BRDH-149 1,196 1,389 49,119 16,342 

BRDH-150 1,431 1,054 51,816 17,668 

BRDH-152 1,654 1,316 54,045 18,128 

BRDH-153 1,088 1,158 70,272 16,594 

BRDH-154 1,360 1,507 58,910 15,649 

BRDH-155 1,215 1,460 52,104 17,236 

BRDH-156 1,091 1,569 60,269 15,122 

BRDH-157 1,270 1,118 42,766 15,459 

BRDH-158 1,105 1,173 37,421 16,679 

BRDH-160 1,073 1,206 41,331 15,257 

BRDH-161 1,204 1,023 29,910 17,895 

BRDH-162 1,173 1,070 25,291 17,221 
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Appendix B-1 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

BRDH-164 1,038 833 19,491 16,906 

BRDH-165 1,309 1,128 94,611 19,047 

BRDH-166 752 1,470 82,039 14,234 

BRDH-167 743 1,392 76,464 12,543 

BRDH-168 948 1,122 74,011 15,161 

BRDH-169 1,096 1,329 51,934 13,793 

BRDH-170 1,239 1,130 59,210 16,041 

BRDH-171 860 3,375 83,794 15,937 

BRDH-172 1,284 2,287 60,266 15,475 

BRDH-173 711 914 103,510 15,035 

BRDH-174 1,182 1,343 32,600 15,237 

BRDH-47 1,518 1,233 41,778 18,903 

BRDH-52 1,000 711 31,205 17,222 

BRDH-58 1,177 1,080 22,660 16,769 

BRDH-93 1,161 1,142 50,108 16,633 

BRDH-96 666 465 14,558 16,597 

BRDH-105 1,348 1,029 36,620 15,864 

BRDH-116 1,074 884 18,220 18,995 

BRDH-145 1,233 1,006 20,230 18,365 

BRDH-144 1,267 1,105 21,884 18,367 

BRDH-151 1,136 1,202 45,548 17,277 

BRDH-159 1,121 1,221 38,852 15,491 
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Appendix B-2 - St. Francois State Park (DH-1 to DH-132; DH-288 to DH-295), and 

Washington State Park (DH-133 to DH-287) Samples 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-1 1,018 495 33,505 18,128 

DH-2 926 417 26,306 18,939 

DH-3 954 462 23,702 19,752 

DH-4 857 363 32,347 16,263 

DH-5 921 399 20,076 18,458 

DH-6 1,092 414 37,484 16,821 

DH-7 1,366 492 39,746 17,526 

DH-8 1,428 476 35,160 18,091 

DH-9 435 379 30,051 14,535 

DH-10 449 206 9,304 15,258 

DH-11 672 285 9,974 16,543 

DH-12 494 149 5,036 16,781 

DH-13 506 194 5,906 14,441 

DH-14 461 154 2,953 13,239 

DH-15 1,014 471 30,445 18,625 

DH-16 1,190 461 40,249 17,445 

DH-17 1,128 436 32,158 17,365 

DH-18 1,000 356 27,320 15,490 

DH-19 1,845 700 53,265 19,362 

DH-20 1,252 456 19,747 17,148 

DH-21 855 362 14,100 17,692 

DH-22 770 305 8,643 16,212 

DH-23 450 170 4,023 14,859 

DH-24 423 172 4,972 13,462 

DH-25 946 480 60,449 17,682 

DH-26 1,063 492 40,621 17,678 

DH-27 909 398 29,326 17,876 

DH-28 1,201 448 25,618 17,960 

DH-29 1,469 539 34,642 18,808 

DH-30 1,070 427 23,775 17,531 

DH-31 721 277 13,609 16,566 

DH-32 351 164 4,289 13,992 

DH-33 451 189 5,441 14,379 

DH-34 736 298 64,570 14,668 

DH-35 1,032 400 49,346 16,731 

DH-36 1,182 485 27,255 18,233 

DH-37 1,075 394 33,553 18,492 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-39 1,004 423 26,523 16,768 

DH-40 467 198 18,391 14,491 

DH-41 346 159 7,950 12,585 

DH-42 488 196 6,970 12,589 

DH-43 535 271 67,340 12,299 

DH-44 1,247 603 50,691 17,116 

DH-45 1,339 555 56,611 17,263 

DH-46 1,349 473 33,233 17,436 

DH-47 1,156 354 18,576 17,023 

DH-48 402 161 13,106 17,285 

DH-49 342 136 6,524 12,525 

DH-50 278 111 4,427 11,680 

DH-51 656 314 64,337 14,903 

DH-52 641 293 47,310 13,615 

DH-53 1,251 450 24,662 17,280 

DH-54 1,094 392 18,321 17,153 

DH-55 986 327 17,021 15,949 

DH-56 462 172 11,787 15,559 

DH-57 815 279 9,348 14,900 

DH-58 346 136 4,340 11,070 

DH-59 695 350 22,187 18,943 

DH-60 985 407 46,677 17,474 

DH-61 557 237 21,956 13,637 

DH-62 640 285 13,621 16,473 

DH-63 982 546 51,681 16,741 

DH-64 1,302 501 34,445 17,718 

DH-65 1,306 347 31,170 15,668 

DH-66 2,098 580 42,334 18,357 

DH-67 1,109 366 17,765 15,530 

DH-68 787 291 16,514 15,723 

DH-69 783 271 21,386 15,112 

DH-70 654 213 23,848 16,560 

DH-71 1,232 450 55,176 16,921 

DH-72 959 369 34,862 19,980 

DH-73 449 167 4,302 12,338 

DH-74 382 179 9,677 12,788 

DH-75 290 111 4,564 11,207 

DH-76 239 99 4,054 11,879 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-78 58 44 2,160 11,957 

DH-79 701 280 47,555 12,117 

DH-80 1,070 466 26,964 18,500 

DH-81 1,590 582 28,436 18,890 

DH-82 1,542 468 26,280 17,725 

DH-83 705 244 11,810 13,197 

DH-84 788 286 15,379 16,314 

DH-85 451 199 6,462 13,403 

DH-86 381 143 3,796 11,974 

DH-87 328 121 3,187 11,625 

DH-88 258 132 8,814 11,026 

DH-89 196 83 2,576 12,089 

DH-90 148 68 1,988 14,163 

DH-91 80 52 1,778 12,415 

DH-92 654 249 15,474 17,280 

DH-93 637 238 16,248 16,231 

DH-94 825 356 44,562 16,357 

DH-95 294 114 5,088 12,480 

DH-96 230 93 2,921 11,779 

DH-97 158 74 2,203 14,709 

DH-98 84 43 1,615 13,403 

DH-99 1,217 526 30,320 17,861 

DH-100 1,227 504 30,041 17,592 

DH-101 1,328 515 28,152 15,957 

DH-102 2,176 732 30,606 17,318 

DH-103 970 360 17,444 14,944 

DH-104 826 312 20,799 14,806 

DH-105 1,121 360 26,758 16,169 

DH-106 529 204 7,245 14,103 

DH-107 385 150 6,121 13,498 

DH-108 206 88 2,669 12,951 

DH-109 208 87 2,497 13,236 

DH-110 120 66 2,144 13,891 

DH-111 80 48 1,869 14,660 

DH-112 1,333 658 43,777 17,908 

DH-113 1,237 483 18,884 17,822 

DH-114 1,859 591 33,864 16,892 

DH-115 1,569 580 34,467 16,165 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-117 969 326 23,901 15,544 

DH-118 1,104 322 29,293 14,598 

DH-119 934 332 10,291 16,464 

DH-120 499 194 3,494 13,809 

DH-121 371 170 5,554 15,002 

DH-122 220 99 2,408 13,068 

DH-123 153 74 2,100 14,029 

DH-124 756 461 110,911 30,859 

DH-125 464 227 76,358 15,216 

DH-126 687 593 52,184 19,344 

DH-127 672 245 128,054 20,844 

DH-128 1,603 836 105,749 35,153 

DH-129 481 217 93,135 18,873 

DH-130 1,201 508 76,944 19,814 

DH-131 545 266 98,005 15,824 

DH-132 554 293 72,178 15,919 

DH-133 1,539 388 22,890 20,216 

DH-134 2,380 502 26,223 19,422 

DH-135 2,430 555 25,617 19,619 

DH-136 2,615 584 28,950 19,183 

DH-137 2,330 599 24,459 20,006 

DH-138 2,234 592 23,483 19,901 

DH-139 1,866 562 22,122 19,171 

DH-140 1,880 592 24,064 19,599 

DH-141 2,119 624 26,818 20,383 

DH-142 1,917 610 21,400 21,072 

DH-143 1,746 540 31,622 19,437 

DH-144 1,968 597 32,865 20,500 

DH-145 2,180 443 50,358 15,524 

DH-146 1,910 459 41,080 18,331 

DH-147 2,142 558 37,356 19,504 

DH-148 2,030 541 33,664 19,725 

DH-149 1,935 560 28,878 19,258 

DH-150 1,981 581 22,021 19,674 

DH-151 1,982 569 24,298 18,778 

DH-152 2,163 602 24,482 19,911 

DH-153 1,871 520 27,161 18,402 

DH-154 1,979 495 16,496 20,028 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-156 2,414 464 20,363 18,796 

DH-157 1,248 352 43,636 14,960 

DH-158 1,952 497 39,443 19,107 

DH-159 2,132 558 36,683 19,250 

DH-160 2,094 552 30,223 19,620 

DH-161 1,994 546 34,499 19,215 

DH-162 2,010 567 31,715 19,038 

DH-163 1,952 540 33,592 19,339 

DH-164 1,937 554 27,024 19,965 

DH-165 1,801 551 19,573 19,402 

DH-166 1,912 502 21,676 18,611 

DH-167 1,919 568 22,242 19,791 

DH-168 1,619 542 14,811 18,922 

DH-169 1,624 419 42,548 16,431 

DH-170 1,823 422 39,257 15,404 

DH-171 1,981 482 39,173 17,720 

DH-172 1,975 509 33,786 17,931 

DH-173 1,898 367 11,513 17,923 

DH-174 2,480 508 21,903 18,796 

DH-175 2,094 501 23,117 18,283 

DH-176 2,076 484 29,083 18,160 

DH-177 2,526 568 28,629 18,525 

DH-178 2,455 581 27,365 19,492 

DH-179 2,449 620 32,523 19,808 

DH-180 2,198 641 27,559 20,092 

DH-181 2,013 620 31,147 19,738 

DH-182 1,856 583 25,102 19,509 

DH-183 1,703 568 25,988 20,182 

DH-184 1,707 579 25,247 20,542 

DH-185 1,988 551 40,040 19,330 

DH-186 2,143 524 39,997 18,042 

DH-187 1,970 561 31,127 18,642 

DH-188 1,858 554 31,489 19,724 

DH-189 1,613 575 18,187 20,831 

DH-190 1,956 631 21,825 19,987 

DH-191 2,078 599 22,568 20,145 

DH-192 2,317 589 25,501 19,597 

DH-193 2,476 557 40,791 19,303 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-195 2,418 438 18,635 17,631 

DH-196 1,578 558 16,806 20,248 

DH-197 1,614 488 16,790 17,225 

DH-198 1,649 557 20,819 19,458 

DH-199 2,083 594 26,670 19,808 

DH-200 1,970 576 29,431 20,259 

DH-201 1,784 532 26,143 20,099 

DH-202 2,294 563 35,570 19,094 

DH-203 1,988 476 37,205 17,798 

DH-204 2,150 897 42,316 17,502 

DH-205 1,539 340 51,276 14,745 

DH-206 1,446 380 37,704 16,181 

DH-207 1,819 455 43,559 17,549 

DH-208 1,946 466 45,394 17,952 

DH-209 2,135 513 44,303 19,203 

DH-210 2,006 561 34,018 20,360 

DH-211 1,853 589 23,132 20,410 

DH-212 2,171 614 29,960 19,657 

DH-213 2,054 594 28,730 19,615 

DH-214 1,671 573 19,427 19,947 

DH-215 2,096 597 32,722 19,840 

DH-216 2,142 570 31,416 19,516 

DH-217 2,151 623 30,675 19,388 

DH-218 2,221 604 31,298 19,391 

DH-219 1,818 556 23,566 19,335 

DH-220 1,657 587 16,617 20,085 

DH-221 1,618 539 17,135 19,621 

DH-222 1,793 561 24,347 19,562 

DH-223 2,187 618 28,305 20,412 

DH-224 2,080 593 32,920 19,269 

DH-225 2,217 600 34,403 19,944 

DH-226 2,310 607 37,553 20,295 

DH-227 2,162 583 38,280 19,832 

DH-228 2,114 603 36,262 18,841 

DH-229 2,074 515 40,406 17,976 

DH-230 2,218 539 39,348 18,127 

DH-231 2,016 573 36,738 19,590 

DH-232 266 128 40,000 8,513 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-234 308 134 24,784 9,670 

DH-235 472 147 24,327 8,849 

DH-236 281 124 5,940 8,369 

DH-237 308 134 24,784 9,670 

DH-238 2,192 560 43,427 18,944 

DH-239 2,157 592 45,555 18,332 

DH-240 2,011 647 35,261 20,735 

DH-241 1,781 568 28,659 20,048 

DH-242 2,200 650 31,714 19,583 

DH-243 1,888 682 24,376 21,030 

DH-244 1,871 700 23,192 21,429 

DH-245 2,185 649 28,046 21,381 

DH-246 2,125 740 27,807 21,384 

DH-247 2,061 740 28,110 20,959 

DH-248 1,888 648 30,216 20,303 

DH-249 1,998 619 28,660 20,394 

DH-250 1,733 547 15,320 19,732 

DH-251 2,476 518 15,984 20,141 

DH-252 1,892 599 17,951 21,169 

DH-253 1,273 473 15,157 20,240 

DH-254 1,520 607 16,905 21,217 

DH-255 1,747 592 18,622 20,147 

DH-256 1,737 559 21,574 20,766 

DH-257 1,952 542 29,653 20,205 

DH-258 2,097 576 30,468 19,868 

DH-259 2,005 553 28,602 19,572 

DH-260 2,080 544 29,710 18,392 

DH-261 1,865 532 34,867 19,004 

DH-262 1,933 491 39,890 19,075 

DH-263 2,124 540 43,695 20,166 

DH-264 2,011 561 37,821 19,133 

DH-265 1,779 422 45,190 18,541 

DH-266 1,963 525 36,187 18,139 

DH-267 2,096 545 35,867 19,248 

DH-268 1,987 607 27,394 20,076 

DH-269 2,070 631 26,564 20,555 

DH-270 2,040 578 23,549 20,000 

DH-271 1,655 562 17,539 20,751 
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Appendix B-2 Continued 

Sample 

Name 

Pb 

(ppm) 

Zn 

(ppm) 

Ca 

(ppm) 

Fe 

(ppm) 

DH-273 1,542 609 12,935 21,624 

DH-274 1,615 629 14,623 22,027 

DH-275 1,730 599 15,594 20,973 

DH-276 1,638 657 15,923 22,369 

DH-277 1,665 620 14,867 21,001 

DH-278 2,154 627 23,199 20,878 

DH-279 1,770 602 20,780 20,425 

DH-280 2,110 628 28,238 20,360 

DH-281 2,212 603 38,722 19,476 

DH-282 2,036 517 42,198 19,238 

DH-283 1,773 397 50,012 16,121 

DH-284 2,084 622 34,101 19,051 

DH-285 1,943 603 25,563 20,608 

DH-286 2,024 638 29,106 20,171 

DH-288 1,336 582 27,849 18,460 

DH-289 1,366 530 30,159 16,998 

DH-290 1,638 617 32,145 18,487 

DH-291 1,505 510 31,187 17,835 

DH-292 932 348 15,758 16,011 

DH-293 800 287 17,216 14,799 

DH-294 911 329 20,831 16,008 

DH-295 604 231 6,593 14,156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

136 

Appendix C – Aqua-Regia Correction Data 

 

Appendix C-1 – Aqua-Regia Results 

Pb (ppm)     

Chemex 

Name 

Sample 

Name Location XRF AQ AQ/XRF 

H-1 BRDH-60 BR/FR 178 160 0.899 

H-2 BRDH-98 BR/FR 289 253 0.875 

H-3 BRDH-81 BR/FR 452 356 0.788 

H-4 DH-50 SFSP 339 279 0.823 

H-5 DH-41 SFSP 422 271 0.642 

H-6 BRDH-73 BR/FR 831 641 0.771 

H-7 BRDH-68 BR/FR 1,198 1,060 0.885 

H-8 BRDH-26 BR/FR 1,327 1,140 0.859 

H-9 DH-55 SFSP 1,203 1,030 0.856 

H-10 DH-34 SFSP 898 701 0.781 

H-11 BRDH-57 BR/FR 2,319 1,430 0.617 

H-12 BRDH-118 BR/FR 1,793 1,550 0.864 

H-13 BRDH-32 BR/FR 2,060 1,630 0.791 

H-14 DH-53 SFSP 1,525 1,250 0.820 

H-15 DH-29 SFSP 1,791 1,530 0.854 

 

Zn (ppm)     

Chemex 

Name 

Sample 

Name Location XRF AQ AQ/XRF 

H-1 BRDH-60 BR/FR 196 151 0.770 

H-2 BRDH-98 BR/FR 265 227 0.857 

H-3 BRDH-81 BR/FR 299 250 0.836 

H-4 DH-50 SFSP 126 113 0.897 

H-5 DH-41 SFSP 181 121 0.669 

H-6 BRDH-73 BR/FR 596 553 0.928 

H-7 BRDH-68 BR/FR 1,130 1,070 0.947 

H-8 BRDH-26 BR/FR 1,082 1,020 0.943 

H-9 DH-55 SFSP 372 344 0.925 

H-10 DH-34 SFSP 339 313 0.923 

H-11 BRDH-57 BR/FR 2,248 1,450 0.645 

H-12 BRDH-118 BR/FR 1,316 1,160 0.881 

H-13 BRDH-32 BR/FR 1,193 1,020 0.855 

H-14 DH-53 SFSP 511 451 0.883 

H-15 DH-29 SFSP 613 556 0.907 
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Appendix C-1 Continued 

Ca (ppm)     

Chemex 

Name 

Sample 

Name Location XRF AQ AQ/XRF 

H-1 BRDH-60 BR/FR 5,491 5,400 0.983 

H-2 BRDH-98 BR/FR 4,298 6,400 1.489 

H-3 BRDH-81 BR/FR 7,225 6,100 0.844 

H-4 DH-50 SFSP 4,427 3,300 0.745 

H-5 DH-41 SFSP 7,950 5,400 0.679 

H-6 BRDH-73 BR/FR 25,030 22,100 0.883 

H-7 BRDH-68 BR/FR 25,153 29,400 1.169 

H-8 BRDH-26 BR/FR 19,563 19,600 1.002 

H-9 DH-55 SFSP 17,021 22,900 1.345 

H-10 DH-34 SFSP 64,570 53,000 0.821 

H-11 BRDH-57 BR/FR 28,854 44,000 1.525 

H-12 BRDH-118 BR/FR 31,351 42,200 1.346 

H-13 BRDH-32 BR/FR 48,854 46,500 0.952 

H-14 DH-53 SFSP 24,662 34,200 1.387 

H-15 DH-29 SFSP 34,642 40,300 1.163 

 

Fe (ppm)     

Chemex 

Name 

Sample 

Name Location XRF AQ AQ/XRF 

H-1 BRDH-60 BR/FR 22,539 17,400 0.772 

H-2 BRDH-98 BR/FR 30,076 21,700 0.722 

H-3 BRDH-81 BR/FR 17,909 13,700 0.765 

H-4 DH-50 SFSP 15,169 12,000 0.791 

H-5 DH-41 SFSP 16,344 10,600 0.649 

H-6 BRDH-73 BR/FR 19,420 14,100 0.726 

H-7 BRDH-68 BR/FR 18,842 15,600 0.828 

H-8 BRDH-26 BR/FR 22,015 16,500 0.749 

H-9 DH-55 SFSP 20,713 16,400 0.792 

H-10 DH-34 SFSP 19,049 15,600 0.819 

H-11 BRDH-57 BR/FR 23,332 16,600 0.711 

H-12 BRDH-118 BR/FR 22,309 19,300 0.865 

H-13 BRDH-32 BR/FR 24,044 18,500 0.769 

H-14 DH-53 SFSP 22,442 18,200 0.811 

H-15 DH-29 SFSP 24,426 19,600 0.802 
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Appendix C-2 – Regression Equations for XRF to Aqua-Regia Correction 

 

Metal   Relationship* n  r2 

Pb   Y =  -16.45 + 0.8445 x 14  0.992 

Zn   Y =  -12.339 + 0.9153 x 14  0.994 

Ca   Y = 0.00001 x2 + 1.7844 x - 4,776.40 15  0.938 

Fe   Y = 634.98 + 0.7415 x 15  0.861 

 * x = XRF concentration (ppm), Y = Aqua-regia concentration (ppm) 

 

Appendix C-3 – Aqua-Regia:XRF Ratio 

 

  

Ratio 

Distribution Pb Zn Ca Fe Mn Co 

 75% 0.86 0.92 1.35 0.81 1.01 0.22 

(n=15) Median 0.82 0.88 1.00 0.77 0.94 0.18 

 25% 0.78 0.85 0.86 0.74 0.87 0.17 

  RPD% 5 4 24 4 7 14 
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Appendix D – Landform Geochemical Frequency Distribution 

 

Appendix D-1 – Big River/Flat River Confluence 

 

Lead Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 14 1,017 1,179 1,288 1,391 1,786 

Bench 22 752 1,277 1,359 1,568 2,203 

Floodplain 66 237 1,081 1,294 1,512 1,958 

Drainage/Chute 0 NA NA NA NA NA 

Backswamp/Disturbed 52 146 1,069 1,182 1,277 1,902 

Fill 8 850 923 1,123 1,195 3,264 

 

Zinc Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 14 752 1,015 1,143 1,361 1,576 

Bench 22 990 1,174 1,282 1,469 2,446 

Floodplain 66 237 959 1,055 1,218 1,742 

Drainage/Chute 0 NA NA NA NA NA 

Backswamp/Disturbed 52 172 898 1,096 1,201 3,375 

Fill 8 552 876 928 997 1,459 

 

Calcium Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 14 29,273 39,853 62,726 90,363 123,841 

Bench 22 29,446 45,780 52,499 58,973 82,039 

Floodplain 66 4,298 28,305 39,351 54,401 95,710 

Drainage/Chute 0 NA NA NA NA NA 

Backswamp/Disturbed 52 5,491 20,063 26,200 36,064 103,510 

Fill 8 26,031 31,187 37,831 40,497 126,898 

 

Iron Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 14 15,877 16,350 17,452 18,265 21,344 

Bench 22 14,234 16,245 17,398 18,374 20,235 

Floodplain 66 12,543 16,119 17,195 18,505 23,159 

Drainage/Chute 0 NA NA NA NA NA 

Backswamp/Disturbed 52 13,790 16,278 17,326 18,263 20,119 

Fill 8 14,789 16,800 17,489 18,484 26,514 
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Appendix D-2 – St. Francois State Park 

 

Lead Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 11 656 781 946 1,016 1,333 

Bench 39 402 1,018 1,190 1,337 2,098 

Floodplain 66 58 281 493 897 2,176 

Drainage/Chute 15 342 451 557 875 1,251 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 

 

Zinc Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 11 280 335 471 510 658 

Bench 39 161 396 462 507 617 

Floodplain 66 43 112 201 329 732 

Drainage/Chute 15 136 167 231 308 450 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 

 

Calcium Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 11 26,306 31,975 44,562 56,065 64,570 

Bench 39 13,106 26,402 30,159 35,965 67,340 

Floodplain 66 1,615 3,570 9,491 20,536 55,176 

Drainage/Chute 15 4,023 6,493 7,950 17,789 46,677 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 

 

Iron Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 11 12,117 15,630 17,682 18,018 18,939 

Bench 39 12,299 16,795 17,444 17,918 19,752 

Floodplain 66 11,026 13,100 14,684 16,226 19,361 

Drainage/Chute 15 12,525 13,814 14,859 16,627 19,980 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 
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Appendix D-3 – Washington State Park 

 

Lead Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 15 1,249 1,698 1,968 2,070 2,180 

Bench 0 NA NA NA NA NA 

Floodplain 83 1,618 1,924 2,070 2,162 2,615 

Drainage/Chute 50 1,273 1,661 1,911 2,035 2,480 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 

 

Zinc Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 15 340 408 524 556 897 

Bench 0 NA NA NA NA NA 

Floodplain 83 422 549 583 613 740 

Drainage/Chute 50 367 504 557 584 657 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 

 

Calcium Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 15 32,865 37,763 42,316 44,443 51,276 

Bench 0 NA NA NA NA NA 

Floodplain 83 14,473 24,792 29,083 34,451 45,555 

Drainage/Chute 50 11,513 16,963 22,984 28,712 45,394 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 

 

Iron Concentration (ppm) by Landform 

Landform n Min 25% Median 75% Max 

Bank 15 14,745 16,151 18,042 19,232 20,500 

Bench 0 NA NA NA NA NA 

Floodplain 83 15,404 19,193 19,808 20,331 21,429 

Drainage/Chute 50 17,225 19,041 19,607 20,076 22,369 

Backswamp/Disturbed 0 NA NA NA NA NA 

Fill 0 NA NA NA NA NA 
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